植物生态学报 ›› 2018, Vol. 42 ›› Issue (11): 1103-1112.DOI: 10.17521/cjpe.2018.0148
收稿日期:
2018-06-20
接受日期:
2018-09-12
出版日期:
2018-11-20
发布日期:
2019-03-13
通讯作者:
马祥庆
基金资助:
CHEN Si-Tong,ZOU Xian-Hua,CAI Yi-Bing,WEI Dan,LI Tao,WU Peng-Fei,MA Xiang-Qing()
Received:
2018-06-20
Accepted:
2018-09-12
Online:
2018-11-20
Published:
2019-03-13
Contact:
Xiang-Qing MA
Supported by:
摘要:
通过分析杉木(Cunninghamia lanceolata)幼苗磷(P)分配规律, 可以阐明两个磷高效利用杉木在不同供磷水平下吸收外源磷的分配及动态变化, 为进一步进行磷高效利用基因型的选育提供参考。该研究以2个磷高效利用杉木家系(被动忍受型M1与主动活化型M4)幼苗为试验材料, 利用 32P同位素示踪技术, 研究在不同供磷水平下2个杉木家系幼苗磷分配规律。结果表明, M1和M4吸收的外源磷的含量分布特征均为根>叶>茎, 自显影中相同处理时期的各器官在水平投影面上 32P含量均为根>茎>叶。低磷处理下M1和M4根、茎、叶吸收的外源磷的含量均明显低于高磷处理, 自显影中相同处理时间根、茎、叶低磷水平下成像的黑化程度也低于高磷水平, 且低磷处理下吸收的外源磷的含量增加缓慢, 说明低磷胁迫严重影响杉木苗磷的吸收与积累。M1和M4的根系磷分配率在低磷胁迫下呈现出明显的先减少后增加趋势, 高磷水平下根系磷分配率表现为先增加后趋于平稳。这说明M1和M4可以通过体内磷的重新分配来适应外界低磷胁迫, 即杉木苗在低磷胁迫初期将根系中的磷转移至地上部分, 随着胁迫时间的延长, 地上部分的磷向根系中转移。但两个家系在低磷条件下对吸收的外源磷的分配格局差异明显: 从开始至结束M1吸收的外源磷的分配率表现为根系>地上部分, 而M4先表现为根系>地上部分, 后表现为地上部分>根系, 说明M1在低磷胁迫后加强体内磷循环的程度相比于M4更高, 即磷从地上部分向根系转移的趋势更强烈。
陈思同, 邹显花, 蔡一冰, 韦丹, 李涛, 吴鹏飞, 马祥庆. 基于 32P示踪的不同供磷环境杉木幼苗磷的分配规律分析. 植物生态学报, 2018, 42(11): 1103-1112. DOI: 10.17521/cjpe.2018.0148
CHEN Si-Tong, ZOU Xian-Hua, CAI Yi-Bing, WEI Dan, LI Tao, WU Peng-Fei, MA Xiang-Qing. Phosphorus distribution inside Chinese fir seedlings under different P supplies based on 32P tracer. Chinese Journal of Plant Ecology, 2018, 42(11): 1103-1112. DOI: 10.17521/cjpe.2018.0148
图1 杉木家系M1 (A)和M4 (B)放射自显影。黑化部分为含32P部分, 黑化程度越高32P含量越高; 每一列图像从上到下代表整株杉木苗地上部上端、地上部下端和根部; 每个处理时间的图像左侧代表低磷处理杉木苗自显影, 右侧代表高磷处理杉木苗自显影。
Fig. 1 The autoradiography of M1 (A) and M4 (B) for Chinese fir family. The blackening part indicates the parts containing 32P of the fir seedlings. The higher the degree of blackening, the higher the content of 32P. Each column of images from top to bottom represents the upper part of the shoots, the lower part of the shoots and the roots. The left and right image for each processing time represents the autoradiography of the fir seedlings under low and high P treatment, respectively.
