植物生态学报 ›› 2017, Vol. 41 ›› Issue (2): 186-195.DOI: 10.17521/cjpe.2016.0274
史顺增, 熊德成, 邓飞, 冯建新, 许辰森, 钟波元, 陈云玉, 陈光水*(), 杨玉盛
收稿日期:
2016-09-06
接受日期:
2016-11-10
出版日期:
2017-02-10
发布日期:
2017-03-16
通讯作者:
陈光水
作者简介:
* 通信作者Author for correspondence (E-mail:
基金资助:
Shun-Zeng SHI, De-Cheng XIONG, Fei DENG, Jian-Xin FENG, Chen-Sen XU, Bo-Yuan ZHONG, Yun-Yu CHEN, Guang-Shui CHEN*(), Yu-Sheng YANG
Received:
2016-09-06
Accepted:
2016-11-10
Online:
2017-02-10
Published:
2017-03-16
Contact:
Guang-Shui CHEN
About author:
KANG Jing-yao(1991-), E-mail:
摘要:
为了揭示杉木(Cunninghamia lanceolata)人工林地下部分对全球变暖和氮沉降的响应, 在福建省三明市开展了杉木幼苗土壤增温和氮添加双因子试验, 包括对照、增温、低氮、高氮、增温低氮、增温高氮6个处理, 用微根管法探讨试验第1年土壤增温、氮添加及其交互作用对杉木幼苗细根生产量(以每根管细根一年总出生数量作为表征)的影响。结果表明: (1)土壤增温对细根生产量有显著影响; 氮添加、土壤增温与氮添加交互作用对细根生产量并没有显著影响。(2)土壤增温、径级、土壤增温和径级的交互作用对细根生产量有显著影响; 土壤增温显著增加了0-1 mm径级细根的生产量, 表明小径级的吸收根对于增温的响应更具有可塑性。(3)土壤增温、季节、土壤增温和季节的交互作用, 以及土壤增温、氮添加和季节三者的交互作用对细根生产量的影响均达到显著水平。春季, 土壤增温、土壤增温和氮添加的交互作用对细根生产量有显著的促进作用; 而在夏季, 土壤增温、氮添加以及两者的交互作用对细根生产量有显著的抑制作用。(4)土壤增温、土层, 以及土壤增温和土层的交互作用对细根生产量有显著影响, 土壤增温仅对20-30 cm土层的细根生产有显著的促进作用, 表明土壤增温促使细根向更深层土壤分布。由此可见: 土壤增温促进了杉木幼苗细根生产, 但其影响因径级、季节和土层而异; 氮添加则对细根生产没有影响; 土壤增温和氮添加仅在春季和夏季才存在显著的交互作用。
史顺增, 熊德成, 邓飞, 冯建新, 许辰森, 钟波元, 陈云玉, 陈光水, 杨玉盛. 土壤增温、氮添加及其交互作用对杉木幼苗细根生产的影响. 植物生态学报, 2017, 41(2): 186-195. DOI: 10.17521/cjpe.2016.0274
Shun-Zeng SHI, De-Cheng XIONG, Fei DENG, Jian-Xin FENG, Chen-Sen XU, Bo-Yuan ZHONG, Yun-Yu CHEN, Guang-Shui CHEN, Yu-Sheng YANG. Interactive effects of soil warming and nitrogen addition on fine root production of Chinese fir seedlings. Chinese Journal of Plant Ecology, 2017, 41(2): 186-195. DOI: 10.17521/cjpe.2016.0274
图1 不同处理(以对照(不增温、不添加额外氮素的处理, ▲)和土壤增温处理(+5 ℃、不添加额外氮素的处理, ■)为例) 0-10 cm土壤温度(A)和含水率(B)的年变化(平均值±标准偏差)。
Fig. 1 Annual changes of soil (0-10 cm) temperature (A) and moisture (B) under different treatments (mean ± SD). ▲, control treatment (ambient, ambient); ■, soil warming treatment (+5 °C, ambient).
