植物生态学报 ›› 2017, Vol. 41 ›› Issue (10): 1081-1090.DOI: 10.17521/cjpe.2016.0393
所属专题: 生态化学计量
宋思梦1, 张丹桔1,2, 张健1,2,*(), 杨万勤1,2, 张艳1, 周扬1, 李勋1
出版日期:
2017-10-10
发布日期:
2017-12-24
通讯作者:
张健
Si-Meng SONG1, Dan-Ju ZHANG1,2, Jian ZHANG1,2,*(), Wan-Qin YANG1,2, Yan ZHANG1, Yang ZHOU1, Xun LI1
Online:
2017-10-10
Published:
2017-12-24
Contact:
Jian ZHANG
摘要:
马尾松(Pinus massoniana)是长江上游低山丘陵区退耕还林的一个主要造林树种。为了解林窗调控下, 马尾松人工林更新优势种在化学计量特征水平上受边缘效应的影响, 该文选取四川省宜宾市高县马尾松人工林人工砍伐形成的7种面积不等的林窗, 以林下为对照, 分析了人工更新优势植物油樟(Cinnamomum longepaniculatum)叶片化学计量特征及其季节动态。结果表明: 马尾松人工林林下与不同面积林窗边缘相比, 不同季节各林窗边缘油樟叶片碳(C)含量、碳氮比(C:N)和碳磷比(C:P)均显著高于林下。随着林窗面积增大, 油樟叶片C含量、C:N、C:P和N:P均先升后降, 在中型林窗(400-900 m2)边缘出现最大值。从春季到冬季, 油樟叶片N、P含量显著下降后上升, C:N和C:P显著上升后下降, 均在夏季有拐点。夏秋季林窗边缘油樟对养分吸收利用优于春冬季, 边缘效应更显著。主成分分析结果显示, 马尾松人工林不同大小林窗边缘油樟化学计量特征主要受林窗面积、相对光强及月平均气温影响。研究结果表明: 625 m2林窗边缘油樟有机质储存及养分利用效率在不同季节均有最大值, 在化学计量特征水平上具有更显著的边缘效应。
宋思梦, 张丹桔, 张健, 杨万勤, 张艳, 周扬, 李勋. 马尾松人工林林窗边缘效应对油樟化学计量特征的影响. 植物生态学报, 2017, 41(10): 1081-1090. DOI: 10.17521/cjpe.2016.0393
Si-Meng SONG, Dan-Ju ZHANG, Jian ZHANG, Wan-Qin YANG, Yan ZHANG, Yang ZHOU, Xun LI. Edge effects of forest gap in Pinus massoniana plantations on the ecological stoichiometry of Cinnamomum longepaniculatum. Chinese Journal of Plant Ecology, 2017, 41(10): 1081-1090. DOI: 10.17521/cjpe.2016.0393
林窗 Gap | 面积 Size (m2) | 经纬度 Longitude and latitude | 海拔 Altitude (m) | 坡度 Slope (°) | 坡向 Aspect | 坡位 Slope position |
---|---|---|---|---|---|---|
G1 | 100 | 28.60° N, 104.56° E | 423 | 24.5 | SW | 中坡 Middle slope |
G2 | 225 | 28.61° N, 104.56° E | 438 | 26.1 | SE | 中坡 Middle slope |
G3 | 400 | 28.60° N, 104.56° E | 408 | 23.5 | SE | 中坡 Middle slope |
G4 | 625 | 28.60° N, 104.57° E | 424 | 24.2 | SE | 中坡 Middle slope |
G5 | 900 | 28.61° N, 104.57° E | 441 | 21.5 | S | 中坡 Middle slope |
G6 | 1 225 | 28.61° N, 104.56° E | 418 | 27.0 | SE | 中坡 Middle slope |
G7 | 1 600 | 28.60° N, 104.56° E | 430 | 26.5 | SE | 中坡 Middle slope |
CK | - | 28.61° N, 104.57° E | 427 | 23.9 | SE | 中坡 Middle slope |
表1 马尾松人工林不同面积林窗样地基本概况
Table 1 General characteristics of the sampling plots in forest gaps with different sizes in Pinus massoniana plantations
林窗 Gap | 面积 Size (m2) | 经纬度 Longitude and latitude | 海拔 Altitude (m) | 坡度 Slope (°) | 坡向 Aspect | 坡位 Slope position |
---|---|---|---|---|---|---|
G1 | 100 | 28.60° N, 104.56° E | 423 | 24.5 | SW | 中坡 Middle slope |
G2 | 225 | 28.61° N, 104.56° E | 438 | 26.1 | SE | 中坡 Middle slope |
G3 | 400 | 28.60° N, 104.56° E | 408 | 23.5 | SE | 中坡 Middle slope |
G4 | 625 | 28.60° N, 104.57° E | 424 | 24.2 | SE | 中坡 Middle slope |
G5 | 900 | 28.61° N, 104.57° E | 441 | 21.5 | S | 中坡 Middle slope |
G6 | 1 225 | 28.61° N, 104.56° E | 418 | 27.0 | SE | 中坡 Middle slope |
G7 | 1 600 | 28.60° N, 104.56° E | 430 | 26.5 | SE | 中坡 Middle slope |
CK | - | 28.61° N, 104.57° E | 427 | 23.9 | SE | 中坡 Middle slope |
