植物生态学报 ›› 2020, Vol. 44 ›› Issue (1): 56-69.DOI: 10.17521/cjpe.2019.0230
敬洪霞1,孙宁骁2,Muhammad UMAIR2,刘春江2,杜红梅1,*()
收稿日期:
2019-09-02
修回日期:
2020-01-08
出版日期:
2020-01-20
发布日期:
2020-01-19
通讯作者:
杜红梅
基金资助:
JING Hong-Xia1,SUN Ning-Xiao2,Muhammad UMAIR2,LIU Chun-Jiang2,DU Hong-Mei1,*()
Received:
2019-09-02
Revised:
2020-01-08
Online:
2020-01-20
Published:
2020-01-19
Contact:
DU Hong-Mei
Supported by:
摘要:
干旱是影响南方喀斯特地区植物生长的重要限制因子, 气候变化会影响该地区的降水量和分布格局。研究该地区土壤和植物化学计量特征及其水分响应格局, 具有重要意义。自2017年4月开始, 在云南建水喀斯特植物群落进行加水试验, 2018年4月(旱季)和8月(雨季)分别采集土壤和优势灌木鞍叶羊蹄甲(Bauhinia brachycarpa)和假虎刺(Carissa spinarum)叶片样品, 测定碳、氢、氮、磷、硫、钾、钙、镁、铝、钠、铁、锰、锌、铜14种元素含量。结果表明, 水分添加影响了表层土壤中碳、氮、钠的含量, 相比于旱季, 雨季土壤中钠和硫含量明显减少, 其余土壤元素在水分添加和季节变化下并未表现出明显差异。土壤水分含量的增加使得鞍叶羊蹄甲和假虎刺叶片中钾含量下降, 钙含量上升。在水分条件变化下, 两种植物叶元素含量的稳定性与植物中元素的含量有关, 含量越接近极大值(基本元素碳、氢、氮等)或极小值(微量元素铜、锌等)的元素其变异系数越小(越稳定), 两种植物中含量接近于1 mg·g-1的元素磷、硫、镁的变异系数最高。在土壤水分条件变化下, 假虎刺中碳、氮、磷等大量元素含量的稳定性显著高于鞍叶羊蹄甲。降水变化和水分添加导致的土壤水分变化, 对滇南喀斯特地区土壤和植物中不同元素含量的影响不同, 这些结果将为该地区的土壤、植被修复和管理提供科学参考。
敬洪霞,孙宁骁,Muhammad UMAIR,刘春江,杜红梅. 滇南喀斯特地区不同季节土壤和灌木叶片化学计量特征及对水分添加的响应. 植物生态学报, 2020, 44(1): 56-69. DOI: 10.17521/cjpe.2019.0230
JING Hong-Xia,SUN Ning-Xiao,Muhammad UMAIR,LIU Chun-Jiang,DU Hong-Mei. Stoichiometric characteristics of soils and dominant shrub leaves and their responses to water addition in different seasons in degraded karst areas in Southern Yunnan of China. Chinese Journal of Plant Ecology, 2020, 44(1): 56-69. DOI: 10.17521/cjpe.2019.0230
指标 Index | 4月 April | 8月 August | Pr | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
CK | T1 | T2 | T3 | CK | T1 | T2 | T3 | f1 | f2 | f1 × f2 | |
pH | 6.25 ± 0.07 | 6.38 ± 0.13 | 6.26 ± 0.07 | 6.32 ± 0.12 | 6.13 ± 0.12 | 6.27 ± 0.11 | 6.23 ± 0.06 | 6.31 ± 0.06 | |||
VWC (%) | 3.11 ± 0.39 | 5.79 ± 0.40 | 8.09 ± 0.21 | 6.59 ± 0.72 | 10.33 ± 0.19 | 19.72 ± 0.25 | 26.81 ± 0.32 | 26.19 ± 0.32 | |||
Temperature (℃) | 18.96 ± 0.17 | 18.64 ± 0.16 | 19.49 ± 0.19 | 18.82 ± 0.15 | 21.91 ± 0.07 | 21.89 ± 0.07 | 22.11 ± 0.08 | 22.15 ± 0.07 | |||
C (mg·g-1) | 86.76 ± 6.03 | 98.75 ± 2.47 | 114.86 ± 6.47 | 98.85 ± 5.24 | 99.04 ± 4.31 | 89.68 ± 2.88 | 101.40 ± 4.73 | 113.68 ± 8.00 | 0.01 | 0.76 | 0.02 |
H (mg·g-1) | 24.32 ± 0.32 | 24.28 ± 0.88 | 24.52 ± 0.66 | 23.94 ± 1.30 | 25.56 ± 0.46 | 23.60 ± 0.51 | 24.98 ± 0.44 | 25.90 ± 0.86 | 0.50 | 0.17 | 0.34 |
N (mg·g-1) | 7.52 ± 0.18 | 7.38 ± 0.16 | 8.60 ± 0.37 | 9.60 ± 0.41 | 7.66 ± 0.36 | 7.15 ± 0.10 | 7.96 ± 0.35 | 8.98 ± 0.31 | 0.00 | 0.12 | 0.52 |