图2 不同处理0-20 cm土壤氮有效性(平均值±标准偏差)。NH4+, 铵态氮。NO3- + NO2-, 硝态氮。CT, 对照(不增温、不添加额外氮素); HN, 高氮(不增温, +80 kg·hm-2·a-1, 指自然氮沉降背景下, 再额外添加的氮素量,下同); LN, 低氮(不增温, +40 kg·hm-2·a-1); W, 土壤增温(+5 ℃, 不添加额外氮素); WHN, 土壤增温+高氮(+5 ℃, +80 kg·hm-2·a-1); WLN, 土壤增温+低氮(+5 ℃, +40 kg·hm-2·a-1)。不同大写字母表示不同处理间差异显著(p < 0.05)。
Fig. 2 Soil (0-20 cm) nitrogen availability under different treatments (mean ± SD). NH4+, ammonium nitrogen. NO3- + NO2-, nitrate nitrogen. CT, control treatment (ambient, ambient); HN, high nitrogen addition (ambient, ambient + 80 kg·hm-2·a-1); LN, low nitrogen addition (ambient, ambient + 40 kg·hm-2·a-1); W, soil warming (+5 °C, ambient); WHN, soil warming plus high nitrogen addition (+5 °C, ambient + 80 kg·hm-2·a-1); WLN, soil warming plus low nitrogen addition (+5 °C, ambient + 40 kg·hm-2·a-1). Different capital letters indicate significant differences among treatments (p < 0.05).
因子 Factor | 土壤温度 Soil temperature (℃) | 土壤湿度 Soil moisture (%) | 铵态氮 Ammonium nitrogen | 硝态氮 Nitrate nitrogen | 土壤有效氮(铵态氮和硝态氮) Soil nitrogen availability (ammonium nitrogen and nitrate nitrogen) |
---|---|---|---|---|---|
W | <0.001 | 0.005 | <0.001 | <0.001 | <0.001 |
N | <0.001 | <0.001 | <0.001 | ||
W × N | <0.001 | 0.317 | <0.001 |
表1 土壤增温、氮添加及其交互作用对土壤温度、含水率和土壤有效氮影响的双因素方差分析p值
Table 1 p-value of two-way ANOVA on the effects of soil warming, nitrogen addition and their interaction on soil temperature, soil moisture and soil nitrogen availability
因子 Factor | 土壤温度 Soil temperature (℃) | 土壤湿度 Soil moisture (%) | 铵态氮 Ammonium nitrogen | 硝态氮 Nitrate nitrogen | 土壤有效氮(铵态氮和硝态氮) Soil nitrogen availability (ammonium nitrogen and nitrate nitrogen) |
---|---|---|---|---|---|
W | <0.001 | 0.005 | <0.001 | <0.001 | <0.001 |
N | <0.001 | <0.001 | <0.001 | ||
W × N | <0.001 | 0.317 | <0.001 |
指标 Index | 因子 Factor | ||
---|---|---|---|
W | N | W × N | |
每根管细根一年总出生数量 Total number of fine roots emerged per tube of one year (No.·tube-1·a-1) | 0.005 | 0.616 | 0.483 |
表2 土壤增温、氮添加及其交互作用对每根管细根一年总出生数量影响的双因素方差分析p值
Table 2 p-value of two-way ANOVA on the effects of soil warming, nitrogen addition and their interaction on total number of fine roots emerged per tube of one year
指标 Index | 因子 Factor | ||
---|---|---|---|
W | N | W × N | |
每根管细根一年总出生数量 Total number of fine roots emerged per tube of one year (No.·tube-1·a-1) | 0.005 | 0.616 | 0.483 |
图3 不同处理每根管细根一年总出生数量(A)和细根径级分布(B)(平均值±标准偏差)。不同大写字母表示不同处理差异显著(p < 0.05), 不同小写字母表示相同处理不同径级间差异显著(p < 0.05)。CT, 对照(不增温、不添加额外氮素); HN, 高氮(不增温, +80 kg·hm-2·a-1, 指自然氮沉降背景下, 再额外添加的氮素量,下同); LN, 低氮(不增温, +40 kg·hm-2·a-1); W, 土壤增温(+5 ℃, 不添加额外氮素); WHN, 土壤增温+高氮(+5 ℃, +80 kg·hm-2·a-1); WLN, 土壤增温+低氮(+5 ℃, +40 kg·hm-2·a-1)。
Fig. 3 Total number of fine roots emerged of one year (A) under different treatments and number of different diameter class (B) (mean ± SD). Different capital letters indicate significant differences among treatments (p < 0.05). Different lowercase letters indicate significant differences among diameters (p < 0.05). CT, control treatment (ambient, ambient); HN, high nitrogen addition (ambient, ambient + 80 kg·hm-2·a-1); LN, low nitrogen addition (ambient, ambient + 40 kg·hm-2·a-1); W, soil warming (+5 °C, ambient); WHN, soil warming plus high nitrogen addition (+5 °C, ambient + 80 kg·hm-2·a-1); WLN, soil warming plus low nitrogen addition (+5 °C, ambient + 40 kg·hm-2·a-1).