图2 杉木家系M1 (A)和M4 (B)在不同处理时间下叶、茎和根中吸收外源磷的含量(平均值±标准偏差)。不同小写字母代表低磷(L-P)条件下同一器官不同处理时间吸收外源磷的含量差异达0.05显著水平, 不同大写字母代表高磷(H-P)条件下同一器官不同处理时间吸收外源磷的含量差异达0.05显著水平。
Fig. 2 Changes in concentration of the exogenous phosphorus in leaves, stems and roots of M1 (A) and M4 (B) for Chinese fir with time for each treatment (mean ± SD). Different lower case letters represent the significant levels (p < 0.05) in phosphorus content of the same organ under low phosphorus (L-P) treatment, whereas different capital letters indicate the significance (p < 0.05) under high-?phosphorus (H-P) condition.
图3 杉木家系M1 (A)和M4 (B)吸收的外源磷的分配动态(平均值±标准偏差)。不同小写字母代表低磷条件下地上部分或根系不同处理时间吸收外源磷分配率差异达0.05显著水平, 不同大写字母代表高磷条件下地上部分或根系不同处理时间吸收外源磷的含量差异达0.05显著水平。
Fig. 3 Dynamics of the exogenous phosphorus (P) allocation in roots, stems and leaves of M1 (A) and M4 (B) for Chinese fir under different P treatments (mean ± SD). Different lower case letters indicate the significance (p < 0.05) in P allocation of different periods under low P (L-P) treatment, whereas different uppercase letters represent the significance (p < 0.05) under high P (H-P) treatment.
[1] |
Abel S, Ticeoni CA, Delatorre CA ( 2002). Phosphate sensing in higher plants. Physiologia Plantnrum, 115, 1-8.
DOI URL PMID |
[2] | Bennetzen JL, Hake SC ( 2009). Handbook of Maize: It’s Biology. Springer, New York. 381-404. |
[3] |
Cao LW, Guo XS, Long ZP, Ma CM ( 2012). Changes of phosphorus nutrition on P accumulation, yield and quality of soybean. Soybean Science, 34, 458-462.
DOI URL |
[ 曹立为, 郭晓双, 龚振平, 马春梅 ( 2012). 磷素营养变化对大豆磷素积累及产量和品质的影响. 大豆科学, 34, 458-462.]
DOI URL |
|
[4] |
Chao MN, Zhang ZY, Zhang JB, Song HN, Bu JJ, Niu FQ, Wang QL ( 2017). Preliminary study on adaptability of cotton varieties to phosphorus deficiency stress in hydroponic culture. Journal of Yangzhou University (Agricultural and Life Science Edition), 38, 99-104.
DOI URL |
[ 晁毛妮, 张志勇, 张金宝, 宋海娜, 卜晶晶, 牛富强, 王清连 ( 2017). 水培条件下棉花品种对缺磷胁迫的适应性研究初探. 扬州大学学报(农业与生命科学版), 38, 99-104.]
DOI URL |
|
[5] |
Chen SS ( 2002). The water holding capacity and soil fertility in the mixed forest of Cunninghamia lanceolata and Altingia gracilides. Acta Ecologica Sinica, 22, 957-961.
DOI URL |
[ 陈绍栓 ( 2002). 杉木细柄阿丁枫混交林涵养水源功能和土壤肥力的研究. 生态学报, 22, 957-961.]
DOI URL |
|
[6] |
Chen YL, Li XL, Zhou XY ( 2006). Effects of phosphorus deficiency stress on growth of larch seedlings and activities of acid phosphatase in roots. Journal of Beijing Forestry University, 28(6), 46-50.
DOI URL |
[ 陈永亮, 李修岭, 周晓燕 ( 2006). 低磷胁迫对落叶松幼苗生长及根系酸性磷酸酶活性的影响. 北京林业大学学报, 28(6), 46-50.]