S (mg·g-1) | 2.62 ± 0.15 | 2.51 ± 0.14 | 2.55 ± 0.15 | 2.37 ± 0.09 | 2.17 ± 0.08 | 2.09 ± 0.06 | 2.20 ± 0.07 | 2.01 ± 0.19 | 0.35 | 0.00 | 0.98 |
P (mg·g-1) | 0.89 ± 0.06 | 0.94 ± 0.03 | 0.97 ± 0.02 | 1.02 ± 0.06 | 0.91 ± 0.06 | 0.91 ± 0.04 | 0.97 ± 0.02 | 0.92 ± 0.07 | 0.33 | 0.48 | 0.65 |
Fe (mg·g-1) | 58.82 ± 3.31 | 58.59 ± 1.67 | 61.63 ± 2.85 | 58.97 ± 3.49 | 55.56 ± 3.40 | 62.35 ± 3.00 | 61.25 ± 2.44 | 56.77 ± 0.85 | 0.27 | 0.60 | 0.81 |
Al (mg·g-1) | 54.76 ± 2.62 | 54.05 ± 1.85 | 53.40 ± 3.25 | 54.25 ± 2.23 | 55.78 ± 0.88 | 53.54 ± 2.50 | 53.36 ± 2.18 | 51.18 ± 1.95 | 0.70 | 0.58 | 0.82 |
K (mg·g-1) | 6.07 ± 0.15 | 6.87 ± 0.38 | 6.42 ± 0.36 | 7.03 ± 0.69 | 7.15 ± 0.50 | 6.60 ± 0.34 | 6.38 ± 0.40 | 5.99 ± 0.70 | 0.91 | 0.84 | 0.18 |
Ca (mg·g-1) | 5.84 ± 0.62 | 7.83 ± 0.43 | 6.87 ± 0.66 | 6.02 ± 0.67 | 6.01 ± 0.68 | 5.28 ± 0.46 | 6.28 ± 0.20 | 7.36 ± 0.90 | 0.59 | 0.35 | 0.02 |
Na (mg·g-1) | 2.62 ± 0.05 | 2.18 ± 0.08 | 2.19 ± 0.05 | 2.02 ± 0.09 | 1.95 ± 0.07 | 1.89 ± 0.08 | 1.90 ± 0.03 | 1.59 ± 0.08 | 0.00 | 0.00 | 0.03 |
Mn (mg·g-1) | 1.52 ± 0.09 | 1.63 ± 0.01 | 1.64 ± 0.07 | 1.68 ± 0.10 | 1.55 ± 0.12 | 1.52 ± 0.12 | 1.61 ± 0.04 | 1.56 ± 0.10 | 0.71 | 0.37 | 0.78 |
Mg (mg·g-1) | 1.01 ± 0.04 | 1.56 ± 0.13 | 1.24 ± 0.08 | 1.36 ± 0.14 | 1.24 ± 0.12 | 1.21 ± 0.08 | 1.30 ± 0.14 | 1.39 ± 0.21 | 0.16 | 0.92 | 0.16 |
Zn (mg·g-1) | 0.35 ± 0.03 | 0.39 ± 0.04 | 0.43 ± 0.03 | 0.46 ± 0.03 | 0.42 ± 0.04 | 0.42 ± 0.02 | 0.44 ± 0.03 | 0.43 ± 0.05 | 0.34 | 0.36 | 0.63 |
Cu (mg·g-1) | 0.108 ± 0.002 | 0.111 ± 0.004 | 0.105 ± 0.004 | 0.105 ± 0.002 | 0.107 ± 0.003 | 0.107 ± 0.003 | 0.106 ± 0.004 | 0.095 ± 0.004 | 0.09 | 0.20 | 0.50 |
表1 滇南喀斯特地区不同水分处理组旱季(4月)和雨季(8月)的土壤相关指标(平均值±标准误差)
Table 1 Soil variables under different water treatments and in different months in degraded karst areas in Southern Yunnan of China (mean ± SE)
指标 Index | 4月 April | 8月 August | Pr | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
CK | T1 | T2 | T3 | CK | T1 | T2 | T3 | f1 | f2 | f1 × f2 | |
pH | 6.25 ± 0.07 | 6.38 ± 0.13 | 6.26 ± 0.07 | 6.32 ± 0.12 | 6.13 ± 0.12 | 6.27 ± 0.11 | 6.23 ± 0.06 | 6.31 ± 0.06 | |||
VWC (%) | 3.11 ± 0.39 | 5.79 ± 0.40 | 8.09 ± 0.21 | 6.59 ± 0.72 | 10.33 ± 0.19 | 19.72 ± 0.25 | 26.81 ± 0.32 | 26.19 ± 0.32 | |||
Temperature (℃) | 18.96 ± 0.17 | 18.64 ± 0.16 | 19.49 ± 0.19 | 18.82 ± 0.15 | 21.91 ± 0.07 | 21.89 ± 0.07 | 22.11 ± 0.08 | 22.15 ± 0.07 | |||
C (mg·g-1) | 86.76 ± 6.03 | 98.75 ± 2.47 | 114.86 ± 6.47 | 98.85 ± 5.24 | 99.04 ± 4.31 | 89.68 ± 2.88 | 101.40 ± 4.73 | 113.68 ± 8.00 | 0.01 | 0.76 | 0.02 |