指标 Index | 因子 Factor | ||||||
---|---|---|---|---|---|---|---|
W | N | D | W × N | W × D | N × D | W × N × D | |
每根管细根一年总出生数量 Total number of fine roots emerged per tube of one year (No.·tube-1·a-1) | 0.004 | 0.624 | <0.001 | 0.491 | 0.002 | 0.44 | 0.431 |
表3 土壤增温、氮添加和径级对每根管细根一年总出生数量影响的方差分析p值
Table 3 p-value of ANOVA on the effects of soil warming, nitrogen addition and diameter class on total number of fine roots emerged per tube of one year
指标 Index | 因子 Factor | ||||||
---|---|---|---|---|---|---|---|
W | N | D | W × N | W × D | N × D | W × N × D | |
每根管细根一年总出生数量 Total number of fine roots emerged per tube of one year (No.·tube-1·a-1) | 0.004 | 0.624 | <0.001 | 0.491 | 0.002 | 0.44 | 0.431 |
指标 Index | 因子 Factor | W | N | W × N | |
---|---|---|---|---|---|
每根管细根一年总出生数量 Total mumber of fine roots emerged per tube of one year (No.·tube-1·a-1) | 径级 Diameter class | 0-1 mm | 0.004 | 0.535 | 0.465 |
1-2 mm | 0.137 | 0.182 | 0.505 | ||
季节 Season | 春季 Spring | <0.001 | 0.529 | 0.010 | |
夏季 Summer | 0.003 | 0.001 | 0.041 | ||
秋季 Autumn | 0.226 | 0.555 | 0.971 | ||
冬季 Winter | 0.702 | 0.175 | 0.313 | ||
土层 Soil layer | 0-10 cm | 0.547 | 0.488 | 0.423 | |
10-20 cm | 0.158 | 0.114 | 0.052 | ||
20-30 cm | 0.005 | 0.424 | 0.892 | ||
30-40 cm | 0.124 | 0.379 | 0.892 |
表4 不同径级、不同季节、不同土层中的土壤增温、氮添加及其交互作用对每根管细根一年总出生数量影响的双因素方差分析p值
Table 4 p-value of two-way ANOVA on the effects of soil warming, nitrogen addition and their interaction on total number of fine roots emerged per tube of one year in different diameter classes, seasons and soil layers
指标 Index | 因子 Factor | W | N | W × N | |
---|---|---|---|---|---|
每根管细根一年总出生数量 Total mumber of fine roots emerged per tube of one year (No.·tube-1·a-1) | 径级 Diameter class | 0-1 mm | 0.004 | 0.535 | 0.465 |
1-2 mm | 0.137 | 0.182 | 0.505 | ||
季节 Season | 春季 Spring | <0.001 | 0.529 | 0.010 | |
夏季 Summer | 0.003 | 0.001 | 0.041 | ||
秋季 Autumn | 0.226 | 0.555 | 0.971 | ||
冬季 Winter | 0.702 | 0.175 | 0.313 | ||
土层 Soil layer | 0-10 cm | 0.547 | 0.488 | 0.423 | |
10-20 cm | 0.158 | 0.114 | 0.052 | ||
20-30 cm | 0.005 | 0.424 | 0.892 | ||
30-40 cm | 0.124 | 0.379 | 0.892 |
指标 Index | 因子 Factor | ||||||
---|---|---|---|---|---|---|---|
W | N | S | W × N | W × S | N × S | W × N × S | |
每根管细根一年总出生数量 Total number of fine roots emerged per tube of one year (No.·tube-1·a-1) | 0.005 | 0.616 | <0.001 | 0.483 | <0.001 | 0.193 | 0.025 |
表5 土壤增温、氮添加和季节对每根管细根一年总出生数量影响的重复测量方差分析的p值
