植物生态学报 ›› 2016, Vol. 40 ›› Issue (12): 1238-1244.DOI: 10.17521/cjpe.2015.0398
所属专题: 青藏高原植物生态学:生理生态学
司晓林, 王文银, 高小刚, 徐当会*
出版日期:
2016-12-10
发布日期:
2016-12-30
通讯作者:
徐当会
基金资助:
Xiao-Lin SI, Wen-Yin WANG, Xiao-Gang GAO, Dang-Hui XU*
Online:
2016-12-10
Published:
2016-12-30
Contact:
Dang-Hui XU
摘要:
该文以青藏高原高寒草甸优势种垂穗披碱草(Elymus nutans)为研究对象, 探究不同水平氮肥与硅肥混合添加后对其叶片全氮含量和净光合速率的影响, 以期对高寒草甸牧场施肥提供一定的理论依据。研究发现: 氮、硅单独添加时, 均可提高垂穗披碱草叶片全氮含量以及净光合速率; 氮、硅配施处理对叶片全氮含量和净光合速率均存在显著的交互作用; 低(N1)、中(N2)、高(N3) 3种不同浓度的氮肥处理下, 低硅(Si1)添加对垂穗披碱草叶片全氮含量以及净光合速率没有显著的促进作用, 而添加中浓度硅肥(Si2)可显著提高垂穗披碱草叶片全氮含量; 低、中浓度施氮水平下, 中浓度硅肥可显著促进垂穗披碱草光合作用; 叶片全氮含量和净光合速率最大平均值均出现在中浓度氮、硅肥配施下, 与不施肥相比分别提高了119.99%和85.70%; 就该试验而言, 施加氮肥的同时, 适当添加一些硅肥能够更好地提高垂穗披碱草叶片全氮含量和净光合速率, 且硅的添加量为8 g·m-2时效果较好。
司晓林, 王文银, 高小刚, 徐当会. 氮硅添加对高寒草甸垂穗披碱草叶片全氮含量及净光合速率的影响. 植物生态学报, 2016, 40(12): 1238-1244. DOI: 10.17521/cjpe.2015.0398
Xiao-Lin SI, Wen-Yin WANG, Xiao-Gang GAO, Dang-Hui XU. Effects of nitrogen and silicon application on leaf nitrogen content and net photosynthetic rate of Elymus nutans in alpine meadow. Chinese Journal of Plant Ecology, 2016, 40(12): 1238-1244. DOI: 10.17521/cjpe.2015.0398
硅肥 H2SiO3 (g·m-2) | 氮肥 NH4NO3 (g·m-2) | |||
---|---|---|---|---|
0 (N0) | 30 (N1) | 60 (N2) | 90 (N3) | |
0 (Si0) | N0Si0 | N1Si0 | N2Si0 | N3Si0 |
4 (Si1) | N0Si1 | N1Si1 | N2Si1 | N3Si1 |
8 (Si2) | N0Si2 | N1Si2 | N2Si2 | N3Si2 |
12 (Si3) | N0Si3 | N1Si3 | N2Si3 | N3Si3 |
表1 氮、硅施肥组合
Table 1 The combination of nitrogen and silicon application
硅肥 H2SiO3 (g·m-2) | 氮肥 NH4NO3 (g·m-2) | |||
---|---|---|---|---|
0 (N0) | 30 (N1) | 60 (N2) | 90 (N3) | |
0 (Si0) | N0Si0 | N1Si0 | N2Si0 | N3Si0 |
4 (Si1) | N0Si1 | N1Si1 | N2Si1 | N3Si1 |
8 (Si2) | N0Si2 | N1Si2 | N2Si2 | N3Si2 |
12 (Si3) | N0Si3 | N1Si3 | N2Si3 | N3Si3 |
图1 氮硅单独添加对垂穗披碱草叶片全氮含量的影响(平均值±标准偏差)。不同小写字母表示处理间差异显著(p < 0.05)。N0-N3、Si0-Si3同表1。
Fig. 1 Effect of leaf nitrogen content of Elymus nutans with nitrogen and silicon added separately (mean ± SD). Different lowercase letters indicate significant differences between treatments (p < 0.05). N0-N3, Si0-Si3 see Table 1.
图2 氮硅配施对垂穗披碱草叶片全氮含量的影响(平均值±标准偏差)。不同小写字母表示同一施氮水平下不同浓度的硅肥处理间差异显著(p < 0.05)。N1-N3、Si0-Si3同表1。
Fig. 2 Effect of leaf nitrogen content of Elymus nutans with nitrogen combined with silicon application (mean ± SD). Different lowercase letters indicate significant differences between different silicon treatments with the same nitrogen application (p < 0.05). N1-N3, Si0-Si3 see Table 1.