H (mg·g-1) | 24.32 ± 0.32 | 24.28 ± 0.88 | 24.52 ± 0.66 | 23.94 ± 1.30 | 25.56 ± 0.46 | 23.60 ± 0.51 | 24.98 ± 0.44 | 25.90 ± 0.86 | 0.50 | 0.17 | 0.34 |
N (mg·g-1) | 7.52 ± 0.18 | 7.38 ± 0.16 | 8.60 ± 0.37 | 9.60 ± 0.41 | 7.66 ± 0.36 | 7.15 ± 0.10 | 7.96 ± 0.35 | 8.98 ± 0.31 | 0.00 | 0.12 | 0.52 |
S (mg·g-1) | 2.62 ± 0.15 | 2.51 ± 0.14 | 2.55 ± 0.15 | 2.37 ± 0.09 | 2.17 ± 0.08 | 2.09 ± 0.06 | 2.20 ± 0.07 | 2.01 ± 0.19 | 0.35 | 0.00 | 0.98 |
P (mg·g-1) | 0.89 ± 0.06 | 0.94 ± 0.03 | 0.97 ± 0.02 | 1.02 ± 0.06 | 0.91 ± 0.06 | 0.91 ± 0.04 | 0.97 ± 0.02 | 0.92 ± 0.07 | 0.33 | 0.48 | 0.65 |
Fe (mg·g-1) | 58.82 ± 3.31 | 58.59 ± 1.67 | 61.63 ± 2.85 | 58.97 ± 3.49 | 55.56 ± 3.40 | 62.35 ± 3.00 | 61.25 ± 2.44 | 56.77 ± 0.85 | 0.27 | 0.60 | 0.81 |
Al (mg·g-1) | 54.76 ± 2.62 | 54.05 ± 1.85 | 53.40 ± 3.25 | 54.25 ± 2.23 | 55.78 ± 0.88 | 53.54 ± 2.50 | 53.36 ± 2.18 | 51.18 ± 1.95 | 0.70 | 0.58 | 0.82 |
K (mg·g-1) | 6.07 ± 0.15 | 6.87 ± 0.38 | 6.42 ± 0.36 | 7.03 ± 0.69 | 7.15 ± 0.50 | 6.60 ± 0.34 | 6.38 ± 0.40 | 5.99 ± 0.70 | 0.91 | 0.84 | 0.18 |
Ca (mg·g-1) | 5.84 ± 0.62 | 7.83 ± 0.43 | 6.87 ± 0.66 | 6.02 ± 0.67 | 6.01 ± 0.68 | 5.28 ± 0.46 | 6.28 ± 0.20 | 7.36 ± 0.90 | 0.59 | 0.35 | 0.02 |
Na (mg·g-1) | 2.62 ± 0.05 | 2.18 ± 0.08 | 2.19 ± 0.05 | 2.02 ± 0.09 | 1.95 ± 0.07 | 1.89 ± 0.08 | 1.90 ± 0.03 | 1.59 ± 0.08 | 0.00 | 0.00 | 0.03 |
Mn (mg·g-1) | 1.52 ± 0.09 | 1.63 ± 0.01 | 1.64 ± 0.07 | 1.68 ± 0.10 | 1.55 ± 0.12 | 1.52 ± 0.12 | 1.61 ± 0.04 | 1.56 ± 0.10 | 0.71 | 0.37 | 0.78 |
Mg (mg·g-1) | 1.01 ± 0.04 | 1.56 ± 0.13 | 1.24 ± 0.08 | 1.36 ± 0.14 | 1.24 ± 0.12 | 1.21 ± 0.08 | 1.30 ± 0.14 | 1.39 ± 0.21 | 0.16 | 0.92 | 0.16 |
Zn (mg·g-1) | 0.35 ± 0.03 | 0.39 ± 0.04 | 0.43 ± 0.03 | 0.46 ± 0.03 | 0.42 ± 0.04 | 0.42 ± 0.02 | 0.44 ± 0.03 | 0.43 ± 0.05 | 0.34 | 0.36 | 0.63 |
Cu (mg·g-1) | 0.108 ± 0.002 | 0.111 ± 0.004 | 0.105 ± 0.004 | 0.105 ± 0.002 | 0.107 ± 0.003 | 0.107 ± 0.003 | 0.106 ± 0.004 | 0.095 ± 0.004 | 0.09 | 0.20 | 0.50 |
图1 滇南喀斯特地区土壤元素含量变异系数与log2FC的关系。FC = “样地内土壤元素含量均值”/“全国土壤元素含量均值”, 若log2FC > 0, 表示样地内土壤该元素含量大于全国土壤平均值。
Fig. 1 Relationship between coefficients of variation and log2FC of soil element concentrations in degraded karst areas in Southern Yunnan of China. FC = “mean value of soil elemental concentration in the plot”/“mean value of national soil elemental concentration”, if log2FC > 0, it means that the elemental concentration in the plot is higher than the national average.