Table 5 p-value of repeated measures ANOVA on the effects of soil warming, nitrogen addition and season on total number of fine roots emerged per tube of one year
指标 Index | 因子 Factor | ||||||
---|---|---|---|---|---|---|---|
W | N | S | W × N | W × S | N × S | W × N × S | |
每根管细根一年总出生数量 Total number of fine roots emerged per tube of one year (No.·tube-1·a-1) | 0.005 | 0.616 | <0.001 | 0.483 | <0.001 | 0.193 | 0.025 |
图4 不同季节每根管细根一年总出生数量(平均值±标准偏差)。不同大写字母表示相同季节不同处理间差异显著(p < 0.05), 不同小写字母表示相同处理不同季节间差异显著(p < 0.05)。CT, 对照 (不增温、不添加额外氮素); HN, 高氮(不增温, +80 kg·hm-2·a-1, 指自然氮沉降背景下, 再额外添加的氮素量,下同); LN, 低氮(不增温, +40 kg·hm-2·a-1); W, 土壤增温(+5 ℃, 不添加额外氮素); WHN, 土壤增温+高氮(+5 ℃, +80 kg·hm-2·a-1); WLN, 土壤增温+低氮(+5 ℃, +40 kg·hm-2·a-1)。
Fig. 4 Total number of fine roots emerged per tube of one year under different seasons (mean ± SD). Different capital letters indicate significant differences among treatments in the same season (p < 0.05). Different lowercase letters indicate significant differences among seasons in the same treatment (p < 0.05). CT, control treatment (ambient, ambient); HN, high nitrogen addition (ambient, ambient + 80 kg·hm-2·a-1); LN, low nitrogen addition (ambient, ambient + 40 kg·hm-2·a-1); W, soil warming (+5 °C, ambient); WHN, soil warming plus high nitrogen addition (+5 °C, ambient + 80 kg·hm-2·a-1); WLN, soil warming plus low nitrogen addition (+5 °C, ambient + 40 kg·hm-2·a-1).
图5 不同土层每根管细根一年总出生数量(平均值±标准偏差)。不同大写字母表示相同土层不同处理间差异显著(p < 0.05); 不同小写字母表示相同处理不同土层间差异显著(p < 0.05)。CT, 对照(不增温、不添加额外氮素); HN, 高氮(不增温, +80 kg·hm-2·a-1, 指自然氮沉降背景下, 再额外添加的氮素量,下同); LN, 低氮(不增温, +40 kg·hm-2·a-1); W, 土壤增温(+5 ℃, 不添加额外氮素); WHN, 土壤增温+高氮(+5 ℃, + 80 kg·hm-2·a-1); WLN, 土壤增温+低氮(+5 ℃, + 40 kg·hm-2·a-1)。
Fig. 5 Total number of fine roots emerged per tube of one year under different soil layer (mean ± SD). Different capital letters indicate significant differences among treatments in the same soil layer (p < 0.05). Different lowercase letters indicate significant differences among soil layers in the same treatment (p < 0.05). CT, control treatment (ambient, ambient); HN, high nitrogen addition (ambient, ambient + 80 kg·hm-2·a-1); LN, low nitrogen addition (ambient, ambient + 40 kg·hm-2·a-1); W, soil warming (+5 °C, ambient); WHN, soil warming plus high nitrogen addition (+5 °C, ambient + 80 kg·hm-2·a-1); WLN, soil warming plus low nitrogen addition (+5 °C, ambient + 40 kg·hm-2·a-1).