DOI URL |
|
[7] |
Chen ZY, Wu PF, Zou XH, Wang P, Ma J, Ma XQ ( 2016). Relationship between growth and endogenous hormones of Chinese fir seedlings under low phosphorus stress. Scientia Silvae Sinicae, 52(2), 57-66.
DOI URL |
[ 陈智裕, 吴鹏飞, 邹显花, 汪攀, 马静, 马祥庆 ( 2016). 低磷胁迫下杉木幼苗生长特性与内源激素的关系. 林业科学, 52(2), 57-66.]
DOI URL |
|
[8] |
Doerner P ( 2008). Phosphate starvation signaling: A threesome controls systemic Pi homeostasis. Current Opinion in Plant Biology, 11, 536-540.
DOI URL PMID |
[9] |
Guo ZH, He LY, Xu CG ( 2005). Uptake and use of sparingly soluble phosphorus by rice genotypes with different P-efficiency. Acta Agronomica Sinica, 31, 1322-1327.
DOI |
[ 郭再华, 贺立源, 徐才国 ( 2005). 不同耐低磷水稻基因型秧苗对难溶性磷的吸收利用. 作物学报, 31, 1322-1327.]
DOI |
|
[10] | Hu XQ, Yang WP, Huang L, Mei PP, Meng L ( 2018). Absorption and distribution of nitrogen, phosphorus and potassium in Carthamus tinctorius L. Journal of Northwest A & F University (Natural Science Edition), 46(7), 1-7. |
[ 胡喜巧, 杨文平, 黄玲, 梅沛沛, 孟丽 ( 2018). 红花对氮磷钾的吸收与分配规律研究. 西北农林科技大学学报(自然科学版), 46(7), 1-7.] | |
[11] |
Jeschke WD, Kirekby EA, Peuke AD, Pate JS, Hartung W ( 1997). Effects of P deficiency on assimilation and transport of nitrate and phosphate in intact plants of castor bean (Ricinus communis L.). Journal of Experimental Botany, 48, 75-91.
DOI URL |
[12] | Leng HN, Chen YT, Duan HP, Rao LB, Wang YJ, Hu YX ( 2009). Effects of phosphorus stress on the growth and nitrogen and phosphorus absorption and utilization efficiency of Liquidambar formosana from different provenances. Chinese Journal of Applied Ecology, 20, 754-756. |
[ 冷华妮, 陈益泰, 段红平, 饶龙兵, 王永军, 胡韵雪 ( 2009). 磷胁迫对不同种源枫香生长及氮、磷吸收利用率的影响. 应用生态学报, 20, 754-756.] | |
[13] | Li H, Shen J, Zhang F, Clairotte M, Drevon JJ, Le cadre E, Hinsinger P ( 2008). Dynamics of phosphorus fractions in the rhizosphere of common bean (Phaseolus vulgaris L.) and durum wheat(Triticumtur gidumdurum L.) grown in monocropping and intercropping systems. Plant and Soil, 312, 139-150. |
[14] | Liang CY, Liao H ( 2015). Molecular mechanisms underlying the responses of plant roots to low P stress. Chinese Bulletin of Life Sciences, 27, 289-397. |
[ 梁翠月, 廖红 ( 2015). 植物根系响应低磷胁迫的机理研究. 生命科学, 27, 389-397.] | |
[15] |
Liang X, Liu AQ, Ma XQ, Feng LZ, Huang YJ ( 2006). Comparison of the phosphorus characteristics of different Chinese fir clones. Journal of Plant Ecology (Chinese Version), 30, 1005-1011.
DOI URL |
[ 梁霞, 刘爱琴, 马祥庆, 冯丽贞, 黄益江 ( 2006). 不同杉木无性系磷素特性的比较. 植物生态学报, 30, 1005-1011.]
