植物生态学报 ›› 2016, Vol. 40 ›› Issue (2): 177-.DOI: 10.17521/cjpe.2015.0182
• 研究论文 • 上一篇
陈智裕1,2, 李琦1,2,3, 邹显花1,2, 马祥庆1,2, 吴鹏飞1,2,,A;*()
出版日期:
2016-02-10
发布日期:
2016-03-08
通讯作者:
吴鹏飞
Zhi-Yu CHEN1,2, Qi LI1,2,3, Xian-Hua ZOU1,2, Xiang-Qing MA1,2, Peng-Fei WU1,2,*()
Online:
2016-02-10
Published:
2016-03-08
Contact:
Peng-Fei WU
摘要:
选择同一杉木(Cunninghamia lanceolata)无性系幼苗为研究对象, 通过设计邻株竞争处理和3个供磷水平的室内沙培模拟试验, 采用破坏性收获方式, 分别于试验初期,中期和末期测定不同竞争与供磷水平条件下杉木幼苗光合特性和生物量分配的变化规律, 综合分析邻株竞争对低磷环境杉木响应行为的影响.结果表明: 竞争处理,供磷水平和胁迫时期三者对杉木幼苗4个光合特性指标的影响均存在明显的交互作用(p < 0.05), 而对生物量分配的交互作用未达显著水平(p > 0.05).低磷和不供磷处理条件下杉木幼苗叶片的净光合速率,蒸腾速率和气孔导度均明显较低, 其中缺磷胁迫和邻株竞争对叶片气孔导度的降低具有叠加效应.随着竞争和低磷处理时间的延长, 杉木幼苗叶片蒸腾速率逐渐降低, 但气孔导度和胞间CO2浓度呈先下降后上升的趋势, 而根系生物量和根冠比均显著增加.
陈智裕, 李琦, 邹显花, 马祥庆, 吴鹏飞. 邻株竞争对低磷环境杉木幼苗光合特性及生物量分配的影响. 植物生态学报, 2016, 40(2): 177-. DOI: 10.17521/cjpe.2015.0182
Zhi-Yu CHEN, Qi LI, Xian-Hua ZOU, Xiang-Qing MA, Peng-Fei WU. Effect of neighboring competition on photosynthetic characteristics and biomass allocation of Chinese fir seedlings under low phosphorus stress. Chinese Journal of Plant Ecology, 2016, 40(2): 177-. DOI: 10.17521/cjpe.2015.0182
自由度 Degrees of freedom | F值F value | ||||
---|---|---|---|---|---|
胞间CO2浓度 Intercellular CO2 concentration | 净光合速率 Net photosynthetic rate | 蒸腾速率 Transpiration rate | 气孔导度 Stomatal conductance | ||
竞争处理 Competition treatment (a) | 1 | 53.9** | 5.807* | 11.181** | 4.4* |
供磷水平 Phosphorus supply level (b) | 2 | 0.7ns | 16.698** | 15.740** | 20.9** |
胁迫时期 Stress stage (c) | 2 | 10.4** | 0.698ns | 18.314** | 3.3* |
a和b组间交互作用 Effects between a and b | 2 | 29.1** | 6.984** | 5.919** | 0.9ns |
a和c组间交互作用 Effects between a and c | 2 | 6.6** | 9.382** | 3.494* | 8.2** |
b和c组间交互作用 Effects between b and c | 4 | 8.7** | 4.323** | 9.111** | 10.5** |
a,b和c组间交互作用 Effects among a, b and c | 4 | 3.9** | 3.522* | 8.247** | 8.4** |
误差 Error | 90 |
表1 竞争处理,供磷水平和胁迫时期对杉木幼苗光合特性的影响
Table 1 Effects of competition treatment, phosphorus supply level and stress stage on the photosynthesis characteristics of Cunninghamia lanceolata seedlings
自由度 Degrees of freedom | F值F value | ||||
---|---|---|---|---|---|
胞间CO2浓度 Intercellular CO2 concentration | 净光合速率 Net photosynthetic rate | 蒸腾速率 Transpiration rate | 气孔导度 Stomatal conductance | ||
竞争处理 Competition treatment (a) | 1 | 53.9** | 5.807* | 11.181** | 4.4* |
供磷水平 Phosphorus supply level (b) | 2 | 0.7ns | 16.698** | 15.740** | 20.9** |
胁迫时期 Stress stage (c) | 2 | 10.4** | 0.698ns | 18.314** | 3.3* |
a和b组间交互作用 Effects between a and b | 2 | 29.1** | 6.984** | 5.919** | 0.9ns |
a和c组间交互作用 Effects between a and c | 2 | 6.6** | 9.382** | 3.494* | 8.2** |
b和c组间交互作用 Effects between b and c | 4 | 8.7** | 4.323** | 9.111** | 10.5** |
a,b和c组间交互作用 Effects among a, b and c | 4 | 3.9** | 3.522* | 8.247** | 8.4** |
误差 Error | 90 |
图2 竞争和非竞争处理下杉木幼苗叶片的光合特性(平均值&#x000b1;标准误差).不同小写字母表示不同竞争处理间差异显著(p &#x0003C; 0.05).