指标 Index | 因子 Factor | ||||||
---|---|---|---|---|---|---|---|
W | N | L | W × N | W × L | N × L | W × N × L | |
每根管细根一年总出生数量 Total number of fine roots emerged per tube of one year (No.·tube-1·a-1) | 0.001 | 0.563 | 0.06 | 0.419 | 0.025 | 0.256 | 0.765 |
表6 土壤增温、氮添加和土层对每根管细根一年总出生数量影响的方差分析p值
Table 6 p-value of ANOVA on the effects of soil warming, nitrogen addition and soil layer on total number of fine roots emerged per tube of one year
指标 Index | 因子 Factor | ||||||
---|---|---|---|---|---|---|---|
W | N | L | W × N | W × L | N × L | W × N × L | |
每根管细根一年总出生数量 Total number of fine roots emerged per tube of one year (No.·tube-1·a-1) | 0.001 | 0.563 | 0.06 | 0.419 | 0.025 | 0.256 | 0.765 |
图6 土壤增温和氮添加对杉木幼苗细根生产的影响机制。“+”表示促进; “-”表示抑制; “NS”表示无显著影响。红色箭头表示受土壤增温的影响; 黑色箭头表示受氮添加的影响。
Fig. 6 Proposed mechanism on the effects of soil warming and nitrogen addition on fine root production. “+” means increase; “-” means decrease; “NS” means have no significant effect. The red arrows mean effects by soil warming; while the black arrows mean effects by nitrogen addition.
[1] | Bai WM, Wan SQ, Niu SL, Liu WX, Chen QS, Wang QB, Zhang WH, Han XG, Li LH (2010). Increased temperature and precipitation interact to affect root production, mortality, and turnover in a temperate steppe: Implications for ecosystem C cycling.Global Change Biology, 16, 1306-1316. |
[2] | Chen GS, Yang YS, Robinson D (2013). Allocation of gross primary production in forest ecosystems: Allometric constraints and environmental responses.New Phytologist, 200, 1176-1186. |
[3] | Chen SD, Liu XF, Xiong DC, Lin WS, Lin CF, Xie L, Yang YS (2013). A preliminary study on effects of continuous active warming on soil respiration rates in central sub-tropical forests.Journal of Subtropical Resources and Environment, 4, 1-8. (in Chinese with English abstract)[陈仕东, 刘小飞, 熊德成, 林伟盛, 林成芳, 谢麟, 杨玉盛 (2013). 持续性主动增温对中亚热带森林土壤呼吸影响研究初报. 亚热带资源与环境学报, 4, 1-8.] |
[4] | Davidson EA (2009). The contribution of manure and fertilizer nitrogen to atmospheric nitrous oxide since 1860.Nature Geoscience, 2, 659-662. |
[5] | Fitter AH, Self GK, Brown TK, Bogie DS, Graves JD, Benham D, Ineson P (1999). Root production and turnover in an upland grassland subjected to artificial soil warming respond to radiation flux and nutrients, not temperature.Oecologia, 120, 575-581. |
[6] | Hendricks JJ, Nadelhoffer KJ, Aber JD (1993). Assessing the role of fine roots in carbon and nutrient cycling.Trends in Ecology & Evolution, 8(5), 174-178. |
[7] | Huang JX, Chen GS, Yang ZJ, Xiong DC, Guo JF, Xie JS, Robinson D, Yang YS (2016). Understory fine roots are more ephemeral than those of trees in subtropical Chinese fir (Cunninghamia lanceolata (Lamb.) Hook) stands.Annals of Forest Science, 73, 657-667. |
