植物生态学报 ›› 2016, Vol. 40 ›› Issue (12): 1230-1237.DOI: 10.17521/cjpe.2016.0205
张秋芳1,2, 吕春平1,2, 贝昭贤1,2, 谢锦升1,2, 吕茂奎1,2, 林伟盛1,2, 陈岳民1,2,*, 杨玉盛1,2
出版日期:
2016-12-31
发布日期:
2016-12-30
通讯作者:
陈岳民
基金资助:
Qiu-Fang ZHANG1,2, Chun-Ping LÜ1,2, Zhao-Xian BEI1,2, Jin-Sheng XIE1,2, Mao-Kui LÜ1,2, Wei-Sheng LIN1,2, Yue-Min CHEN1,2,*, Yu-Sheng YANG1,2
Online:
2016-12-31
Published:
2016-12-30
Contact:
Yue-Min CHEN
摘要:
温度通常被认为是植物生长和生产的重要限制因子, 全球变暖严重影响生态系统, 但全球变暖对亚热带杉木(Cunninghamia lanceolata)叶片膜脂过氧化及保护酶活性的影响并不甚清楚。该研究在野外利用电缆对土壤增温, 设置对照和增温2种处理, 每个处理5个重复。通过测定渗透调节物质、内在水分利用效率、保护酶活性及丙二醛等指标, 探究增温对杉木生理生化特征的影响。研究表明: 1)增温提高渗透调节能力, 但对杉木叶片膜脂过氧化作用不明显; 2)增温显著提高杉木的水分利用效率和固碳效益, 即降低了固碳耗水成本; 3)增温降低超氧化物歧化酶活性和过氧化物酶活性, 却显著提高过氧化氢酶活性和抗坏血酸过氧化酶活性。由此可见, 杉木主要通过提高保护酶(特别是过氧化氢酶和抗坏血酸过氧化酶)活性以减轻高温胁迫伤害, 这有助于维持杉木细胞代谢稳定。因此, 该区域在未来全球变化背景下的温度升高效应值得长期而深入的探讨。
张秋芳, 吕春平, 贝昭贤, 谢锦升, 吕茂奎, 林伟盛, 陈岳民, 杨玉盛. 野外模拟增温对亚热带杉木叶片膜脂过氧化及保护酶活性的影响. 植物生态学报, 2016, 40(12): 1230-1237. DOI: 10.17521/cjpe.2016.0205
Qiu-Fang ZHANG, Chun-Ping LÜ, Zhao-Xian BEI, Jin-Sheng XIE, Mao-Kui LÜ, Wei-Sheng LIN, Yue-Min CHEN, Yu-Sheng YANG. Effects of simulated warming outdoor on lipid peroxidation and protective enzyme activities in the subtropical species Cunninghamia lanceolata. Chinese Journal of Plant Ecology, 2016, 40(12): 1230-1237. DOI: 10.17521/cjpe.2016.0205
图4 增温对杉木渗透调节物质的影响(平均值±标准偏差)。CT和W分别表示对照和增温处理; 不同小写字母表示不同处理间在95%置信水平下差异显著。
Fig. 4 Effect of warming on osmotic adjustment substance of Cunninghamia lanceolata (mean ± SD). CT, control; W, warming treatment. Different small letters represent significant difference between treatments at the 95% confidence level. AsA, ascorbic acid; Pro, praline.
图5 增温对杉木内在水分利用效率和丙二醛含量的影响(平均值±标准偏差)。CT和W分别表示对照和增温处理; 不同小写字母表示不同处理间在95%置信水平下差异显著。
Fig. 5 Effect of warming on intrinsic water use efficiency (iWUE) and malondialdehyde (MDA) content of Cunninghamia lanceolata (mean ± SD). CT, control; W, warming treatment. Different small letters represent significant difference between treatments at the 95% confidence level.
图6 增温对杉木保护酶活性的影响(平均值±标准偏差)。CT和W分别表示对照和增温处理; 不同小写字母表示不同处理间在95%置信水平下差异显著。
Fig. 6 Effect of warming on protective enzyme activities of Cunninghamia lanceolata (mean ± SD). CT, control; W, warming treatment. Different small letters represent significant difference between treatments at the 95% confidence level. APX, ascorbate peroxidase; CAT, catalase; POD, peroxidase; SOD, superoxide dismutase.