Fig. 2 Photosynthetic characteristics of Cunninghamia lanceolata seedlings under neighboring competition treatment (mean &#x000b1; SE). Different small letters indicate significant difference between two competition treatments (p &#x0003C; 0.05).
图3 不同供磷水平下杉木幼苗叶片的光合特性(平均值&#x000b1;标准误差).不同小写字母表示不同供磷水平间差异显著(p &#x0003C; 0.05).
Fig. 3 Photosynthetic characteristics of Cunninghamia lanceolata seedlings under different phosphorus supply levels (mean &#x000b1; SE). Different small letters indicate significant difference among three phosphorus supply levels (p &#x0003C; 0.05).
图4 不同胁迫时期杉木幼苗叶片的光合特性(平均值&#x000b1;标准误差).不同小写字母表示不同胁迫时期间差异显著(p &#x0003C; 0.05).
Fig. 4 Photosynthetic characteristics of Cunninghamia lanceolata seedlings at different stress stages (mean &#x000b1; SE). Different small letters indicate significant difference among three stress stages (p &#x0003C; 0.05).
自由度 Degrees of freedom | F值 F value | |||
---|---|---|---|---|
地上部分 Shoot | 根系 Root | 根冠比 Root to shoot ratio | ||
竞争处理 Competition treatment (a) | 1 | 1.767ns | 0.017ns | 0.659ns |
供磷水平 Phosphorus supply level (b) | 2 | 0.240** | 38.689** | 38.096ns |
胁迫时期 Stress stage (c) | 2 | 1.624ns | 0.710** | 4.927** |
a和b组间交互作用 Effects between a and b | 2 | 1.225ns | 1.411ns | 0.007ns |
a和c组间交互作用 Effects between a and c | 2 | 2.539ns | 0.438ns | 1.343ns |
b和c组间交互作用 Effects between b and c | 4 | 0.412ns | 0.908ns | 1.075ns |
a,b和c组间交互作用 Effects among a, b and c | 4 | 0.813ns | 1.571ns | 0.861ns |
误差 Error | 90 |
表2 竞争处理,供磷水平和胁迫时期对杉木幼苗生物量分配的影响
Table 2 Effects of competition treatment, phosphorus supply level and stress stage on the biomass allocation of Cunninghamia lanceolata seedlings
自由度 Degrees of freedom | F值 F value | |||
---|---|---|---|---|
地上部分 Shoot | 根系 Root | 根冠比 Root to shoot ratio | ||
竞争处理 Competition treatment (a) | 1 | 1.767ns | 0.017ns | 0.659ns |
供磷水平 Phosphorus supply level (b) | 2 | 0.240** | 38.689** | 38.096ns |
胁迫时期 Stress stage (c) | 2 | 1.624ns | 0.710** | 4.927** |
a和b组间交互作用 Effects between a and b | 2 | 1.225ns | 1.411ns | 0.007ns |
a和c组间交互作用 Effects between a and c | 2 | 2.539ns | 0.438ns | 1.343ns |
b和c组间交互作用 Effects between b and c | 4 | 0.412ns | 0.908ns | 1.075ns |
a,b和c组间交互作用 Effects among a, b and c | 4 | 0.813ns | 1.571ns | 0.861ns |
误差 Error | 90 |
图5 竞争和非竞争处理下杉木幼苗生物量的分配(平均值&#x000b1;标准误差).不同小写字母表示不同竞争处理间差异显著(p &#x0003C; 0.05).
Fig. 5 Biomass allocation of Cunninghamia lanceolata seedlings under neighboring competition treatment (mean &#x000b1; SE). Different small letters indicate significant difference between two competition treatments (p &#x0003C; 0.05).