林窗 Gap | 容重 Bulk density (g·cm-3) | 含水量 Soil water content (%) | 最大持水量 Maximum field capacity (g·kg-1) | pH值 pH value | 土壤全碳 Soil total carbon (g·kg-1) | 土壤全氮 Soil total nitrogen (g·kg-1) | 土壤全磷 Soil total phosphorus (g·kg-1) |
---|---|---|---|---|---|---|---|
G1 | 1.21 ± 0.09c | 22.10 ± 3.09a | 392.87 ± 6.44a | 4.03 ± 0.11b | 11.67 ± 2.99b | 0.63 ± 0.15bc | 0.45 ± 0.11c |
G2 | 1.22 ± 0.11bc | 21.67 ± 4.31a | 364.43 ± 10.04ab | 4.22 ± 0.17ab | 11.15 ± 1.51b | 0.57 ± 0.12d | 0.44 ± 0.08d |
G3 | 1.23 ± 0.08ab | 21.39 ± 4.08ab | 373.16 ± 8.57ab | 4.24 ± 0.23ab | 11.90 ± 1.45ab | 0.56 ± 0.06d | 0.49 ± 0.14a |
G4 | 1.23 ± 0.11ab | 22.15 ± 3.11a | 379.47 ± 8.85ab | 4.24 ± 0.10ab | 12.67 ± 1.52a | 0.64 ± 0.15b | 0.49 ± 0.07a |
G5 | 1.22 ± 0.12bc | 21.40 ± 3.51ab | 381.48 ± 11.54ab | 4.34 ± 0.21ab | 11.69 ± 1.21b | 0.67 ± 0.12a | 0.47 ± 0.15b |
G6 | 1.23 ± 0.17a | 21.99 ± 4.17a | 381.24 ± 13.21ab | 4.34 ± 0.27ab | 11.90 ± 1.54ab | 0.62 ± 0.23c | 0.49 ± 0.12a |
G7 | 1.23 ± 0.26a | 21.33 ± 1.96ab | 359.62 ± 6.14b | 4.19 ± 0.11ab | 11.14 ± 1.37b | 0.54 ± 0.12e | 0.46 ± 0.08bc |
CK | 1.24 ± 0.14a | 20.16 ± 2.14b | 358.19 ± 15.79b | 4.46 ± 0.32a | 9.48 ± 0.56c | 0.47 ± 0.62f | 0.43 ± 0.12d |
表2 马尾松人工林不同面积林窗样地土壤理化特性(平均值±标准误差)
Table 2 Soil physical and chemical properties of the sampling plots in forest gaps with different sizes in Pinus massoniana plantations (mean ± SE)
林窗 Gap | 容重 Bulk density (g·cm-3) | 含水量 Soil water content (%) | 最大持水量 Maximum field capacity (g·kg-1) | pH值 pH value | 土壤全碳 Soil total carbon (g·kg-1) | 土壤全氮 Soil total nitrogen (g·kg-1) | 土壤全磷 Soil total phosphorus (g·kg-1) |
---|---|---|---|---|---|---|---|
G1 | 1.21 ± 0.09c | 22.10 ± 3.09a | 392.87 ± 6.44a | 4.03 ± 0.11b | 11.67 ± 2.99b | 0.63 ± 0.15bc | 0.45 ± 0.11c |
G2 | 1.22 ± 0.11bc | 21.67 ± 4.31a | 364.43 ± 10.04ab | 4.22 ± 0.17ab | 11.15 ± 1.51b | 0.57 ± 0.12d | 0.44 ± 0.08d |
G3 | 1.23 ± 0.08ab | 21.39 ± 4.08ab | 373.16 ± 8.57ab | 4.24 ± 0.23ab | 11.90 ± 1.45ab | 0.56 ± 0.06d | 0.49 ± 0.14a |
G4 | 1.23 ± 0.11ab | 22.15 ± 3.11a | 379.47 ± 8.85ab | 4.24 ± 0.10ab | 12.67 ± 1.52a | 0.64 ± 0.15b | 0.49 ± 0.07a |
G5 | 1.22 ± 0.12bc | 21.40 ± 3.51ab | 381.48 ± 11.54ab | 4.34 ± 0.21ab | 11.69 ± 1.21b | 0.67 ± 0.12a | 0.47 ± 0.15b |
G6 | 1.23 ± 0.17a | 21.99 ± 4.17a | 381.24 ± 13.21ab | 4.34 ± 0.27ab | 11.90 ± 1.54ab | 0.62 ± 0.23c | 0.49 ± 0.12a |
G7 | 1.23 ± 0.26a | 21.33 ± 1.96ab | 359.62 ± 6.14b | 4.19 ± 0.11ab | 11.14 ± 1.37b | 0.54 ± 0.12e | 0.46 ± 0.08bc |
CK | 1.24 ± 0.14a | 20.16 ± 2.14b | 358.19 ± 15.79b | 4.46 ± 0.32a | 9.48 ± 0.56c | 0.47 ± 0.62f | 0.43 ± 0.12d |
林窗 Gap | 月平均气温 Mean monthly air temperature (℃) | 月平均空气湿度 Mean monthly air humidity (%) | 相对光强 Relative light intensity (%) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
春 Spring | 夏 Summer | 秋 Autumn | 冬 Winter | 春 Spring | 夏 Summer | 秋 Autumn | 冬 Winter | 春 Spring | 夏 Summer | 秋 Autumn | 冬 Winter | |
G1 | 19.43 | 28.41 | 21.03 | 6.45 | 71.9 | 84.7 | 94.6 | 83.3 | 61.7 | 87.8 | 55.3 | 58.9 |