物种 Species | Pearson相关系数 Pearson correlation coefficient | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
N-P | C-H | K-Ca | Mn-Ca | C-K | P-K | Ca-Fe | C-P | N-K | C-N | |
鞍叶羊蹄甲 Bauhinia brachycarpa | 0.646** | 0.638** | -0.747** | 0.508** | 0.477** | 0.689** | 0.369* | 0.417** | 0.667** | 0.368* |
假虎刺 Carissa spinarum | 0.408** | 0.467** | -0.463** | 0.627** | -0.355* | 0.374* | -0.640** | -0.074 | -0.179 | 0.024 |
表2 滇南喀斯特地区两种植物叶片中元素间的相关系数
Table 2 Correlation indices between element concentrations in leaves of the two plant species in degraded karst areas in Southern Yunnan of China
物种 Species | Pearson相关系数 Pearson correlation coefficient | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
N-P | C-H | K-Ca | Mn-Ca | C-K | P-K | Ca-Fe | C-P | N-K | C-N | |
鞍叶羊蹄甲 Bauhinia brachycarpa | 0.646** | 0.638** | -0.747** | 0.508** | 0.477** | 0.689** | 0.369* | 0.417** | 0.667** | 0.368* |
假虎刺 Carissa spinarum | 0.408** | 0.467** | -0.463** | 0.627** | -0.355* | 0.374* | -0.640** | -0.074 | -0.179 | 0.024 |
![]() |
表3 不同水分处理鞍叶羊蹄甲旱季(4月)和雨季(8月)叶片元素含量和化学计量比(平均值±标准误差)
Table 3 Leat element contentrations and stoichiometric ratios in Bauhinia brachycarpa under different water treatments nd in different months (mean ± SE)
![]() |
图2 滇南喀斯特地区鞍叶羊蹄甲(A1、A2)、假虎刺(B1、B2)中叶片平均元素含量与其变异系数之间的关系。
Fig. 2 Relationship between coef?cients of variation and mean values of leaf element concentrations in degraded karst areas in Southern Yunnan of China. A1, A2, Bauhinia brachycarp. B1, B2, Carissa spinarum.
图3 滇南喀斯特地区两种植物叶片元素浓度(化学计量比)对土壤体积含水量的简单线性回归标准化系数。A, 叶片元素。B, 化学计量比。*, p < 0.05; **, p < 0.01。
Fig. 3 Standardization regression slops of the simple linear regressions between leaf elemental concentration (or stoichiometric ratios) of the two plant species and soil volumetric water content in degraded karst areas in Southern Yunnan of China. A, Leaf elements. B, Stoichiometric ratio. *, p < 0.05; **, p < 0.01.
图4 滇南喀斯特地区两种植物叶片元素含量(化学计量比)与土壤体积含水量的关系。
Fig. 4 Relationships between the leaf elemental concentrations (or stoichiometric ratios) of the two plant species and soil volumetric water content in degraded karst areas in Southern Yunnan of China.
图5 滇南喀斯特地区鞍叶羊蹄甲叶片元素含量与土壤体积含水量的关系。
Fig. 5 Relationships between leaf elemental concentrations of Bauhinia brachycarpa and soil volumetric water content in degraded karst areas in Southern Yunnan of China.
[1] | Bai YB, Li J, Zhang BL, Xin SG, Bu N, Ma LJ, Li XM (2013). Research advance on effect of drought stress on mineral elements of plant. Biotechnology Bulletin, (3), 15-18. |
[ 白艳波, 李娇, 张宝龙, 辛世刚, 卜宁, 马莲菊, 李雪梅 (2013). 干旱胁迫对植物矿质元素影响的研究进展. 生物技术通报, (3), 15-18.] | |
[2] | Cheng YF, Wang JX, Xu LY, Wang JW, Zhang L (2015). Surface soil moisture variation in the degradation of primary red soil in karst hills of the Yunnan Plateau. Jiangsu Agricultural Sciences, 43(11), 433-437. |
[ 程燕芳, 王嘉学, 许路艳, 王家文, 张磊 (2015). 云南高原喀斯特山原红壤退化中的表层土壤水分变异. 江苏农业科学, 43(11), 433-437.] | |
[3] | Craine JM, Nippert JB, Elmore AJ, Skibbe AM, Hutchinson SL, Brunsell NA (2012). Timing of climate variability and grassland productivity. Proceedings of the National Academy of Sciences of the United States of America, 109, 3401-3405. |
[4] | Du MY, Fan SH, Liu GL, Feng HY, Guo BH, Tang XL (2016). Stoichiometric characteristics of carbon, nitrogen and phosphorus in Phyllostachys edulis forests of China. Chinese Journal of Plant Ecology, 40, 760-774. |
[ 杜满义, 范少辉, 刘广路, 封焕英, 郭宝华, 唐晓鹿 (2016). 中国毛竹林碳氮磷生态化学计量特征. 植物生态学报, 40, 760-774.] | |
[5] | Elser JJ, Fagan WF, Denno RF, Dobberfuhl DR, Folarin A, Huberty A, Interlandi S, Kilham SS, McCauley E, Schulz KL, Siemann EH, Sterner RW (2000). Nutritional constraints in terrestrial and freshwater food webs. Nature, 408, 578-580. |