图6 不同供磷水平下杉木幼苗生物量的分配(平均值&#x000b1;标准误差).不同小写字母表示不同供磷水平间差异显著(p &#x0003C; 0.05).
Fig. 6 Biomass allocation of Cunninghamia lanceolata seedlings under different phosphorus supply levels (mean &#x000b1; SE). Different small letters indicate significant difference among three phosphorus supply levels (p &#x0003C; 0.05).
图7 不同胁迫时期杉木幼苗生物量的分配(平均值&#x000b1;标准误差).不同小写字母表示不同胁迫时期间差异显著(p &#x0003C; 0.05).
Fig. 7 Biomass allocation of Cunninghamia lanceolata seedlings at different stress stages (mean &#x000b1; SE). Different small letters indicate significant difference among three stress stages (p &#x0003C; 0.05).
[1] | Ballar&#x000e9;CL , Scopel AL, S&#x000e1;nchez RA (1990). Far-red radiation reflected from adjacent leaves: An early signal of competition in plant canopies.Science, 247, 329-332. |
[2] | Cai LP, Wu PF, Hou XL, Ma XQ, Jiang S, Ren JJ (2012). Effects of phosphorus stress on photosynthetic character- istics of pioneer plant Neyraudia reynaudiana on soil and water conservation.Journal of Soil and Water Conserva- tion, 26, 281-285. (in Chinese with English abstract)[蔡丽平, 吴鹏飞, 侯晓龙, 马祥庆, 江硕, 任晶晶 (2012). 磷胁迫对水土保持先锋植物类芦光合特性的影响. 水土保持学报, 26, 281-285.] |
[3] | Cao CL, Mao YH, Cao PT, Liu JC, Yang XN (2010). Effect of phosphorous stress on photosynthesis rate and root physiological characteristic of cowpea seedlings.Plant Nutrition and Fertilizer Science, 16, 1373-1378. (in Chinese with English abstract)[曹翠玲, 毛圆辉, 曹朋涛, 刘建朝, 杨向娜 (2010). 低磷胁迫对豇豆幼苗叶片光合特性及根系生理特性的影响. 植物营养与肥料学报, 16, 1373-1378.] |
[4] | Chen BJW, During HJ, Vermeulen PJ, Kroon HD, Poorter H, Anten NPR (2015). Corrections for rooting volume and plant size reveal negative effects of neighbour presence on root allocation in pea.Functional Ecology, 29, 1383-1391. |
[5] | Chen GY, Chen J, Xu DQ (2010). Thinking about the rela- tionship between net photosynthetic rate and intercellular CO2 concentration.Plant Physiology Communications, 46, 64-66. (in Chinese with English abstract)[陈根云, 陈娟, 许大全 (2010). 关于净光合速率和胞间CO2浓度关系的思考. 植物生理学通讯, 46, 64-66.] |
[6] | Chen HJ (2003). Phosphatase activity and P fractions in soils of an 18-year-old Chinese fir (Cunninghamia lanceolata) plantation.Forest Ecology and Management, 178, 301-310. |
[7] | Chen YJ, Cao KF, Cai ZQ (2008). Above-and below-ground competition between seedlings of lianas and trees under two light irradiances. Journal of Plant Ecology (Chinese Version), 32, 639-647. (in Chinese with English abstract)[陈亚军, 曹坤芳, 蔡志全 (2008). 两种光强下木质藤本与树木幼苗的竞争关系. 植物生态学报, 32, 639-647.] |
[8] | Cheng LY, Tang XY, Vance CP, White PJ, Zhang FS, Shen JB (2014). Interactions between light intensity and phos- phorus nutrition affect the phosphate-mining capacity of white lupin (Lupinus albus L.).Journal of Experimental Botany, 65, 2995-3003. |
[9] | Depuydt S (2014). Arguments for and against self and non-self root recognition in plants.Frontiers in Plant Science, 5, 614. |