G2 | 19.23 | 28.51 | 22.05 | 6.21 | 72.4 | 87.2 | 94.5 | 86.1 | 63.6 | 90.5 | 57.4 | 59.2 |
G3 | 19.67 | 29.73 | 21.67 | 5.98 | 69.8 | 89.6 | 94.7 | 86.4 | 64.7 | 94.8 | 60.4 | 60.1 |
G4 | 19.76 | 29.88 | 22.22 | 9.03 | 72.2 | 90.0 | 96.3 | 89.1 | 67.9 | 95.4 | 65.2 | 66.3 |
G5 | 19.27 | 30.42 | 22.63 | 8.43 | 69.1 | 88.3 | 93.4 | 84.7 | 68.3 | 95.0 | 66.9 | 66.6 |
G6 | 19.92 | 30.63 | 21.91 | 7.11 | 71.3 | 86.1 | 92.6 | 85.2 | 71.0 | 96.4 | 69.4 | 68.8 |
G7 | 19.80 | 30.74 | 22.55 | 7.10 | 69.7 | 86.3 | 91.7 | 85.3 | 71.8 | 98.2 | 70.4 | 71.4 |
CK | 18.32 | 27.66 | 20.09 | 3.12 | 72.5 | 90.3 | 93.6 | 87.3 | 18.6 | 16.4 | 16.2 | 17.2 |
表3 不同季节林窗边缘及林下环境因子概况
Table 3 Environmental factors in the sampling plots in the edges of forest gaps with different sizes in different seasons
林窗 Gap | 月平均气温 Mean monthly air temperature (℃) | 月平均空气湿度 Mean monthly air humidity (%) | 相对光强 Relative light intensity (%) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
春 Spring | 夏 Summer | 秋 Autumn | 冬 Winter | 春 Spring | 夏 Summer | 秋 Autumn | 冬 Winter | 春 Spring | 夏 Summer | 秋 Autumn | 冬 Winter | |
G1 | 19.43 | 28.41 | 21.03 | 6.45 | 71.9 | 84.7 | 94.6 | 83.3 | 61.7 | 87.8 | 55.3 | 58.9 |
G2 | 19.23 | 28.51 | 22.05 | 6.21 | 72.4 | 87.2 | 94.5 | 86.1 | 63.6 | 90.5 | 57.4 | 59.2 |
G3 | 19.67 | 29.73 | 21.67 | 5.98 | 69.8 | 89.6 | 94.7 | 86.4 | 64.7 | 94.8 | 60.4 | 60.1 |
G4 | 19.76 | 29.88 | 22.22 | 9.03 | 72.2 | 90.0 | 96.3 | 89.1 | 67.9 | 95.4 | 65.2 | 66.3 |
G5 | 19.27 | 30.42 | 22.63 | 8.43 | 69.1 | 88.3 | 93.4 | 84.7 | 68.3 | 95.0 | 66.9 | 66.6 |
G6 | 19.92 | 30.63 | 21.91 | 7.11 | 71.3 | 86.1 | 92.6 | 85.2 | 71.0 | 96.4 | 69.4 | 68.8 |
G7 | 19.80 | 30.74 | 22.55 | 7.10 | 69.7 | 86.3 | 91.7 | 85.3 | 71.8 | 98.2 | 70.4 | 71.4 |
CK | 18.32 | 27.66 | 20.09 | 3.12 | 72.5 | 90.3 | 93.6 | 87.3 | 18.6 | 16.4 | 16.2 | 17.2 |
变异来源 Source of variation | C | N | P | C:N | C:P | N:P |
---|---|---|---|---|---|---|
林窗面积 Gap size (G) | 198.314*** | 2.072 | 5.789* | 126.905*** | 342.956*** | 78.855*** |
季节 Season (S) | 2.848 | 670.556*** | 540.694*** | 257.959*** | 278.434*** | 4.560 |
林窗面积×季节 Gap size × Season (G × S) | 3.594 | 3.084 | 4.701 | 4.454 | 3.020 | 9.219** |
表4 林窗面积和季节及交互作用对油樟化学计量特征影响的双因素方差分析(F值)
Table 4 Two-way ANOVA on the effects of gap size, season, and their interaction on C, N, P and their stoichiometry of Cinnamomum longepaniculatum
变异来源 Source of variation | C | N | P | C:N | C:P | N:P |
---|---|---|---|---|---|---|
林窗面积 Gap size (G) | 198.314*** | 2.072 | 5.789* | 126.905*** | 342.956*** | 78.855*** |
季节 Season (S) | 2.848 | 670.556*** | 540.694*** | 257.959*** | 278.434*** | 4.560 |
林窗面积×季节 Gap size × Season (G × S) | 3.594 | 3.084 | 4.701 | 4.454 | 3.020 | 9.219** |
图2 马尾松人工林不同季节不同林窗边缘油樟化学计量特征(平均值±标准误差)。不同大写字母代表季节间差异显著; 不同小写字母代表林窗间差异显著。G1、G2、G3、G4、G5、G6、G7分别代表面积为100 m2、225 m2、400 m2、625 m2、900 m2、1 225 m2、1 600 m2的林窗; CK, 林下对照。