[6] | Han WX, Fang JY, Reich PB, Ian Woodward F, Wang ZH (2011). Biogeography and variability of eleven mineral elements in plant leaves across gradients of climate, soil and plant functional type in China. Ecology Letters, 14, 788-796. |
[7] | Hu ZL, Pan GX, Li LQ, Du YX, Wang XZ (2009). Changes in pools and heterogeneity of soil organic carbon, nitrogen and phosphorus under different vegetation types in Karst mountainous area of central Guizhou Province, China. Acta Ecologica Sinica, 29, 4187-4195. |
[ 胡忠良, 潘根兴, 李恋卿, 杜有新, 王新洲 (2009). 贵州喀斯特山区不同植被下土壤C、N、P含量和空间异质性. 生态学报, 29, 4187-4195.] | |
[8] | Huang J (2009). Studies on Characteristics of Degradation of Vegetation and Soil from Stone-forest Limestone Region in Yunnan Province. Master degree dissertation, Nanjing Forestry University, Nanjing. 25-32. |
[ 黄金 (2009). 云南石林喀斯特山地植被和土壤退化特征的研究. 硕士学位论文, 南京林业大学, 南京. 25-32.] | |
[9] | Huang JY, Yu HL, Liu JL, Ma F, Han L (2018). Effects of precipitation levels on the C:N:P stoichiometry in plants, microbes, and soils in a desert steppe in China. Acta Ecologica Sinica, 38, 5362-5373. |
[ 黄菊莹, 余海龙, 刘吉利, 马飞, 韩磊 (2018). 控雨对荒漠草原植物、微生物和土壤C、N、P化学计量特征的影响. 生态学报, 38, 5362-5373.] | |
[10] | Huang LH (2018). Discussion the result calculation of testing items in soil analysis. Analytical Instrumentation, (4), 211-214. |
[ 黄亮辉 (2018). 浅谈土壤检测项目结果计算. 分析仪器, (4), 211-214.] | |
[11] | Jiang ZC, Lian YQ, Qin XQ (2014). Rocky desertification in Southwest China: Impacts, causes, and restoration. Earth-Science Reviews, 132, 1-12. |
[12] | Jiménez MA, Jaksic FM, Armesto JJ, Gaxiola A, Meserve PL, Kelt DA, Gutiérrez JR (2011). Extreme climatic events change the dynamics and invasibility of semi-arid annual plant communities. Ecology Letters, 14, 1227-1235. |
[13] | Koerselman W, Meuleman AFM (1996). The vegetation N:P ratio: A new tool to detect the nature of nutrient limitation. Journal of Applied Ecology, 33, 1441-1450. |
[14] | Li K, Dong L, Chen Q, Chen DS (2017). Communities characteristics of vegetation ecological restoration in rocky desertification area in Yunnan. Chinese Landscape Architecture, 33, 41-46. |
[ 李坤, 董丽, 陈强, 陈德生 (2017). 云南石漠化地区植被生态修复群落特征研究. 中国园林, 33, 41-46.] | |
[15] | Li RL, Geng S (2013). Impacts of climate change on agriculture and adaptive strategies in China. Journal of Integrative Agriculture, 12, 1402-1408. |
[16] | Li SJ, Gou W, Wang H, Wu GQ, Su PX (2019). Characteristics of C, N, P, and their response to soil water and salt in leaves of Lycium ruthenicum in the lower reaches of the Heihe River. Acta Ecologica Sinica, 39, 7189-7196. |
[ 李善家, 苟伟, 王辉, 伍国强, 苏培玺 (2019). 黑河下游黑果枸杞叶片C、N、P特征及对土壤水盐的响应. 生态学报, 39, 7189-7196.] | |
[17] | Li YB, Wang SJ, Xiong KN (2003). On the research for eco-hydrological effects in southwest China karst mountain area. Carsologica Sinica, 22, 24-27. |
[ 李阳兵, 王世杰, 熊康宁 (2003). 浅议西南岩溶山地的水文生态效应研究. 中国岩溶, 22, 24-27.] | |
[18] | Liu CC, Liu YG, Guo K, Wang SJ, Yang Y (2014). Concentrations and resorption patterns of 13 nutrients in different plant functional types in the karst region of south- western China. Annals of Botany, 113, 873-885. |
[19] | Liu L, Yang F, Liu ZG, Huang DG, Huang JM, Fang HY, Yang GH (2008). Determination of heavy metals in soils and plants with microwave digestion and ICP-AES. Environmental Chemistry, 27, 511-514. |
[ 刘雷, 杨帆, 刘足根, 黄冬根, 黄精明, 方红亚, 杨国华 (2008). 微波消解ICP-AES法测定土壤及植物中的重金属. 环境化学, 27, 511-514.] | |
[20] | Lu Y (2007). Investigation and Research of Remote Sensing to the Desertification in Lujiang Catchment, Yunnan Province. Master degree dissertation, China University of Geosciences, Beijing. 41-47. |
[ 路遥 (2007). 云南泸江流域土地石漠化遥感调查与研究. 硕士学位论文, 中国地质大学, 北京. 41-47.] | |
[21] | Lyu X, Tao Z, Gao Q, Peng H, Zhou M (2018). Chemical weathering and riverine carbonate system driven by human activities in a subtropical karst basin, South China. Water, 10, 1524. |