[10] | Di Iorio A, Montagnoli A, Terzaghi M, Scippa GS, Chiatante D (2013). Effect of tree density on root distribution in Fagus sylvatica stands: A semi-automatic digitising device approach to trench wall method.Trees, 27, 1503-1513. |
[11] | Downie H, Holden N, Otten W, Spiers AJ, Valentine TA, Dupuy LX (2012). Transparent soil for imaging the rhizos- phere.PLoS ONE, 7, e44276. |
[12] | Fan WG, Wang LX (2012). Photosynthetic response to different phosphorus levels on young Newhall navel orange trees.Journal of Fruit Science, 29, 166-170. (in Chinese with English abstract)[樊卫国, 王立新 (2012). 纽荷尔脐橙幼树对不同供磷水平的光合响应. 果树学报, 29, 166-170.] |
[13] | Fang SQ, Gao X, Deng Y, Chen XP, Liao H (2011). Crop root behavior coordinates phosphorus status and neighbors: From field studies to three-dimensional in situ reconstruc- tion of root system architecture.Plant Physiology, 155, 1277-1285. |
[14] | Gundel PE, Pierik R, Mommer L, Ballar&#x000e9;CL (2014). Com- peting neighbors: Light perception and root function.Oecologia, 176, 1-10. |
[15] | Hetherington AM, Woodward FI (2003). The role of stomata in sensing and driving environmental change.Nature, 424, 901-908. |
[16] | Kigathi RN, Weisser WW, Veit D, Gershenzon J, Unsicker SB (2013). Plants suppress their emission of volatiles when growing with conspecifics.Journal of Chemical Ecology, 39, 537-545. |
[17] | Kropp H, Ogle K (2014). Seasonal stomatal behavior of a common desert shrub and the influence of plant neighbors.Oecologia, 177, 345-355. |
[18] | Li J, Chen ZW, Shi YL, Zhang Q, Li XL (2011). Effects of phosphorus activator on different type of phosphorus and their validities in red soil.Journal of Soil and Water Conservation, 25, 83-86. (in Chinese with English abstract)[李杰, 陈智文, 石元亮, 张清, 李筱琳 (2011). 磷素活化剂对红壤磷形态及有效性影响的研究. 水土保持学报, 25, 83-86.] |
[19] | Li JD, Sun B, Wang GJ, Yan XF (2006). Mechanism of photo- synthetic characters of Ambrosia trifida in competition with Helianthus turberosus.Journal of Shenyang Agricultural University, 37, 569-572. (in Chinese with English abstract)[李建东, 孙备, 王国骄, 燕雪飞 (2006). 菊芋对三裂叶豚草叶片光合特性的竞争机理. 沈阳农业大学学报, 37, 569-572.] |
[20] | Li LY, Lian HP, Xu LP (2015). One forestation experiment by improved varieties and superior clone of Cunninghamia plantation.China Forestry Science and Technology, 29(1), 30-32. (in Chinese with English abstract)[李林源, 连华萍, 许鲁平 (2015). 杉木种子园良种与优良无性系造林试验. 林业科技开发, 29(1), 30-32.] |
[21] | Li Q, Wu PF, Chen ZY, Zou XH (2014). Effect of competition for low phosphorus on growth of Chinese fir seedlings. Journal of Xinyang Normal University (Natural Science Edition), 27, 351-354. (in Chinese with English abstract)[李琦, 吴鹏飞, 陈智裕, 邹显花 (2014). 邻株低磷竞争处理对杉木幼苗生长的影响. 信阳师范学院学报(自然科学版), 27, 351-354.] |
[22] | Li YN, Hou LG, Qi CY, Sun HJ, Liu L, Sui PJ, Guo XM, Zhao GC (2010). Effects of different levels of phosphorus nutrient on the photosynthesis characteristic of rice flag leaf.Agricultural Science &#x00026; Technology, 11(6), 11-14. (in Chinese with English abstract)[李跃娜, 侯立刚, 齐春艳, 孙洪娇, 刘亮, 隋朋举, 郭晞明, 赵国臣 (2010). 不同磷素营养水平对水稻剑叶光合特性的影响. 农业科学与技术, 11(6), 11-14.] |