Fig. 2 Carbon, nitrogen, phosphorus and their stoichiometry of Cinnamomum longepaniculatum in the edges of forest gaps with different sizes in different seasons in Pinus massoniana plantations (mean ± SE). Different capital letters indicate significant differences among seasons, and different lowercase letters indicate significant differences among forest gaps. G1, G2, G3, G4, G5, G6, and G7 represent gaps with the size of 100 m2, 225 m2, 400 m2, 625 m2, 900 m2, 1 225 m2, and 1 600 m2, respectively; CK, closed canopy as control.
图3 马尾松人工林不同林窗边缘油樟化学计量特征与环境因子的主成分分析(PCA)双序图。TC, 叶片C含量; TN, 叶片N含量; TP, 叶片P含量; C:N, 叶片C:N; C:P, 叶片C:P; N:P, 叶片N:P。BD, 容重; GS, 林窗面积; MAH, 月平均湿度; MAT, 月平均气温; MC, 含水量; MMC, 最大持水量; RLI, 相对光强; STC, 土壤全碳; STN, 土壤全氮; STP, 土壤全磷。
Fig. 3 The principal component analysis (PCA) on carbon, nitrogen, phosphorus and their stoichiometry of Cinnamomum longepaniculatum and environmental variables in the edges of forest gaps with different sizes in Pinus massoniana plantations. TC, total C in leaf; TN, total N in leaf; TP, total P in leaf; C:N, C:N in leaf; C:P, C:P in leaf; N:P, N:P in leaf. BD, bulk density; GS, gap size; MAH, monthly average humidity; MAT, monthly average air temperature; MC, moisture content; MMC, maximum moisture capacity; RLI, relative light intensity; STC, total C in soil; STN, total N in soil; STP, total P in soil.
环境变量 Environmental variables | 排序轴 Ordination axis | |
---|---|---|
第1轴 Axis 1 | 第2轴 Axis 2 | |
林窗面积 Gap size | 0.506 4** | -0.245 3 |
容重 Bulk density | 0.134 5 | 0.333 5 |
含水量 Moisture content | 0.038 0 | -0.544 2** |
最大持水量 Maximum moisture capacity | 0.075 0 | -0.381 7 |
pH值 pH value | -0.027 0 | 0.381 1 |
土壤全碳 Total C in soil | 0.251 1 | -0.510 5** |
土壤全氮 Total N in soil | 0.210 3 | -0.552 8** |
土壤全磷 Total P in soil | 0.425 4* | -0.356 6 |
月平均气温 Monthly average air temperature | 0.371 6 | -0.659 5*** |
月平均湿度 Monthly average humidity | 0.446 6* | 0.210 0 |
相对光强 Relative light intensity | 0.099 7 | -0.811 4*** |
表5 环境变量与排序轴的相关系数
Table 5 Correlation coefficients of environmental variables with ordination axes
环境变量 Environmental variables | 排序轴 Ordination axis | |
---|---|---|
第1轴 Axis 1 | 第2轴 Axis 2 | |
林窗面积 Gap size | 0.506 4** | -0.245 3 |
容重 Bulk density | 0.134 5 | 0.333 5 |
含水量 Moisture content | 0.038 0 | -0.544 2** |
最大持水量 Maximum moisture capacity | 0.075 0 | -0.381 7 |
pH值 pH value | -0.027 0 | 0.381 1 |
土壤全碳 Total C in soil | 0.251 1 | -0.510 5** |
土壤全氮 Total N in soil | 0.210 3 | -0.552 8** |
土壤全磷 Total P in soil | 0.425 4* | -0.356 6 |
月平均气温 Monthly average air temperature | 0.371 6 | -0.659 5*** |
月平均湿度 Monthly average humidity | 0.446 6* | 0.210 0 |
相对光强 Relative light intensity | 0.099 7 | -0.811 4*** |
[1] |
Arunachalam A, Arunachalam K (2000). Influence of gap size and soil properties on microbial biomass in a subtropical humid forest of north-east India.Plant and Soil, 223, 187-195.