DOI URL |
|
[16] | Lin KM, Yu XT ( 2001). Land resilience and sustainable management of Cunninghamia lanceolata plantation. Chinese Journal of Eco-Agriculture, 9(4), 39-42. |
[ 林开敏, 俞新妥 ( 2001). 杉木人工林地力衰退与可持续经营. 中国生态农业学报, 9(4), 39-42.] | |
[17] |
Liu J, Lü JY, Li SR ( 1996). Studies of absorption and accumulation of 32P in Larix gmelinii seedling. Acta Botanica Boreali-Occidentalia Sinica, 16, 136-139.
DOI URL |
[ 刘军, 吕金印, 李树荣 ( 1996). 兴安落叶松幼苗对 32P的吸收与积累研究 . 西北植物学报, 16, 136-139.]
DOI URL |
|
[18] |
Ma XQ, Fan SW, Chen SS, Lin SJ ( 2003). Study on biomass productivity of Chinese fir plantations after successive planting. Scientia Silvae Sinicae, 29(2), 78-83.
DOI URL |
[ 马祥庆, 范少辉, 陈绍栓, 林上杰 ( 2003). 杉木人工林连作生物生产力的研究. 林业科学, 29(2), 78-83.]
DOI URL |
|
[19] |
Mi GH, Xing JP, Chen FJ, Liu XS, Liu Y ( 2004). Maize root growth in relation to tolerance to low phosphorus. Plant Nutrition and Fertilizer Science, 10, 468-472.
DOI URL |
[ 米国华, 邢建平, 陈范骏, 刘向生, 刘燕 ( 2004). 玉米苗期根系生长与耐低磷的关系. 植物营养与肥料学报, 10, 468-472.]
DOI URL |
|
[20] |
Postma JA, Lynch JP ( 2011). Theoretical evidence for the functional benefit of root cortical aerenchyma in soils with low phosphorus availability. Annals of Botany, 107, 829-841.
DOI URL PMID |
[21] |
Qiang JY ( 2004). Study of phosphate absorption and distribution characteristics in potato and bean by using 32P . Guihaia, 24, 52-54.
DOI URL |
[ 强继业 ( 2004). 32P研究马铃薯(合作-88)和黄豆对磷素营养的吸收及分布规律 . 广西植物, 24, 52-54.]
DOI URL |
|
[22] | Qiang JY, Wang J, Chen GH, Guo M, Zhang X ( 1997). Study on phosphorus metabolism of maize seedlings using 32P tracer . Journal of Yunnan Agricultural University, 12(3), 169-172. |
[ 强继业, 王晋, 陈光宏, 郭敏, 张旭 ( 1997). 利用 32P示踪研究玉米苗期的磷素代谢 . 云南农业大学学报, 12(3), 169-172.] | |
[23] |
Raghothama KG ( 1999). Phosphate acquisition. Annual Review of Plant Physiology and Plant Molecular Biology, 50, 665-693.
DOI URL |
[24] |
Ruan JY, Zhang FS, Wong MH ( 2000). Effect of nitrogen form and phosphorus source on the growth, nutrient uptake and rhizosphere soil property of Camellia sinensis L. Plant and Soil, 223, 63-71.
DOI URL |
[25] | Sheng WT, Fan SH, Ma XQ ( 2005). Study on Long-term Productivity Maintenance Mechanism of Cunninghamia lanceolata Plantation. Science Press, Beijing. |
[ 盛炜彤, 范少辉, 马祥庆 ( 2005). 杉木人工林长期生产力保持机制研究. 科学出版社, 北京.] | |
[26] |
Shenoy V, Kalagudi G ( 2005). Enhancing plant phosphorus use efficiency for sustainable cropping. Biotechnology Advances, 23, 501-513.
DOI URL PMID |
[27] |
Su SS, Li M, Wu PF, Zhang Y, Ma XQ ( 2017). Cloning and expression analysis of phosphate transporter gene ClPht1;1 in Cunninghamia lanceolata. Scientia Silvae Sinicae, 53(5), 33-42.