[23] | Lian MH, Tian XH, Cao CL (2011). Effect of phosphorous stress on photosynthesis characteristics and distribution of carbohydrate of Phaseolus coccineus L. seedlings.Agricultural Research in the Arid Areas, 29, 87-93, 99. (in Chinese with English abstract)[廉满红, 田宵鸿, 曹翠玲 (2011). 低磷条件下熊猫豆光合特性及碳水化合物累积变化研究. 干旱地区农业研究, 29, 87-93, 99.] |
[24] | Liang X, Liu AQ, Ma XQ, Feng LZ, Chen YL (2005). The effect of phosphorus deficiency stress on activities of acid phosphatase in different clones of Chinese fir.Acta Phytoecologica Sinica, 29, 54-59. (in Chinese with English abstract)[梁霞, 刘爱琴, 马祥庆, 冯丽贞, 陈友力 (2005). 磷胁迫对不同杉木无性系酸性磷酸酶活性的影响. 植物生态学报, 29, 54-59.] |
[25] | Ma XQ, Liang X (2004). Research advances in mechanism of high phosphorus use efficiency of plants.Chinese Journal of Applied Ecology, 15, 712-716. (in Chinese with English abstract)[马祥庆, 梁霞 (2004). 植物高效利用磷机制的研究进展. 应用生态学报, 15, 712-716.] |
[26] | Mommer L, van Ruijven J, Jansen C, van de Steeg HM, de Kroon H (2012). Interactive effects of nutrient heter- ogeneity and competition: Implications for root foraging theory?Functional Ecology, 26, 66-73. |
[27] | Niu YY, Liao K, Jia Y, Pang HX, Xu GX, Jiang ZB (2015). Analysis on differences in photosynthetic characteristics of korla fragrant pear among different planting densities.Agricultural Science &#x00026; Technology, 16, 862-867. (in English) |
[28] | Novoplansky A (2009). Picking battles wisely: Plant behaviour under competition.Plant, Cell &#x00026; Environment, 32, 726-741. |
[29] | Pierik R, Ballar&#x000e9; CL Dicke M (2014). Ecology of plant volatiles: Taking a plant community perspective.Plant, Cell &#x00026; Environment, 37, 1845-1853. |
[30] | Pierik R, Mommer L, Voesenek LACJ (2013). Molecular mechanisms of plant competition: Neighbour detection and response strategies.Functional Ecology, 27, 841-853. |
[31] | Rolo V, Moreno G (2012). Interspecific competition induces asymmetrical rooting profile adjustments in shrub- encroached open oak woodlands.Trees, 26, 997-1006. |
[32] | Schmid C, Bauer S, Bartelheimer M (2015). Should I stay or should I go? Roots segregate in response to competition intensity.Plant and Soil, 391, 283-291. |
[33] | Schmid C, Bauer S, M&#x000fc;ller B Bartelheimer M (2013). Belowground neighbor perception in Arabidopsis thaliana studied by transcriptome analysis: Roots of Hieracium pilosella cause biotic stress.Frontiers in Plant Science, 4, 296. |
[34] | Sheng WT, Fan SH (2005). Long Term Productivity of Chinese fir Plantations. Science Press, Beijing. (in Chinese)[盛炜彤, 范少辉 (2005). 杉木人工林长期生产力保持机制研究. 科学出版社, 北京.] |
[35] | Vysotskaya L, Wilkinson S, Davies WJ, Arkhipova T, Kudoyarova G (2011). The effect of competition from neighbours on stomatal conductance in lettuce and tomato plants.Plant, Cell &#x00026; Environment, 34, 729-737. |