[22] | Ma WT, Fan WG (2007). Effect of drought stress on mineral nutrient contents in leaves of seedling plant of C. tangerina Hort., C. sinensis Osbeck and C. grandis Osbeck. Southwest China Journal of Agricultural Sciences, 20, 630-633. |
[ 马文涛, 樊卫国 (2007). 干旱胁迫对实生红橘、甜橙和柚叶中营养元素含量的影响. 西南农业学报, 20, 630-633.] | |
[23] | Maathuis FJ (2009). Physiological functions of mineral macronutrients. Current Opinion in Plant Biology, 12, 250-258. |
[24] | Mahouachi J, Socorro AR, Talon M (2006). Responses of papaya seedlings (Carica papaya L.) to water stress and re-hydration: Growth, photosynthesis and mineral nutrient imbalance. Plant and Soil, 281, 137-146. |
[25] | Marschner H (1995). Mineral Nutrition of Higher Plants. Academic Press, London. |
[26] | Matzek V, Vitousek PM (2009). N:P stoichiometry and protein: RNA ratios in vascular plants: An evaluation of the growth-rate hypothesis. Ecology Letters, 12, 765-771. |
[27] | Pei J, Wang L, Wang XY, Niu Z, Kelly M, Song XP, Huang N, Geng J, Tian HF, Yu Y, Xu SG, Wang L, Ying Q, Cao JH (2019). Time series of landsat imagery shows vegetation recovery in two fragile karst watersheds in southwest China from 1988 to 2016. Remote Sensing, 11, 2044. |
[28] | Piao SL, Ciais P, Huang Y, Shen ZH, Peng SS, Li JS, Zhou LP, Liu HY, Ma YC, Ding YH, Friedlingstein P, Liu CZ, Tan K, Yu YQ, Zhang TY, Fang JY (2010). The impacts of climate change on water resources and agriculture in China. Nature, 467, 43-51. |
[29] | Planchet E, Rannou O, Ricoult C, Boutet-Mercey S, Maia- Grondard A, Limami AM (2011). Nitrogen metabolism responses to water deficit act through both abscisic acid (ABA)-dependent and independent pathways in Medicago truncatula during post-germination. Journal of Experimental Botany, 62, 605-615. |
[30] | Pi FJ, Shu LX, Yu LF, Yan LB, Zhou C, Wu ZH, Yuan CJ (2017). Study on ecological stoichiometry characteristics and correlation of plants within different organs of 10 dominant tree species in Karst Region of Central Guizhou. Ecology and Environmental Sciences, 26, 628-634. |
[ 皮发剑, 舒利贤, 喻理飞, 严令斌, 周晨, 吴正花, 袁丛军 (2017). 黔中喀斯特10种优势树种根茎叶化学计量特征及其关联性. 生态环境学报, 26, 628-634.] | |
[31] | Qin HL, Zhu JS, Luo YJ, Zhang JL, Cao SX, Zhang H (2018). Research progress on cyclic process of soil C and N under dry-wet alternation. Hubei Agricultural Sciences, 57, 11-14. |
[ 秦海兰, 朱金山, 罗友进, 张家乐, 曹诗萱, 张慧 (2018). 干湿交替条件下的土壤C、N循环过程研究进展. 湖北农业科学, 57, 11-14.] | |
[32] | Rivas-Ubach A, Sardans J, Pérez-Trujillo M, Estiarte M, Peñuelas J (2012). Strong relationship between elemental stoichiometry and metabolome in plants. Proceedings of the National Academy of Sciences of the United States of America, 109, 4181-4186. |
[33] | Sardans J, Peñuelas J, Prieto P, Estiarte M (2008). Drought and warming induced changes in P and K concentration and accumulation in plant biomass and soil in a Mediterranean shrubland. Plant and Soil, 306, 261-271. |
[34] | Sardans J, Rivas-Ubach A, Peñuelas J (2012). The C:N:P stoichiometry of organisms and ecosystems in a changing world: A review and perspectives. Perspectives in Plant Ecology, Evolution and Systematics, 14, 33-47. |
[35] | Sha ZM, Yuan J, Zhao Z, Yue YB, Yao J, Cao LK (2016). Ionome of rice seed response to rice cultivation patterns. Chinese Journal of Eco-Agriculture, 24, 600-607. |
[ 沙之敏, 袁婧, 赵峥, 岳玉波, 姚健, 曹林奎 (2016). 水稻种植模式对水稻籽粒离子组的影响. 中国生态农业学报, 24, 600-607.] | |
[36] | Shen HG (2010). Influence of soil microelement on plant. Forestry Science and Technology Information, 42, 12-14. |
[ 沈惠国 (2010). 土壤微量元素对植物的影响. 林业科技情报, 42, 12-14.] | |
[37] | Tian HQ, Chen G, Zhang CS, Melillo JM, Hall CAS (2010). Pattern and variation of C:N:P ratios in China’s soils: A synthesis of observational data. Biogeochemistry, 98, 139-151. |
[38] |
Townsend AR, Cleveland CC, Houlton BZ, Alden CB, White JW (2011). Multi-element regulation of the tropical forest carbon cycle. Frontiers in Ecology and the Environment, 9, 9-17.