DOI URL |
[2] |
Chen Y, Han W, Tang L, Tang Z, Fang J (2013). Leaf nitrogen and phosphorus concentrations of woody plants differ in responses to climate, soil and plant growth from.Ecography, 36, 178-184.
DOI URL |
[3] |
Cui NJ, Zhang DJ, Liu Y, Zhang J, Yang WQ, Ou J, Zhang J, Song XY, Yin R (2014). Plant diversity and seasonal dynamics in forest gaps of varying sizes inPinus massoniana plantations. Chinese Journal of Plant Ecology, 38, 477-490. (in Chinese with English abstract)[崔宁洁, 张丹桔, 刘洋, 张健, 杨万勤, 欧江, 张捷, 宋小艳, 殷睿 (2014). 马尾松人工林不同大小林窗植物多样性及其季节动态. 植物生态学报, 38, 477-490.]
DOI URL |
[4] |
Daoliveira MVN, Ribas LA (2011). Forest regeneration in artificial gaps twelve years after canopy opening in Acre State Western Amazon.Forest Ecology and Management, 261, 1722-1731.
DOI URL |
[5] |
Dee JR, Menges ES, Gilliam F (2014). Gap ecology in the Florida scrubby flatwoods: Effects of time-since-fire, gap area, gap aggregation and microhabitat on gap species diversity.Journal of Vegetation Science, 25, 1235-1246.
DOI URL |
[6] |
Du MY, Fan SH, Liu GL, Feng HY, Guo BH, Tang XL (2016). Stoichiometric characteristics of carbon, nitrogen and phosphorus inPhyllostachys edulis forests of China. Chinese Journal of Plant Ecology, 40, 760-774. (in Chinese with English abstract)[杜满义, 范少辉, 刘广路, 封焕英, 郭宝华, 唐晓鹿 (2016). 中国毛竹林碳氮磷生态化学计量特征. 植物生态学报, 40, 760-774.]
DOI URL |
[7] |
Dupuy JM, Chazdon RL (2008). Interacting effects of canopy gap, understory vegetation and leaf litter on tree seedling recruitment and composition in tropical secondary forests.Forest Ecology and Management, 255, 3716-3725.
DOI URL |
[8] |
Elser JJ, Fagan WF, Denno RF, Dobberfuhl DR, Folarin A, Huberty A, Interlandi S, Kilham SS, Mccauley E, Schulz KL (2000). Nutritional constraints in terrestrial and freshwater food webs.Nature, 408, 578-580.
DOI URL PMID |
[9] |
Elser JJ, Fagan WF, kerkhoff AJ, Swenson NG, Enquist BJ (2010). Biological stoichiometry of plant production: Metabolism, scaling and ecological response to global change.New Phytology, 186, 593-608.
DOI URL PMID |
[10] |
Fan HB, Wu JP, Liu WF, Yuan YH, Hu L, Cai QK (2015). Linkages of plant and soil C:N:P stoichiometry and their relationships to forest growth in subtropical plantations.Plant and Soil, 392, 127-138.
DOI URL |
[11] |
Foereid B, Bellarby J, Meier-Augenstein W, Kemp H (2010). Does light exposure make plant litter more degradable?Plant and Soil, 333, 275-285.
DOI URL |
[12] | Gálhidy L, Mihók B, Hagyó A, Rajkai K, Standovár T (2006). Effects of gap size and associated changes in light and soil moisture on the understory vegetation of a Hungarian beech forest.Plant Ecology, 183, 133-145. |
[13] |
Gallo ME, Porras-Alfaro A, Odenbach KJ, Sinsabaugh RL (2009). Photoacceleration of plant litter decomposition in an arid environment.Soil Biology & Biochemistry, 41, 1433-1441.