1 | Buysse J, Merckx R (1993). An improved colorimetric method to quantify sugar content of plant tissue.Journal of Experimental Botany, 44, 1627-1629. |
2 | Can VT, Luo C, He XH, Dong L, Do MP (2016). Effect of high temperature stress on physiology indices of mango seedlings.Chinese Journal of Tropical Crops, 37, 53-58.(in Chinese with English abstract) [Can VT, 罗聪, 何新华, 董龙, Do Minh-Phu (2016). 高温胁迫对杧果幼苗生理生化指标的影响. 热带作物学报, 37, 53-58.] |
3 | Cox PM, Pearson D, Booth BB, Friedlingstein P, Huntingford C, Jones CD, Luke CM (2013). Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability.Nature, 494, 341-344. |
4 | Cui YC, Zhang WH, Li ZP (2014). Effects of drought stress and rewatering on growth and physiological characteristics ofQuercus variabilis seedlings. Scientia Silvae Sinicae, 50(7), 66-73.(in Chinese with English abstract) [崔豫川, 张文辉, 李志萍 (2014). 干旱和复水对栓皮栎幼苗生长和生理特性的影响. 林业科学, 50(7), 66-73.] |
5 | Dhindsa RS, Plumb-Dhindsa P, Thorpe TA (1981). Leaf senescence: Correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase.Journal of Experimental Botany ,32, 93-101. |
6 | Fang JY (2000). Forest productivity in China and its response to global climate change.Acta Phytoecologica Sinica, 24, 513-517.(in Chinese with English abstract) [方精云 (2000). 中国森林生产力及其对全球气候变化的响应. 植物生态学报, 24, 513-517.] |
7 | Feeley KJ, Davies SJ, Ashton PS, Bunyavejchewin S, Nur Supardi MN, Kassim AR, Tan S, Chave J (2007). The role of gap phase processes in the biomass dynamics of tropical forests.Proceedings Biological Sciences, 274, 2857-2864. |
8 | Feng X (1999). Trends in intrinsic water-use efficiency of natural trees for the past 100-200 years: A response to atmospheric CO2 concentration.Geochimica et Cosmochimica Acta, 63, 1891-1903. |
9 | Fu G, Shen ZX, Sun W, Zhong ZM, Zhang XZ, Zhou YT (2015). A meta-analysis of the effects of experimental warming on plant physiology and growth on the Tibetan Plateau.Journal of Plant Growth Regulation, 34, 57-65. |
10 | Gallie DR (2013). The role of L-ascorbic acid recycling in responding to environmental stress and in promoting plant growth. Journal of Experimental Botany, 64, 433-443. |
11 | Giannopolitis CN, Ries SK (1977). Superoxide dismutases. I: Occurrence in higher plants.Plant Physiology, 59, 309-314. |
12 | Han Y, Wang YH, Jiang H, Wang ML, Korpelainen H, Li CY (2012). Reciprocal grafting separates the roles of the root and shoot in sex-related drought responses inPopulous cathayana males and females. Plant, Cell & Environment, 36, 356-364. |
13 | Huang ZQ, Liu B, Davis M, Sardans J, Peñuelas J, Billings S (2015). Long-term nitrogen deposition linked to reduced water use efficiency in forests with low phosphorus availability.New Phytologist, 210, 431-442. |
14 | Hui R, Li XR, Jia RL, Liu LC, Zhao RM, Zhao X, Wei YP (2014). Photosynthesis of two moss crusts from the Tengger Desert with contrasting sensitivity to supplementary UV-B radiation.Photosynthetica, 52, 36-49. |
15 | IPCC (Intergovernmental Panel on Climate Change) (2013). Climate Change 2013: The Physical Science Basis. Working Group I: Contribution to the Intergovernmental Panel on Climate Change Fifth Assessment Report. Cambridge University Press, Cambridge, UK. |