DOI URL |
[ 苏烁烁, 李明, 吴鹏飞, 张颖, 马祥庆 ( 2017). 杉木磷转运蛋白基因ClPht1;1的克隆及表达分析. 林业科学, 53(5), 33-42.]
DOI URL |
|
[28] |
Su SZ, Wu FK, Liu D, Wu L, Gao SB ( 2013). Cloning and functional analysis of a phosphor transporter gene from a Phtl family of maize. Journal of Nuclear Agricultural Sciences, 27, 885-894.
DOI URL |
[ 苏顺宗, 吴锋锴, 刘丹, 吴玲, 高世斌 ( 2013). 一个玉米Phtl家族磷转运蛋白基因克隆和功能分析. 核农学报, 27, 885-894.]
DOI URL |
|
[29] |
Vance CP, Uhde-Stone C, Allan DL ( 2003). Phosphorus acquisition and use: Critical adaptations by plants for securing a nonrenewable resource. New Phytologist, 157, 423-447.
DOI URL |
[30] |
Veneklaas EJ, Shane MW, White PJ ( 2012). Opportunities for improving phosphorus-use efficiency in crop plants . New Phytologist, 195, 306-320.
DOI URL |
[31] |
Wu PF, Ma XQ, Tigabu M, Chen W, Liu AQ, Pre CO ( 2011). Root morphological plasticity and biomass production of two Chinese fir clones with high phosphorus efficiency under low phosphorus stress. Canadian Journal of Forest Research, 41, 228-234.
DOI URL |
[32] |
Wu PF, Wang GY, Taimoor HF, Li Q, Zou XH, Ma XQ ( 2017). Low phosphorus and competition affect Chinese fir cutting growth and root organic acid content: Does neighboring root activity aggravate P nutrient deficiency? Journal of Soils and Sediments, 17, 2775-2785.
DOI URL |
[33] | Wu WH ( 2003). Plant Physiology. Science and Technology Press, Beijing. 91-92. |
[ 武维华 ( 2003). 植物生理学. 科学技术出版社, 北京. 91-92.] | |
[34] | Wu YQ, Lin Q, Yan MJ, Zhang H, Chen ZC, Li XF ( 2017). Effect of phosphorus on growth and nutrient uptake of tomato. Chinese Agricultural Science Bulletin, 33(9), 74-77. |
[ 吴一群, 林琼, 颜明娟, 张辉, 陈子聪, 李祥发 ( 2017). 不同磷素水平对番茄生长及养分吸收的影响. 中国农学通报, 33(9), 74-77.] | |
[35] |
Xie YR, Zhou ZC, Liao GH, Jin GQ, Chen Y ( 2005). Difference of induced acid phosphate activity under low phosphorus stress of Pinus massoniana provenances. Scientia Silvae Sinicae, 41(3), 58-62.
DOI URL |
[ 谢钰容, 周志春, 廖国华, 金国庆, 陈跃 ( 2005). 低磷胁迫下马尾松种源酸性磷酸酶活性差异. 林业科学, 41(3), 58-62.]
DOI URL |
|
[36] | Yang Q, Zhang Y, Zhou ZC, Feng ZP ( 2012). Root architecture and phosphorus efficiency of different provenance Pinus massoniana under low phosphorous stress. Chinese Journal of Applied Ecology, 23, 2339-2345. |
[ 杨青, 张一, 周志春, 丰忠平 ( 2012). 低磷胁迫下不同种源马尾松的根构型与磷效率. 应用生态学报, 23, 2339-2345.] | |
[37] | Yu XT ( 1993). Research and views on sustainable utilization of Chinese fir woodland. World Forestry Research, ( 2), 80-87. |
[ 俞新妥 ( 1993). 杉木林地持续利用问题的研究和看法. 世界林业研究, ( 2), 80-87.] | |
[38] | Yu XT ( 1996). Fir Cultivation. Fujian Science and Technology Press, Fuzhou. |
[ 俞新妥 (1996). 杉木栽培学. 福建科学技术出版社, 福州. 18.] | |
[39] |
Zhang AQ, He LY, Men YY, Zhao HE, Yang JF, Li DH ( 2008). Effect of phosphorus levels on growth and nutrient absorption of low-P tolerant maize seedlings. Chinese Journal of Applied and Environmental Biology, 14, 347-350.