DOI URL |
[14] |
Goldblum D, Beatty SW (1999). Influence of an old field/forest edge on a northeastern United States deciduous forest understory community.Journal of the Torrey Botanical Society, 126, 335-343.
DOI URL |
[15] | Güsewell S (2004). N:P ratios in terrestrial plants: Variation and functional significance.New Phytologist, 164, 243-266. |
[16] | Haghverdi K, Kiadaliri H, Sagheb-Talebi K, Kooch Y (2012). Variability of plant diversity and soil features following gap creation in Caspian Beech Forests of Iran.Annals of Biological Research, 3, 4622-4635. |
[17] |
Han W, Fang J, Guo D, Yan Z (2005). Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China.New Phytology, 168, 377-385.
DOI URL PMID |
[18] | He ZS, Liu JF, Su SJ, Zheng SQ, Xu DW, Wu ZY, Hong W, Wang JL (2015). Effects of forest gaps on soil properties inCastanopsis kawakamii nature forest. PLOS ONE, 10, e0141203. doi:10.137/journal.pone.0141203. |
[19] |
Kern CC, Montgomery RA, Reich PB, Strong TF (2013). Canopy gap size influences niche partitioning of the ground- layer plant community in a northern temperate forest.Journal of Plant Ecology, 6, 101-112.
DOI URL |
[20] |
Kneeshaw DD, Bergeron Y (1998). Canopy gap characteristics and tree replacement in the southeastern boreal forest.Ecology, 79, 783-794.
DOI URL |
[21] |
Koerselman W, Meuleman AFM (1996). The vegetation N:P ratio: A new tool to detect the nature of nutrient limitation.Journal of Applied Ecology, 33, 1441-1450.
DOI URL |
[22] | Li H, Wang BT, Liu T (2016). The nutrient content variations of different forest species and the forest soil in Loess Region of Western Shanxi.Forest Research, 29, 587-595. (in Chinese with English abstract)[李慧, 王百田, 刘涛 (2016). 晋西黄土区不同森林树种及其林地土壤养分含量的变化. 林业科学研究, 29, 587-595.] |
[23] |
Li JX, Xu WT, Xiong GM, Wang Y, Zhao CM, Lu ZJ, Li YL, Xie ZQ (2017). Leaf nitrogen and phosphorus concentration and the empirical regulations in dominant woody plants of shrublands across southern China.Chinese Journal of Plant Ecology, 41, 31-42. (in Chinese with English abstract)[李家湘, 徐文婷, 熊高明, 王杨, 赵常明, 卢志军, 李跃林, 谢宗强 (2017). 中国南方灌丛优势木本植物叶的氮、磷含量及其影响因素. 植物生态学报, 41, 31-32.]
DOI URL |
[24] | Lian ZM, Yu GZ (2000). Edge effect and biodiversity.Chinese Biodiversity, 8, 120-125. (in Chinese with English abstract)[廉振民, 于广志 (2000). 边缘效应与生物多样性. 生物多样性, 8, 120-125.] |
[25] |
Liu H, Song HX, Yang WQ, Zhang J (2015). Responses of photosynthetic traits inCinnamomum longepaniculatum seedlings to forest gap size in a masson pine plantation. Acta Ecologica Sinica, 35, 4089-4096. (in Chinese with English abstract)[刘辉, 宋会兴, 杨万勤, 张健 (2015). 油樟幼苗对马尾松林窗面积的光合响应特征. 生态学报, 35, 4089-4096.]
DOI URL |
[26] |
Liu WD, Su JR, Li SF, Lang XD, Zhang ZJ, Huang XB (2015). Leaf carbon, nitrogen and phosphorus stoichiometry at different growth stages in dominant tree species of a monsoon broad-leaved evergreen forest in Pu’er, Yunnan Province, China. Chinese Journal of Plant Ecology, 39, 52-62. (in Chinese with English abstract)[刘万德, 苏建荣, 李帅锋, 郎学东, 张志钧, 黄小波 (2015). 云南普洱季风常绿阔叶林优势物种不同生长阶段叶片碳、氮、磷化学计量特征. 植物生态学报, 39, 52-62.]
DOI URL |
[27] |
Pan F, Zhang W, Liu S, Li D, Wang K (2015). Leaf N:P stoichiometry across plant functional groups in the karst region of southwestern China. Trees, 29, 883-892.
DOI URL |
[28] |
Reich PB, Oleksyn J (2004). Global patterns of plant leaf N and P in relation to temperature and latitude.Proceedings of the National Academy of Sciences of the United States of America, 101, 11001-11006.
DOI URL PMID |
[29] |
Restrepo C, Gomez N, Heredia S (1999). Anthropogenic edges, treefall gaps, and fruit-frugivore interactions in a neotropical montane forest.Ecology, 80, 668-685.