16 | Kochhar S, Kochhar VK, Khanduja SD (1979). Changes in the pattern of isoperoxidases during maturation of grape berries cv gulabi as affected by ethephon (2-chloroethy1) phosphoric acid.American Journal of Enology and Viticulture, 30, 275-277. |
17 | Lambers H, Chapin FS III, Pons TL (2008). Plant Physiological Ecology. Springer, New York. 299-351. |
18 | Li MY, Chao JG, Gu W, Hou HR (2015). Effects of high temperature stress on chlorophyll fluorescence characteristics ofAtractylodes lances from different habitats. Plant Physiology Journal, 51, 1861-1866.(in Chinese with English abstract) [李孟洋, 巢建国, 谷魏, 侯皓然 (2015). 高温胁迫对不同产地茅苍术开花前叶片叶绿素荧光特征的影响. 植物生理学报, 51, 1861-1866.] |
19 | Li SL, Xia YZ, Liu J, Shi XD, Sun ZQ (2014). Effects of cold-shock on tomato seedlings under high temperature stress. Chinese Journal of Applied Ecology, 25, 2927-2934.(in Chinese with English abstract) [李胜利, 夏亚真, 刘金, 师晓丹, 孙志强 (2014). 高温胁迫下番茄幼苗对冷激的响应. 应用生态学报, 25, 2927-2934.] |
20 | Lin GH (2010). Stable isotope ecology: A new branch of ecology resulted from technology advances.Chinese Journal of Plant Ecology, 34, 119-122.(in Chinese with English abstract) [林光辉 (2010). 稳定同位素生态学: 先进技术推动的生态学新分支. 植物生态学报, 34, 119-122.] |
21 | Liu SL, Luo YQ, Li DJ, Cao SH, Xia JY, Li JW, Smith MD (2014). Plant growth and mortality under climatic extremes: An overview.Environmental and Experimental Botany, 98, 13-19. |
22 | Liu XF, Lin TW, Xiong DC, Lin WS, Lin CF, Yang YS (2014). Interactive responses of undergrowth vegetation biomass in Chinese fir to soil warming and precipitation separation.Journal of Subtropical Resources and Environment, 9(3), 92-95.(in Chinese with English abstract) [刘小飞, 林廷武, 熊德成, 林伟盛, 林成芳, 杨玉盛 (2014). 土壤增温及降雨隔离对杉木幼林林下植被生物量的影响. 亚热带资源与环境学报, 9(3), 92-95.] |
23 | Martinez CA, Bianconi M, Silva L, Approbato A, Lemos M, Santos L, Curtarelli L, Rodrigues A, Mello T, Manchon F (2014). Moderate warming increases PSII performance, antioxidant scavenging systems and biomass production inStylosanthes capitata Vogel. Environmental and Experimental Botany, 102, 58-67. |
24 | McDaniel MD, Kaye JP, Kaye MW, Bruns MA (2014). Climate change interactions affect soil carbon dioxide efflux and microbial functioning in a post-harvest forest.Oecologia ,174, 1437-1448. |
25 | Melillo JM, Tang J (2011). Soil warming, carbon-nitrogen interactions, and forest carbon budgets.Proceedings of the National Academy of Sciences of the United States of America, 108, 9508-9512. |
26 | Mi N, Wen XF, Cai F, Wang Y, Zhang YS (2014). Effects of seasonal drought on the water use efficiency of Qianyanzhou plantation.Scientia Silvae Sinicae ,50(12), 24-31.(in Chinese with English abstract) [米娜, 温学发, 蔡福, 王阳, 张玉书 (2014). 季节性干旱对千烟洲人工林水分利用效率的影响. 林业科学, 50(12), 24-31.] |
27 | Nakano Y, Asada K (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts.Plant Cell Physiology, 22, 867-880. |
28 | Song HF, Li SC, Sun HL, Liu JY, Chen YH (2015). Effects of soil-applied paclobutrazol on growth and physiological characteristics ofAmorpha frutucosa. Plant Physiology Journal, 51, 1495-1501.(in Chinese with English abstract) [宋海凤, 李绍才, 孙海龙, 刘静雅, 陈艳华 (2015). 根施不同浓度多效唑对紫穗槐生长特性和相关生理指标的影响. 植物生理学报, 51, 1495-1501.] |