[36] | Wang JL, Wen XF (2010). Modeling the response of stomatal conductance to variable CO2 concentration and its physiological mechanism.Acta Ecologica Sinica, 30, 4815-4820. (in Chinese with English abstract)[王建林, 温学发 (2010). 气孔导度对CO2浓度变化的模拟及其生理机制. 生态学报, 30, 4815-4820.] |
[37] | Wang P, Wang TH, Zhou DW, Zhang HX (2007). A literature review on the above-and below-ground competition.Acta Ecologica Sinica, 27, 3489-3499. (in Chinese with English abstract)[王平, 王天慧, 周道玮, 张红香 (2007). 植物地上竞争与地下竞争研究进展. 生态学报, 27, 3489-3499.] |
[38] | Wu BZ, Fullen MA, Li JB, An TX, Fan ZW, Zhou F, Zi SH, Yang YQ, Xue GF, Liu Z, Wu KX (2014a). Integrated response of intercropped maize and potatoes to heterogeneous nutrients and crop neighbours.Plant and Soil, 374, 185-196. |
[39] | Wu PF, Ma XQ (2009). Research advances in the mechanisms of high nutrient use efficiency in plants.Acta Ecologica Sinica, 29, 427-437. (in Chinese with English abstract)[吴鹏飞, 马祥庆 (2009). 植物养分高效利用机制研究进展. 生态学报, 29, 427-437.] |
[40] | Wu PF, Ma XQ, Chen YL, Lin WJ, Huang SY, Liu LQ (2012). Comparison of phosphorus use efficiency among clonal test plantations of Chinese fir. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 41, 40-45. (in Chinese with English abstract)[吴鹏飞, 马祥庆, 陈友力, 林文奖, 黄诗云, 刘露奇 (2012). 杉木无性系测定林磷素利用效率的比较. 福建农林大学学报(自然科学版), 41, 40-45.] |
[41] | Wu PF, Ma XQ, Tigabu M, Huang Y, Zhou LL, Cai LP, Hou XL, Oden PC (2014b). Comparative growth, dry matter accumulation and photosynthetic rate of seven species of Eucalypt in response to phosphorus supply.Journal of Forestry Research, 25, 377-383. |
[42] | Wu PF, Ma XQ, Tigabu M, Wang C, Liu AQ, Od&#x000e9;n PC (2011a). Root morphological plasticity and biomass production of two Chinese fir clones with high phosphorus efficiency under low phosphorus stress.Canadian Journal of Forest Research, 41, 228-234. |
[43] | Wu PF, Ma XQ, Zou XH, Hou XL, Miu LJ, Cai LP (2011). Effect of calcium on chlorophyll content and chlorophyll fluorescence of Chinese fir leaves under low phosphorus stress.Chinese Agricultural Science Bulletin, 27(13), 20-24. (in Chinese with English abstract)[吴鹏飞, 马祥庆, 邹显花, 侯晓龙, 缪丽娟, 蔡丽平 (2011). 钙对低磷胁迫杉木叶绿素及其荧光特性的影响. 中国农学通报, 27(13), 20-24.] |
[44] | Wu PF, Tigabu M, Ma XQ, Oden PC, He YL, Yu XT, He ZY (2011b). Variations in biomass, nutrient contents and nutrient use efficiency among Chinese fir provenances.Silvae Genetica, 60, 95-105. |
[45] | Yang Q, Li JS, Guo AY, Qi YL, Li YS, Zhang FJ (2014). Effects of shade and competition of Chenopodium album on photosynthesis, fluorescence and growth characteristics of Flaveria bidentis.Chinese Journal of Applied Ecology, 25, 2536-2542. (in Chinese with English abstract)[杨晴, 李婧实, 郭艾英, 齐艳玲, 李彦生, 张风娟 (2014). 遮阴和藜竞争对黄顶菊光合荧光和生长特性的影响. 应用生态学报, 25, 2536-2542.] |
[46] | Yu YC, Yu J, Shan QH, Fang L, Jiang DF (2008). Organic acid exudation from the roots of Cunninghamia lanceolata and Pinus massoniana seedlings under low phosphorus stress.Frontiers of Forestry in China, 3, 117-120. |