DOI URL |
[ 章爱群, 贺立源, 门玉英, 赵会娥, 杨建峰, 李德华 ( 2008). 磷水平对不同耐低磷玉米基因型幼苗生长和养分吸收的影响. 应用与环境生物学报, 14, 347-350.]
DOI URL |
|
[40] |
Zhang B, Qin L ( 2010). Plants tolerance to low phosphorus and its molecular basis. Molecular Plant Breeding, 8, 776-783.
DOI URL |
[ 张斌, 秦岭 ( 2010). 植物对低磷胁迫的适应及其分子基础. 分子植物育种, 8, 776-783.]
DOI URL |
|
[41] |
Zhang LH, Zhang H, Huang YF, Ye YL, Zhang ZS, Zhan ZL ( 2013). Effect of phosphorus application on soil available phosphorus and maize phosphorus uptake and yield. Chinese Journal of Eco-Agriculture, 21, 801-809.
DOI URL |
[ 张立花, 张辉, 黄玉芳, 叶优良, 张占胜, 詹宗立 ( 2013). 施磷对玉米吸磷量、产量和土壤磷含量的影响及其相关性. 中国生态农业学报, 21, 801-809.]
DOI URL |
|
[42] |
Zhang LM, HE LY, Li JS, Xu SZ ( 2004). Investigation of maize inbred lines on tolerance to low-phosphorus stress at seedling stage. Scientia Agricultura Sinica, 37, 1955-1959.
DOI URL |
[ 张丽梅, 贺立源, 李建生, 徐尚忠 ( 2004). 玉米自交系耐低磷材料苗期筛选研究. 中国农业科学, 37, 1955-1959.]
DOI URL |
|
[43] |
Zhang YL, Wang JY, Ma XZ, Chen LJ ( 2009). Research progress on activating technology for increasing phosphate efficiency. Chinese Journal of Soil Science, 40, 194-202.
DOI URL |
[ 张玉兰, 王俊宇, 马星竹, 陈利军 ( 2009). 提高磷肥有效性的活化技术研究进展. 土壤通报, 40, 194-202.]
DOI URL |
|
[44] | Zhou YR, Chen ML ( 1996). Study on absorption and distribution of 32P in Hemerocallis citrina. Journal of Southwest University (Natural Science Edition), 18, 416-420. |
[ 周裕荣, 陈明莉 ( 1996). 黄花菜对 32P的吸收运转及分配研究 . 西南大学学报(自然科学版), 18, 416-420.] | |
[45] |
Zou XH, Wei D, Wu PF, Zhang Y, Hu YN, Chen ST, Ma XQ ( 2018). Strategies of organic acid production and exudation in response to low-phosphorus stress in Chinese fir genotypes differing in phosphorus-use efficiencies. Trees, 32, 897-912.
DOI URL |
[46] |
Zou XH, Wu PF, Chen NL, Wang P, Ma XQ ( 2015). Chinese fir root response to spatial and temporal heterogeneity of phosphorus availability in the soil. Canadian Journal of Forest Research, 45, 402-410.