DOI URL |
[39] | Wang GB, Yuan AQ, Cao FL, Jing M, Pan JX (2005). The effects of water stress on nutrient element contents in root, stem and leaf of Ginkgo. Journal of Nanjing Forestry University (Natural Science Edition), 29(6), 15-18. |
[ 汪贵斌, 袁安全, 曹福亮, 景茂, 潘静霞 (2005). 土壤水分胁迫对银杏无机营养元素含量的影响. 南京林业大学学报(自然科学版), 29(6), 15-18.] | |
[40] | Wang J, Meng JJ (2007). Characteristics and tendencies of climate change in the southwestern karst region of China in the recent 45 years. Acta Scientiarum Naturalium Universitatis Pekinensis, 43, 223-229. |
[ 王钧, 蒙吉军 (2007). 西南喀斯特地区近45年来气候变化特征及趋势. 北京大学学报(自然科学版), 43, 223-229.] | |
[41] | Wang K, Shen C, Sun B, Wang XN, Wei D, Lyu LY (2018). Effects of drought stress on C, N and P stoichiometry of Ulmus pumila seedlings in Horqin sandy land, China. Chinese Journal of Applied Ecology, 29, 2286-2294. |
[ 王凯, 沈潮, 孙冰, 王潇楠, 魏东, 吕林有 (2018). 干旱胁迫对科尔沁沙地榆树幼苗C、N、P化学计量特征的影响. 应用生态学报, 29, 2286-2294.] | |
[42] | Wang L, Yu YH, Xing RR, Qin SY (2018). Ecological stoichiometry characteristics of carbon, nitrogen, phosphorus, and potassium of different economic tree species in the karst frigid and arid area. Acta Ecologica Sinica, 38, 5393-5403. |
[ 王璐, 喻阳华, 邢容容, 秦仕忆 (2018). 喀斯特高寒干旱区不同经济树种的碳氮磷钾生态化学计量特征. 生态学报, 38, 5393-5403.] | |
[43] | Wang LC, Zeng CF, Meng HH, Chang WN (2016). Water geochemistry and dissolution rates of the karst-dominated Houzhai River basin, China. Toxicological & Environmental Chemistry, 98, 648-657. |
[44] | Wei FS, Chen JS, Wu YY, Zheng CJ (1991). Study on the background contents on 61 elements of soils in China. Acta Scientiae Circumstantiae, 12, 12-19, 94. |
[ 魏复盛, 陈静生, 吴燕玉, 郑春江 (1991). 中国土壤环境背景值研究. 环境科学, 12, 12-19, 94.] | |
[45] | Yang H, Zhu TB, Wang XH, Pu JB, Li JH, Zhang T, Cao JH (2018). Soil element contents of typical small watershed in the plateau area of karst fault basin, Yunnan. Ecology and Environmental Sciences, 27, 859-865. |
[ 杨慧, 朱同彬, 王修华, 蒲俊兵, 李建鸿, 张陶, 曹建华 (2018). 云南断陷盆地高原面典型小流域土壤元素含量特征. 生态环境学报, 27, 859-865.] | |
[46] | Yang YX, Liu DL, Han JG, Zhao GQ, Han J, Wang XS (2010). Effects of ABA on the content of mineral element and proline of two alfalfa varieties under NaCl stress condition. Pratacultural Science, 27, 57-61. |
[ 杨跃霞, 刘大林, 韩建国, 赵国琦, 韩娟, 王小山 (2010). 外源ABA对NaCl胁迫下紫花苜蓿矿质元素和脯氨酸含量的影响. 草业科学, 27, 57-61.] | |
[47] | Yu ZD (2003). The origin and evolution of the karst landscape. Yunnan Geology, 22, 1-15. |
[48] |
Yue YM, Wang KL, Zhang B, Jiao QJ, Liu B, Zhang MY (2012). Remote sensing of fractional cover of vegetation and exposed bedrock for karst rocky desertification assessment. Procedia Environmental Sciences, 13, 847-853.
DOI URL |
[49] | Zeng ZX, Wang KL, Liu XL, Zeng FP, Song TQ, Peng WX, Zhang H, Du H (2015). Stoichiometric characteristics of plants, litter and soils in karst plant communities of Northwest Guangxi. Chinese Journal of Plant Ecology, 39, 682-693. |
[ 曾昭霞, 王克林, 刘孝利, 曾馥平, 宋同清, 彭晚霞, 张浩, 杜虎 (2015). 桂西北喀斯特森林植物-凋落物-土壤生态化学计量特征. 植物生态学报, 39, 682-693.] | |
[50] |
Zhang MH, Li GW, Huang W, Bi T, Chen GY, Tang ZC, Su WA, Sun WN (2010). Proteomic study of Carissa spinarum in response to combined heat and drought stress. Proteomics, 10, 3117-3129.