[8] | Huang JX, Ling H, Yang ZJ, Lu ZL, Xiong DC, Chen GS,Yang YS, Xie JS (2012). Estimating fine root production and mortality in subtropical Altingia grlilipes and Castanopsis carlesii forests.Acta Ecologica Sinica, 32, 4472-4480. (in Chinese with English abstract)[黄锦学, 凌华, 杨智杰, 卢正立, 熊德成, 陈光水, 杨玉盛, 谢锦升 (2012). 中亚热带细柄阿丁枫和米槠群落细根的生产和死亡动态. 生态学报, 32, 4472-4480.] |
[9] | IPCC (Intergovernmental Panel on Climate Change) (2013). Contribution of working group 1 to the fifth assessment report of the intergovernmental panel on climate change. In: Stocker TF, Qin DH, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM eds. Climate Change in 2013: The Physical Science Basis. Cambridge University Press, Cambridge, UK. |
[10] | Johnson MG, Rygiewicz PT, Tingey DT, Phillips DL (2006). Elevated CO2 and elevated temperature have no effect on Douglas-fir fine-root dynamics in nitrogen-poor soil.New Phytologist, 170, 345-356. |
[11] | Lamarque JF, Kiehl JT, Brasseur GP, Butler T, Cameron-Smith P, Collins WD, Collins WJ, Granier C, Hauglustaine D, Hess PG, Holland EA, Horowitz L, Lawrence MG, McKenna D, Merilees P, Prather MJ, Rasch PJ, Rotman D, Shindell D, Thornton P (2005). Assessing future nitrogen deposition and carbon cycle feedback using a multimodel approach: Analysis of nitrogen deposition.Journal of Geo- physical Research Atmospheres, 110(D19), 2657-2677. |
[12] | Leppälammi-Kujansuu J, Ostonen I, Strömgren M, Nilsson LO, Kleja DB, Sah SP, Helmisaari HS (2013). Effects of long-term temperature and nutrient manipulation on Norway spruce fine roots and mycelia production.Plant and Soil, 366, 287-303. |
[13] | Leppälammi-Kujansuu J, Salemaa M, Kleja DB, Linder S, Helmisaari HS (2014). Fine root turnover and litter production of Norway spruce in a long-term temperature and nutrient manipulation experiment.Plant and Soil, 374, 73-88. |
[14] | Li WB, Jin CJ, Guan DX, Wang QK, Wang AZ, Yuan FH, Wu JB (2015). The effects of simulated nitrogen deposition on plant root traits: A meta-analysis.Soil Biology & Biochemistry, 82, 112-118. |
[15] | Liu LL, Greaver TL (2010). A global perspective on belowground carbon dynamics under nitrogen enrichment.Ecology Letters, 13, 819-828. |
[16] | Liu XJ, Duan L, Mo JM, Du EZ, Shen JL, Lu XK, Zhang Y, Zhou XB, He CE, Zhang FS (2011). Nitrogen deposition and its ecological impact in China: An overview.Environmental Pollution, 159, 2251-2264. |
[17] | Majdi H, Öhrvik J (2004). Interactive effects of soil warming and fertilization on root production, mortality, and longevity in a Norway spruce stand in Northern Sweden.Global Change Biology, 10, 182-188. |
[18] | Nadelhoffer KJ (2000). The potential effects of nitrogen deposition on fine-root production in forest ecosystems.New Phytologist, 147, 131-139. |
[19] | Ostertag R (2001). Effects of nitrogen and phosphorus availability on fine-root dynamics in Hawaiian montane forests.Ecology, 82, 485-499. |
[20] | State Forestry Administration of the People’s Republic of China (2005). The National Forest Resources Statistics (1999-2003). China Forestry Publishing House, Beijing. (in Chinese)[中华人民共和国国家林业局 (2005). 全国森林资源统计(1999-2003). 中国林业出版社, 北京.] |