DOI URL |
[30] | Schliemann S (2011). Effects of treefall gap size and age on carbon and nitrogen biogeochemical cycling in Northern hardwood-hemlock forests.Dissertation Abstracts International, 73, 141-147. |
[31] | Song XY, Zhang DJ, Zhang J, Li JP, Deng CC, Deng C (2014). Effects of gaps on distribution of soil aggregates and organic carbon inPinus massoniana plantation. Chinese Journal of Applied Ecology, 25, 3083-3090. (in Chinese with English abstract)[宋小艳, 张丹桔, 张健, 李建平, 邓长春, 邓超 (2014). 马尾松人工林林窗对土壤团聚体及有机碳分布的影响. 应用生态学报, 25, 3083-3090.] |
[32] |
Sylvain ZA, Wall DH (2011). Linking soil biodiversity and vegetation: Implications for a changing planet.American Journal of Botany, 98, 517-527.
DOI URL PMID |
[33] | Tian C, Yang XB, Liu Y (2011). Edge effect and its impacts on forest ecosystem: A review.Chinese Journal of Applied Ecology, 22, 2184-2192. (in Chinese with English abstract)[田超, 杨新兵, 刘阳 (2011). 边缘效应及其对森林生态系统影响的研究进展. 应用生态学报, 22, 2184-2192.] |
[34] | Wang JH, Li JD (2006). Advances in study on forest gaps.World Forestry Research, 19, 27-30. (in Chinese with English abstract)[王家华, 李建东 (2006). 林窗研究进展. 世界林业研究, 19, 27-30.] |
[35] | Wang JY, Wang SQ, Li RL, Yan JH, Sha LQ, Han SJ (2011). C:N:P stoichiometric characteristics of four forest types’ dominant tree species in China.Chinese Journal of Plant Ecology, 35, 587-595. (in Chinese with English abstract)[王晶苑, 王绍强, 李纫兰, 闫俊华, 沙丽清, 韩士杰 (2011). 中国四种森林类型主要优势植物的C:N:P化学计量学特征. 植物生态学报, 35, 587-595.] |
[36] | Wang LX, Duan WB, Chen LX, Du S, Wei QS, Zhao JH, Zhang C (2013). Effects of gap size on the spatial heterogeneity of soil water inPinus koraiensis-dominated broad-leaved mixed forest. Chinese Journal of Applied Ecology, 24, 17-24. (in Chinese with English abstract)[王丽霞, 段文标, 陈立新, 杜珊, 魏全帅, 赵健慧, 赵琛 (2013). 红松阔叶混交林林隙大小对土壤水分空间异质性的影响. 应用生态学报, 24, 17-24.] |
[37] | Wang ZN, Yang HM (2013). Response of ecological stoichiometry of carbon, nitrogen and phosphorus in plants to abiotic environmental factors.Pratacultural Science, 30, 927-934. (in Chinese with English abstract)[王振南, 杨惠敏 (2013). 植物碳氮磷生态化学计量对非生物因子的响应. 草业科学, 30, 927-934.] |
[38] |
Wassen MJ, Olde Venterink HGM, Swart EOAM (1995). Nutrient concentrations in mire vegetation as a measure of nutrient limitation in mire ecosystems.Journal of Vegetation Science, 6, 5-16.
DOI URL |
[39] | Yamamoto S (2000). Forest gap dynamics and tree regeneration.Journal of Forest Research, 5, 223-229. |
[40] |
Yan ER, Wang XH, Guo M, Zhong Q, Zhou W (2010). C:N:P stoichiometry across evergreen broad-leaved forests, evergreen coniferous forests and deciduous broad-leaved forests in the Tiantong Region, Zhejiang Province, eastern China.Chinese Journal of Plant Ecology, 34, 48-57. (in Chinese with English abstract)[阎恩荣, 王希华, 郭明, 仲强, 周武 (2010). 浙江天童常绿阔叶林、常绿针叶林与落叶阔叶林的C:N:P化学计量特征. 植物生态学报, 34, 48-57.]
DOI URL |
[41] |
Yang HM, Wang DM (2011). Advances in the study on ecological stoichiometry in grass-environment system and its response to environmental factors.Acta Prataculturae Sinica, 5, 247-264.