DOI URL |
[51] | Zhang W, Liu CQ, Liu TZ, Li XD, Zhang LL (2010). Sulfur species and isotopic compositions in limestone soils on slopes of karst regions. Geochimica, 39, 251-257. |
[ 张伟, 刘丛强, 刘涛泽, 李晓东, 张丽丽 (2010). 喀斯特坡地石灰土硫形态分布及其同位素组成特征. 地球化学, 39, 251-257.] | |
[52] | Zheng YC, Wang SJ (2002). Geological cause of calcareous soil erosion and land rocky desertification in karst area, Guizhou province. Resources and Environment in the Yangtze Basin, 11, 461-465. |
[ 郑永春, 王世杰 (2002). 贵州山区石灰土侵蚀及石漠化的地质原因分析. 长江流域资源与环境, 11, 461-465.] | |
[53] | Zhou YC (1997). A study on the part plants’ main nutrient elements content of Guizhou Karst region. Journal of Guizhou Agricultural College, 16(1), 11-16. |
[ 周运超 (1997). 贵州喀斯特植被主要营养元素含量分析. 贵州农学院学报, 16(1), 11-16.] | |
[54] | Zhu LJ, Li JY (2004). Weathering and Carbonate Formation of Carbonate Rock and Its Environmental Effects. Geological Publishing House, Beijing. 7-10. |
[ 朱立军, 李景阳 (2004). 碳酸盐岩风化成土作用及其环境效应. 地质出版社, 北京. 7-10.] |
[1] | 蔡慧颖 李兰慧 林阳 梁亚涛 杨光 孙龙. 白桦叶片和细根非结构性碳水化合物对火后时间的响应[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 刘瑶 钟全林 徐朝斌 程栋梁 郑跃芳 邹宇星 张雪 郑新杰 周云若. 不同大小刨花楠细根功能性状与根际微环境关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[3] | 江康威 张青青 王亚菲 李宏 丁雨 杨永强 吐尔逊娜依·热依木. 放牧干扰下天山北坡中段植物功能群特征及其与土壤环境因子的关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[4] | 张文瑾 佘维维 秦树高 乔艳桂 张宇清. 氮和水分添加对黑沙蒿群落优势植物叶片氮磷化学计量特征的影响[J]. 植物生态学报, 2024, 48(5): 590-600. |
[5] | 付粱晨, 丁宗巨, 唐茂, 曾辉, 朱彪. 北京东灵山白桦和蒙古栎的根际效应及其季节动态[J]. 植物生态学报, 2024, 48(4): 508-522. |
[6] | 秦文宽, 张秋芳, 敖古凯麟, 朱彪. 土壤有机碳动态对增温的响应及机制研究进展[J]. 植物生态学报, 2024, 48(4): 403-415. |
[7] | 萨其拉, 张霞, 朱琳, 康萨如拉. 长期不同放牧强度下荒漠草原优势种无芒隐子草叶片解剖结构变化[J]. 植物生态学报, 2024, 48(3): 331-340. |
[8] | 牛一迪, 蔡体久. 大兴安岭北部次生林演替过程中物种多样性的变化及其影响因子[J]. 植物生态学报, 2024, 48(3): 349-363. |
[9] | 吴君梅, 曾泉鑫, 梅孔灿, 林惠瑛, 谢欢, 刘苑苑, 徐建国, 陈岳民. 土壤磷有效性调控亚热带森林土壤酶活性和酶化学计量对凋落叶输入的响应[J]. 植物生态学报, 2024, 48(2): 242-253. |
[10] | 杜旭龙, 黄锦学, 杨智杰, 熊德成. 增温对植物叶片和细根氧化损伤与防御特征及其相互关联影响的研究进展[J]. 植物生态学报, 2024, 48(2): 135-146. |
[11] | 颜辰亦, 龚吉蕊, 张斯琦, 张魏圆, 董学德, 胡宇霞, 杨贵森. 氮添加对内蒙古温带草原土壤活性有机碳的影响[J]. 植物生态学报, 2024, 48(2): 229-241. |
[12] | 耿雪琪, 唐亚坤, 王丽娜, 邓旭, 张泽凌, 周莹. 氮添加增加中国陆生植物生物量并降低其氮利用效率[J]. 植物生态学报, 2024, 48(2): 147-157. |
[13] | 韩路, 冯宇, 李沅楷, 王雨晴, 王海珍. 地下水埋深对灰胡杨叶片与土壤养分生态化学计量特征及其内稳态的影响[J]. 植物生态学报, 2024, 48(1): 92-102. |
[14] | 陈保冬, 付伟, 伍松林, 朱永官. 菌根真菌在陆地生态系统碳循环中的作用[J]. 植物生态学报, 2024, 48(1): 1-20. |
[15] | 李冰, 朱湾湾, 韩翠, 余海龙, 黄菊莹. 降水量变化下荒漠草原土壤呼吸及其影响因素[J]. 植物生态学报, 2023, 47(9): 1310-1321. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19