29 | Sun XZ, Zhang LN, Dai YJ, He XY, Zhou ZG, Wang YH (2012). Effect of increased canopy temperature on cotton plant dry matter accumulation and its physiological mechanism.Acta Agronomica Sinica, 38, 683-690.(in Chinese with English abstract) [孙啸震, 张黎妮, 戴艳娇, 贺新颖, 周治国, 王友华 (2012). 花铃期增温对棉花干物重累积的影响极其生理机制. 作物学报, 38, 683-690.] |
30 | Trevor E, Kraus R, Austin F (1994). Paclobutrazol protects wheat seedlings from heat and paraquat injury is detoxification of active oxygen involved.Plant Cell Physiology, 35, 45-52. |
31 | Vallano DM, Sparks JP (2013). Foliar δ15N is affected by foliar nitrogen uptake, soil nitrogen, and mycorrhizae along a nitrogen deposition gradient. Oecologia ,172, 47-58. |
32 | van Cleve K, Oechel WC, Hom JL (1990). Response of black spruce (Picea mariana) ecosystems to soil temperature modification in interior Alaska. Canadian Journal of Forest Research, 20, 1530-1535. |
33 | van der Sleen P, Groenendijk P, Vlam M, Anten NPR, Boom A, Bongers F, Pons TL, Terburg G, Zuidema PA (2014). No growth stimulation of tropical trees by 150 years of CO2 fertilization but water-use efficiency increased.Nature Geoscience ,8, 24-28. |
34 | Velikova V, Yordanova I, Edrevab A (2000). Oxidative stress and some antioxidant systems in acid rain-treated bean plants: Protective role of exogenous polyamines.Plant Science, 151, 59-66. |
35 | Walker XJ, Mack MC, Johnstone JF (2015). Stable carbon isotope analysis reveals widespread drought stress in boreal black spruce forests.Global Change Biology, 21, 3102-3113. |
36 | Walter T, John L (1955). A photometric methods for the determination of proline.Journal of Biological Chemistry, 215, 655-660. |
37 | Wang KH, Zhang XZ, Ervin E (2012). Antioxidative responses in roots and shoots of creeping bentgrass under high temperature: Effects of nitrogen and cytokinin.Journal of Plant Physiology, 169, 492-500. |
38 | Wang X, Peng YH, Singer JW, Fessehaie A, Krebs SL, Arora R (2009). Seasonal changes in photosynthesis, antioxidant systems and ELIP expression in a thermonastic and non-thermonasticRhododendron species: A comparison of photoprotecative strategies in over-wintering plants. Plant Science ,177, 607-617. |
39 | Wang XY, Peng LQ, Jin ZX (2016). Effects of AMF inoculation on growth and photosynthetic physiological characteristics ofSinocalycanthus chinensis under conditions of simulated warming. Acta Ecologica Sinica, 36, 5204-5214.(in Chinese with English abstract) [王晓燕, 彭礼琼, 金则新 (2016). 模拟增温条件下接种AMF对夏蜡梅幼苗生长与光合生理特性的影响. 生态学报, 36, 5204-5214.] |
40 | Wu YB, Ye B (2016). Effects of combined elevated temperature and drought stress on anti-oxidative enzyme activities and reactive oxygen species metabolism ofBroussonetia papyrifera seedlings. Acta Ecologica Sinica, 36, 403-410.(in Chinese with English abstract) [吴永波, 叶波 (2016). 高温干旱复合胁迫对构树幼苗抗氧化酶活性和活性氧代谢的影响. 生态学报, 36, 403-410.] |
41 | Xin JL, Huang BF, Yang JZ, Yang ZY, Yuan JG, Mu YX (2013). Role of roots in cadmium accumulation of two water spinach cultivars: Reciprocal grafting and histochemical experiments.Plant and Soil ,366, 425-432. |