DOI URL |
[42] | Zhang MJ, Chen LH, Zhang J, Yang WQ, Li X, Zhang Y, Liu H (2016). Effects of soil fauna on microbial biomass in decomposing litter under artificial masson pine (Pinus massoniana) forest gap. Chinese Journal of Applied and Environmental Biology, 22, 35-42. (in Chinese with English abstract)[张明锦, 陈良华, 张健, 杨万勤, 李勋, 张艳, 刘华 (2016). 马尾松人工林林窗内土壤动物对凋落物微生物生物量的影响. 应用与环境生物学报, 22, 35-42.] |
[43] |
Zhang Y, Zhang DJ, Zhang J, Yang WQ, Deng CC, Li JP, Li X, Tang SS, Zhang MJ (2015). Effects of forest gap size on litter recalcitrant components of two tree species inPinus massoniana plantations. Chinese Journal of Plant Ecology, 29, 785-796. (in Chinese with English abstract)[张艳, 张丹桔, 张健, 杨万勤, 邓长春, 李建平, 李勋, 唐仕姗, 张明锦 (2015). 马尾松人工林林窗大小对两种凋落叶难降解物质含量的影响. 植物生态学报, 29, 785-796.]
DOI URL |
[1] | 张文瑾 佘维维 秦树高 乔艳桂 张宇清. 氮和水分添加对黑沙蒿群落优势植物叶片氮磷化学计量特征的影响[J]. 植物生态学报, 2024, 48(5): 590-600. |
[2] | 韩路, 冯宇, 李沅楷, 王雨晴, 王海珍. 地下水埋深对灰胡杨叶片与土壤养分生态化学计量特征及其内稳态的影响[J]. 植物生态学报, 2024, 48(1): 92-102. |
[3] | 李兆光, 文高, 和桂青, 徐天才, 和琼姬, 侯志江, 李燕, 薛润光. 滇西北藜麦氮磷钾生态化学计量特征的物候期动态[J]. 植物生态学报, 2023, 47(5): 724-732. |
[4] | 刘婧, 缑倩倩, 王国华, 赵峰侠. 晋西北丘陵风沙区柠条锦鸡儿叶片与土壤生态化学计量特征[J]. 植物生态学报, 2023, 47(4): 546-558. |
[5] | 林少颖, 曾瑜, 杨文文, 陈斌, 阮敏敏, 尹晓雷, 阳祥, 王维奇. 添加秸秆及其生物炭对茉莉植株与土壤碳氮磷生态化学计量特征的影响[J]. 植物生态学报, 2023, 47(4): 530-545. |
[6] | 曾凯娜, 孙浩然, 申益春, 任明迅. 海南羊山湿地的传粉网络及其季节动态[J]. 植物生态学报, 2022, 46(7): 775-784. |
[7] | 冼应男, 张瑛, 李宝珍, 罗沛, 肖润林, 吴金水. 绿狐尾藻光合色素组成及氮磷化学计量学特征对外源铵的响应[J]. 植物生态学报, 2022, 46(4): 451-460. |
[8] | 江蓝, 魏晨思, 何中声, 朱静, 邢聪, 王雪琳, 刘金福, 沈彩霞, 施友文. 格氏栲天然林林窗植物群落功能性状的变异[J]. 植物生态学报, 2022, 46(3): 267-279. |
[9] | 范敏, 卢奕曈, 王照华, 黄颖琪, 彭羽, 尚佳欣, 张杨. 浑善达克沙地中部斑块格局影响植物多样性及功能性状[J]. 植物生态学报, 2022, 46(1): 51-61. |
[10] | 尹晓雷, 刘旭阳, 金强, 李先德, 林少颖, 阳祥, 王维奇, 张永勋. 不同管理模式对茶树碳氮磷含量及其生态化学计量比的影响[J]. 植物生态学报, 2021, 45(7): 749-759. |
[11] | 刘珊杉, 周文君, 况露辉, 刘占锋, 宋清海, 刘运通, 张一平, 鲁志云, 沙丽清. 亚热带常绿阔叶林土壤胞外酶活性对碳输入变化及增温的响应[J]. 植物生态学报, 2020, 44(12): 1262-1272. |
[12] | 熊星烁, 蔡宏宇, 李耀琪, 马文红, 牛克昌, 陈迪马, 刘娜娜, 苏香燕, 景鹤影, 冯晓娟, 曾辉, 王志恒. 内蒙古典型草原植物叶片碳氮磷化学计量特征的季节动态[J]. 植物生态学报, 2020, 44(11): 1138-1153. |
[13] | 敬洪霞,孙宁骁,Muhammad UMAIR,刘春江,杜红梅. 滇南喀斯特地区不同季节土壤和灌木叶片化学计量特征及对水分添加的响应[J]. 植物生态学报, 2020, 44(1): 56-69. |
[14] | 贾丙瑞. 凋落物分解及其影响机制[J]. 植物生态学报, 2019, 43(8): 648-657. |
[15] | 杨文高, 字洪标, 陈科宇, 阿的鲁骥, 胡雷, 王鑫, 王根绪, 王长庭. 青海森林生态系统中灌木层和土壤生态化学计量特征[J]. 植物生态学报, 2019, 43(4): 352-364. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19