[21] | Wan SQ, Hui DF, Wallace L, Luo YQ (2005). Direct and indi- rect effects of experimental warming on ecosystem carbon processes in a tallgrass prairie. Global Biogeochemical Cycles, 19, GB2014, doi:10.1029/2004GB002315. |
[22] | Wan SQ, Norby RJ, Pregitzer KS, Ledford J, O’Neill EG (2004). CO2 enrichment and warming of the atmosphere enhance both productivity and mortality of maple tree fine roots.New Phytologist, 162, 437-446. |
[23] | Way DA, Oren R (2010). Differential responses to changes in growth temperature between trees from different functional groups and biomes: A review and synthesis of data.Tree Physiology, 30, 669-688. |
[24] | Wu YB, Zhang J, Deng YC, Wu J, Wang SP, Tang YH, Cui XY (2014). Effects of warming on root diameter, distribution, and longevity in an alpine meadow. Plant Ecology, 215, 1057-1066. |
[25] | Zhang X, Liu XF, Chen SD, Xiong DC, Lin WS, Lin TW, Lin CF (2014). Effects of soil warming on the temperature of soil in different depths.Journal of Subtropical Resources and Environment, 9, 89-91. (in Chinese with English abstract)[章宪, 刘小飞, 陈仕东, 熊德成, 林伟盛, 林廷武,林成芳 (2014). 土壤增温对不同深度土壤温度的影响. 亚热带资源与环境学报, 9, 89-91.] |
[1] | 黄玲, 王榛, 马泽, 杨发林, 李岚, SEREKPAYEV Nurlan, NOGAYEV Adilbek, 侯扶江. 长期放牧和氮添加对黄土高原典型草原长芒草种群生长的影响[J]. 植物生态学报, 2024, 48(3): 317-330. |
[2] | 颜辰亦, 龚吉蕊, 张斯琦, 张魏圆, 董学德, 胡宇霞, 杨贵森. 氮添加对内蒙古温带草原土壤活性有机碳的影响[J]. 植物生态学报, 2024, 48(2): 229-241. |
[3] | 耿雪琪, 唐亚坤, 王丽娜, 邓旭, 张泽凌, 周莹. 氮添加增加中国陆生植物生物量并降低其氮利用效率[J]. 植物生态学报, 2024, 48(2): 147-157. |
[4] | 舒韦维, 杨坤, 马俊旭, 闵惠琳, 陈琳, 刘士玲, 黄日逸, 明安刚, 明财道, 田祖为. 氮添加对红锥不同序级细根形态和化学性状的影响[J]. 植物生态学报, 2024, 48(1): 103-112. |
[5] | 赵艳超, 陈立同. 土壤养分对青藏高原高寒草地生物量响应增温的调节作用[J]. 植物生态学报, 2023, 47(8): 1071-1081. |
[6] | 苏炜, 陈平, 吴婷, 刘岳, 宋雨婷, 刘旭军, 刘菊秀. 氮添加与干季延长对降香黄檀幼苗非结构性碳水化合物、养分与生物量的影响[J]. 植物生态学报, 2023, 47(8): 1094-1104. |
[7] | 李红琴, 张法伟, 仪律北. 高寒草甸表层土壤和优势植物叶片的化学计量特征对降水改变和氮添加的响应[J]. 植物生态学报, 2023, 47(7): 922-931. |
[8] | 吴帆, 吴晨, 张宇辉, 余恒, 魏智华, 郑蔚, 刘小飞, 陈仕东, 杨智杰, 熊德成. 增温对成熟杉木人工林不同季节细根生长、形态及生理代谢特征的影响[J]. 植物生态学报, 2023, 47(6): 856-866. |
[9] | 张雅琪, 庞丹波, 陈林, 曹萌豪, 何文强, 李学斌. 荒漠草原土壤氨氧化细菌群落结构对氮添加和枯落物输入的响应[J]. 植物生态学报, 2023, 47(5): 699-712. |
[10] | 罗来聪, 赖晓琴, 白健, 李爱新, 方海富, Nasir SHAD, 唐明, 胡冬南, 张令. 氮添加背景下土壤真菌和细菌对不同种源入侵植物乌桕生长特征的影响[J]. 植物生态学报, 2023, 47(2): 206-215. |
[11] | 安凡, 李宝银, 钟全林, 程栋梁, 徐朝斌, 邹宇星, 张雪, 邓兴宇, 林秋燕. 不同种源刨花楠苗木生长与主要功能性状对氮添加的响应[J]. 植物生态学报, 2023, 47(12): 1693-1707. |
[12] | 葛萍, 李昂, 王银柳, 姜良超, 牛国祥, 哈斯木其尔, 王彦兵, 薛建国, 赵威, 黄建辉. 草甸草原温室气体排放对氮添加量的非线性响应[J]. 植物生态学报, 2023, 47(11): 1483-1492. |
[13] | 董六文, 任正炜, 张蕊, 谢晨笛, 周小龙. 功能多样性比物种多样性更好解释氮添加对高寒草地生物量的影响[J]. 植物生态学报, 2022, 46(8): 871-881. |
[14] | 谢欢, 张秋芳, 陈廷廷, 曾泉鑫, 周嘉聪, 吴玥, 林惠瑛, 刘苑苑, 尹云锋, 陈岳民. 氮添加促进丛枝菌根真菌和根系协作维持土壤磷有效性[J]. 植物生态学报, 2022, 46(7): 811-822. |
[15] | 谢欢, 张秋芳, 曾泉鑫, 周嘉聪, 马亚培, 吴玥, 刘苑苑, 林惠瑛, 尹云锋, 陈岳民. 氮添加对杉木苗期磷转化和分解类真菌的影响[J]. 植物生态学报, 2022, 46(2): 220-231. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19