DOI URL |
[1] | 吴帆, 吴晨, 张宇辉, 余恒, 魏智华, 郑蔚, 刘小飞, 陈仕东, 杨智杰, 熊德成. 增温对成熟杉木人工林不同季节细根生长、形态及生理代谢特征的影响[J]. 植物生态学报, 2023, 47(6): 856-866. |
[2] | 谢欢, 张秋芳, 陈廷廷, 曾泉鑫, 周嘉聪, 吴玥, 林惠瑛, 刘苑苑, 尹云锋, 陈岳民. 氮添加促进丛枝菌根真菌和根系协作维持土壤磷有效性[J]. 植物生态学报, 2022, 46(7): 811-822. |
[3] | 谢欢, 张秋芳, 曾泉鑫, 周嘉聪, 马亚培, 吴玥, 刘苑苑, 林惠瑛, 尹云锋, 陈岳民. 氮添加对杉木苗期磷转化和分解类真菌的影响[J]. 植物生态学报, 2022, 46(2): 220-231. |
[4] | 丁凯, 张毓婷, 张俊红, 柴雄, 周世水, 童再康. 不同密度杉木林对林下植被和土壤微生物群落结构的影响[J]. 植物生态学报, 2021, 45(1): 62-73. |
[5] | 吕中诚, 康文星, 黄志宏, 赵仲辉, 邓湘雯. 不同林龄杉木组织迁移养分的再利用[J]. 植物生态学报, 2019, 43(5): 458-470. |
[6] | 邹显花, 胡亚楠, 韦丹, 陈思同, 吴鹏飞, 马祥庆. 磷高效利用杉木对低磷胁迫的适应性与内源激素的相关性[J]. 植物生态学报, 2019, 43(2): 139-151. |
[7] | 沈芳芳, 李燕燕, 刘文飞, 段洪浪, 樊后保, 胡良, 孟庆银. 长期氮沉降对杉木人工林叶、枝氮磷养分再吸收的影响[J]. 植物生态学报, 2018, 42(9): 926-937. |
[8] | 陈日升, 康文星, 周玉泉, 田大伦, 项文化. 杉木人工林养分循环随林龄变化的特征[J]. 植物生态学报, 2018, 42(2): 173-184. |
[9] | 彭曦, 闫文德, 王凤琪, 王光军, 玉昉永, 赵梅芳. 基于叶干质量比的杉木比叶面积估算模型的构建[J]. 植物生态学报, 2018, 42(2): 209-219. |
[10] | 宋平, 张蕊, 周志春, 童建设, 王晖. 局部供氮对低磷胁迫下马尾松不同家系生长及根系参数的影响[J]. 植物生态学报, 2017, 41(6): 622-631. |
[11] | 张雷, 王琳琳, 刘世荣, 孙鹏森, 余振, 黄书涛, 张旭东. 生境概率预测值转换为二元值过程中4个阈值选择方法的比较评估——以珙桐和杉木生境预估为例[J]. 植物生态学报, 2017, 41(4): 387-395. |
[12] | 史顺增, 熊德成, 邓飞, 冯建新, 许辰森, 钟波元, 陈云玉, 陈光水, 杨玉盛. 土壤增温、氮添加及其交互作用对杉木幼苗细根生产的影响[J]. 植物生态学报, 2017, 41(2): 186-195. |
[13] | 李晓杰, 刘小飞, 熊德成, 林伟盛, 林廷武, 施友文, 谢锦升, 杨玉盛. 中亚热带杉木人工林和米槠次生林凋落物添加与去除对土壤呼吸的影响[J]. 植物生态学报, 2016, 40(5): 447-457. |
[14] | 陈智裕, 李琦, 邹显花, 马祥庆, 吴鹏飞. 邻株竞争对低磷环境杉木幼苗光合特性及生物量分配的影响[J]. 植物生态学报, 2016, 40(2): 177-. |
[15] | 张秋芳, 吕春平, 贝昭贤, 谢锦升, 吕茂奎, 林伟盛, 陈岳民, 杨玉盛. 野外模拟增温对亚热带杉木叶片膜脂过氧化及保护酶活性的影响[J]. 植物生态学报, 2016, 40(12): 1230-1237. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19