[47] | Zhang XQ, Kirschbaum MUF, Hou ZH, Guo ZH (2004). Carbon stock changes in successive rotations of Chinese fir (Cunninghamia lanceolata (Lamb) Hook) plantations.Forest Ecology and Management, 202, 131-147. |
[48] | Zhang YQ, Zhang N, Wang N, Tang JH, Xu WX, Li YJ (2015). Effects of plant population on photosynthetic characteristics and yield components of summer soybean.Journal of Nuclear Agricultural Sciences, 29, 1386-1391. (in Chinese with English abstract)[张永强, 张娜, 王娜, 唐江华, 徐文修, 李亚杰 (2015). 种植密度对夏大豆光合特性及产量构成的影响. 核农学报, 29, 1386-1391.] |
[49] | Zhao ZH, Liu AQ, Wu PF, Liu XD, He LL (2014). Variance analysis of protein extraction and expression for Chinese fir needles under low phosphorus stress.Journal of Fujian College of Forestry, 34, 203-207. (in Chinese with English abstract)[赵中华, 刘爱琴, 吴鹏飞, 刘鑫鼎, 何琳琳 (2014). 低磷胁迫下杉木针叶蛋白的提取与表达差异分析. 福建林学院学报, 34, 203-207.] |
[50] | Zhou JC, Fan J, Wang XC, Wang Y, Deng YH, Xi HG, Yu LH (2009). Photosynthetic properties of different sugar beet genotypes under phosphorus deficiency.Plant Nutrition and Fertilizer Science, 15, 910-916. (in Chinese with English abstract)[周建朝, 范晶, 王孝纯, 王艳, 邓艳红, 奚红光, 於丽华 (2009). 磷胁迫下不同基因型甜菜的光合特征. 植物营养与肥料学报, 15, 910-916.] |
[51] | Zou XH, Wu PF, Chen NL, Wang P, Ma XQ (2015). Chinese fir root response to spatial and temporal heterogeneity of phosphorus availability in the soil.Canadian Journal of Forest Research, 45, 402-410. |
[1] | 高敏, 缑倩倩, 王国华, 郭文婷, 张宇, 张妍. 低温胁迫对不同母树年龄柠条锦鸡儿种子萌发幼苗生理和生长的影响[J]. 植物生态学报, 2024, 48(2): 201-214. |
[2] | 吴帆, 吴晨, 张宇辉, 余恒, 魏智华, 郑蔚, 刘小飞, 陈仕东, 杨智杰, 熊德成. 增温对成熟杉木人工林不同季节细根生长、形态及生理代谢特征的影响[J]. 植物生态学报, 2023, 47(6): 856-866. |
[3] | 谢欢, 张秋芳, 陈廷廷, 曾泉鑫, 周嘉聪, 吴玥, 林惠瑛, 刘苑苑, 尹云锋, 陈岳民. 氮添加促进丛枝菌根真菌和根系协作维持土壤磷有效性[J]. 植物生态学报, 2022, 46(7): 811-822. |
[4] | 谢欢, 张秋芳, 曾泉鑫, 周嘉聪, 马亚培, 吴玥, 刘苑苑, 林惠瑛, 尹云锋, 陈岳民. 氮添加对杉木苗期磷转化和分解类真菌的影响[J]. 植物生态学报, 2022, 46(2): 220-231. |
[5] | 李斐, 孙明伟, 钟尚志, 宋文政, 钟晓月, 孙伟. 不同光合类型牧草对干旱-复水的光合生理响应及生长适应策略[J]. 植物生态学报, 2022, 46(1): 74-87. |
[6] | 丁凯, 张毓婷, 张俊红, 柴雄, 周世水, 童再康. 不同密度杉木林对林下植被和土壤微生物群落结构的影响[J]. 植物生态学报, 2021, 45(1): 62-73. |
[7] | 吕中诚, 康文星, 黄志宏, 赵仲辉, 邓湘雯. 不同林龄杉木组织迁移养分的再利用[J]. 植物生态学报, 2019, 43(5): 458-470. |
[8] | 邹显花, 胡亚楠, 韦丹, 陈思同, 吴鹏飞, 马祥庆. 磷高效利用杉木对低磷胁迫的适应性与内源激素的相关性[J]. 植物生态学报, 2019, 43(2): 139-151. |
[9] | 沈芳芳, 李燕燕, 刘文飞, 段洪浪, 樊后保, 胡良, 孟庆银. 长期氮沉降对杉木人工林叶、枝氮磷养分再吸收的影响[J]. 植物生态学报, 2018, 42(9): 926-937. |
[10] | 陈日升, 康文星, 周玉泉, 田大伦, 项文化. 杉木人工林养分循环随林龄变化的特征[J]. 植物生态学报, 2018, 42(2): 173-184. |
[11] | 彭曦, 闫文德, 王凤琪, 王光军, 玉昉永, 赵梅芳. 基于叶干质量比的杉木比叶面积估算模型的构建[J]. 植物生态学报, 2018, 42(2): 209-219. |
[12] | 陈思同, 邹显花, 蔡一冰, 韦丹, 李涛, 吴鹏飞, 马祥庆. 基于 32P示踪的不同供磷环境杉木幼苗磷的分配规律分析[J]. 植物生态学报, 2018, 42(11): 1103-1112. |
[13] | 宋平, 张蕊, 周志春, 童建设, 王晖. 局部供氮对低磷胁迫下马尾松不同家系生长及根系参数的影响[J]. 植物生态学报, 2017, 41(6): 622-631. |
[14] | 严月, 朱建军, 张彬, 张艳杰, 鲁顺保, 潘庆民. 草原生态系统植物地下生物量分配及对全球变化的响应[J]. 植物生态学报, 2017, 41(5): 585-596. |
[15] | 张雷, 王琳琳, 刘世荣, 孙鹏森, 余振, 黄书涛, 张旭东. 生境概率预测值转换为二元值过程中4个阈值选择方法的比较评估——以珙桐和杉木生境预估为例[J]. 植物生态学报, 2017, 41(4): 387-395. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19