42 | Yang Y, Guo JY, Wang GX, Yang LD, Yang Y (2012). Effects of drought and nitrogen addition on photosynthetic characteristics and resource allocation ofAbies fabri seedlings in eastern Tibetan Plateau. New Forests, 43, 505-518. |
43 | Yu GR, Song X, Wang QF, Liu YF, Guan DX, Yan JH, Sun XM, Zhang LM, Wen XF (2008). Water-use efficiency of forest ecosystems in eastern China and its relations to climatic variables.New Phytologist, 177, 927-937. |
44 | Yuan YS, Xiao J, Hu Y (2014). Effects of simulated acid rain on antioxidant enzyme activities and chlorophyll fluorescence parameters in leaves ofAcanthopanax trifoliatus. Plant Physiology Journal, 50, 758-764.(in Chinese with English abstract) [袁远爽, 肖娟, 胡艳 (2014). 模拟酸雨对白簕叶片抗氧化酶活性及叶绿素荧光参数的影响. 植物生理学报, 50, 758-764.] |
45 | Zhang ZL, Qu WJ, Li XF (2009). Experimental Guide of Plant Physiology. Higher Education Press, Beijing. 103-104.(in Chinese) [张志良, 翟伟菁, 李小方 (2009). 植物生理学指导书. 高等教育出版社, 北京. 103-104.] |
46 | Zhao CZ, Liu Q (2012). Effects of soil warming and nitrogen fertilization on leaf physiology ofPinus tabulaeformis seedlings. Acta Physiologiae Plantarum ,34, 1837-1846. |
47 | Zheng CF, Liu WC, Qiu JB, Huang L, Huang XL, Chen SB (2013). Comparison of physiological characteristic ofKandelia obovata at different ages in winter in the northernmost mangrove transplanted area of China. Acta Ecologica Sinica, 33(3), 132-138. |
48 | Zhou XB, Zhang YM, Yin BF (2016). Divergence in physiological responses between cyanobacterial and lichen crusts to a gradient of simulated nitrogen deposition.Plant and Soil, 399, 121-134. |
[1] | 高敏, 缑倩倩, 王国华, 郭文婷, 张宇, 张妍. 低温胁迫对不同母树年龄柠条锦鸡儿种子萌发幼苗生理和生长的影响[J]. 植物生态学报, 2024, 48(2): 201-214. |
[2] | 吴帆, 吴晨, 张宇辉, 余恒, 魏智华, 郑蔚, 刘小飞, 陈仕东, 杨智杰, 熊德成. 增温对成熟杉木人工林不同季节细根生长、形态及生理代谢特征的影响[J]. 植物生态学报, 2023, 47(6): 856-866. |
[3] | 谢欢, 张秋芳, 陈廷廷, 曾泉鑫, 周嘉聪, 吴玥, 林惠瑛, 刘苑苑, 尹云锋, 陈岳民. 氮添加促进丛枝菌根真菌和根系协作维持土壤磷有效性[J]. 植物生态学报, 2022, 46(7): 811-822. |
[4] | 谢欢, 张秋芳, 曾泉鑫, 周嘉聪, 马亚培, 吴玥, 刘苑苑, 林惠瑛, 尹云锋, 陈岳民. 氮添加对杉木苗期磷转化和分解类真菌的影响[J]. 植物生态学报, 2022, 46(2): 220-231. |
[5] | 林夏珍, 刘林, 董婷婷, 方琦博, 郭庆学. 非结构性碳水化合物与氮分配对美洲黑杨和青杨耐盐能力的影响[J]. 植物生态学报, 2021, 45(9): 961-971. |
[6] | 丁凯, 张毓婷, 张俊红, 柴雄, 周世水, 童再康. 不同密度杉木林对林下植被和土壤微生物群落结构的影响[J]. 植物生态学报, 2021, 45(1): 62-73. |
[7] | 吕中诚, 康文星, 黄志宏, 赵仲辉, 邓湘雯. 不同林龄杉木组织迁移养分的再利用[J]. 植物生态学报, 2019, 43(5): 458-470. |
[8] | 邹显花, 胡亚楠, 韦丹, 陈思同, 吴鹏飞, 马祥庆. 磷高效利用杉木对低磷胁迫的适应性与内源激素的相关性[J]. 植物生态学报, 2019, 43(2): 139-151. |
[9] | 沈芳芳, 李燕燕, 刘文飞, 段洪浪, 樊后保, 胡良, 孟庆银. 长期氮沉降对杉木人工林叶、枝氮磷养分再吸收的影响[J]. 植物生态学报, 2018, 42(9): 926-937. |
[10] | 陈日升, 康文星, 周玉泉, 田大伦, 项文化. 杉木人工林养分循环随林龄变化的特征[J]. 植物生态学报, 2018, 42(2): 173-184. |
[11] | 彭曦, 闫文德, 王凤琪, 王光军, 玉昉永, 赵梅芳. 基于叶干质量比的杉木比叶面积估算模型的构建[J]. 植物生态学报, 2018, 42(2): 209-219. |
[12] | 王曦,胡红玲,胡庭兴,张城浩,王鑫,刘丹. 干旱胁迫对桢楠幼树渗透调节与活性氧代谢的影响及施氮的缓解效应[J]. 植物生态学报, 2018, 42(2): 240-251. |
[13] | 陈思同, 邹显花, 蔡一冰, 韦丹, 李涛, 吴鹏飞, 马祥庆. 基于 32P示踪的不同供磷环境杉木幼苗磷的分配规律分析[J]. 植物生态学报, 2018, 42(11): 1103-1112. |
[14] | 许红梅, 李进, 张元明. 水分条件对人工培养齿肋赤藓光化学效率及生理特性的影响[J]. 植物生态学报, 2017, 41(8): 882-893. |
[15] | 张雷, 王琳琳, 刘世荣, 孙鹏森, 余振, 黄书涛, 张旭东. 生境概率预测值转换为二元值过程中4个阈值选择方法的比较评估——以珙桐和杉木生境预估为例[J]. 植物生态学报, 2017, 41(4): 387-395. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19