来源 Source | 第三类平方和 Type III sum of squares | d.f. | 平均值平方 Mean square | F | 显著性 Sig. |
---|---|---|---|---|---|
修正的模型 Corrected Model | 1 961.255a | 15 | 130.750 | 155.011 | 0.000 |
截距 Intercept | 33 723.940 | 1 | 33 723.940 | 39 981.400 | 0.000 |
N | 1 860.226 | 3 | 620.075 | 735.130 | 0.000 |
Si | 81.426 | 3 | 27.142 | 32.178 | 0.000 |
N × Si | 19.603 | 9 | 2.178 | 2.582 | 0.016 |
错误 Error | 40.488 | 48 | 0.843 | ||
总计 Total | 35 725.682 | 64 | |||
校正后总数 Corrected total | 2 001.742 | 63 |
表2 不同浓度氮硅添加下对垂穗披碱草叶片全氮含量交互作用的分析结果
Table 2 Analysis of interaction between different levels of nitrogen combined with silicon for leaf nitrogen content of Elymus nutans
来源 Source | 第三类平方和 Type III sum of squares | d.f. | 平均值平方 Mean square | F | 显著性 Sig. |
---|---|---|---|---|---|
修正的模型 Corrected Model | 1 961.255a | 15 | 130.750 | 155.011 | 0.000 |
截距 Intercept | 33 723.940 | 1 | 33 723.940 | 39 981.400 | 0.000 |
N | 1 860.226 | 3 | 620.075 | 735.130 | 0.000 |
Si | 81.426 | 3 | 27.142 | 32.178 | 0.000 |
N × Si | 19.603 | 9 | 2.178 | 2.582 | 0.016 |
错误 Error | 40.488 | 48 | 0.843 | ||
总计 Total | 35 725.682 | 64 | |||
校正后总数 Corrected total | 2 001.742 | 63 |
图3 氮硅单独添加对垂穗披碱草叶片净光合速率的影响(平均值±标准偏差)。不同小写字母表示处理间差异显著(p < 0.05)。N0-N3、Si0-Si3同表1。
Fig. 3 Effect of net photosynthetic rate of Elymus nutans with nitrogen and silicon added separately (mean ± SD). Different lowercase letters indicate significant differences between treatments (p < 0.05). N0-N3, Si0-Si3 see Table 1.
来源 Source | 第三类平方和 Type III sum of squares | d.f. | 平均值平方 Mean square | F | 显著性 Sig. |
---|---|---|---|---|---|
修正的模型 Corrected Model | 3 196.442 a | 15 | 213.096 | 60.984 | 0.000 |
截距 Intercept | 114 412.392 | 1 | 114 412.392 | 32 742.537 | 0.000 |
N | 2 787.497 | 3 | 929.166 | 265.909 | 0.000 |
Si | 306.681 | 3 | 102.227 | 29.225 | 0.000 |
N × Si | 102.263 | 9 | 11.363 | 3.252 | 0.004 |
错误 Error | 167.727 | 48 | 3.494 | ||
总计 Total | 117 776.560 | 64 | |||
校正后总数 Corrected total | 3 363.168 | 63 |
表3 不同浓度氮硅添加下对叶片净光合速率的交互作用分析结果
Table 3 Analysis of interaction in different levels of nitrogen combined with silicon for net photosynthetic rate of Elymus nutans
来源 Source | 第三类平方和 Type III sum of squares | d.f. | 平均值平方 Mean square | F | 显著性 Sig. |
---|---|---|---|---|---|
修正的模型 Corrected Model | 3 196.442 a | 15 | 213.096 | 60.984 | 0.000 |
截距 Intercept | 114 412.392 | 1 | 114 412.392 | 32 742.537 | 0.000 |
N | 2 787.497 | 3 | 929.166 | 265.909 | 0.000 |
Si | 306.681 | 3 | 102.227 | 29.225 | 0.000 |
N × Si | 102.263 | 9 | 11.363 | 3.252 | 0.004 |
错误 Error | 167.727 | 48 | 3.494 | ||
总计 Total | 117 776.560 | 64 | |||
校正后总数 Corrected total | 3 363.168 | 63 |
图4 氮硅配施对垂穗披碱草净光合速率的影响(平均值±标准偏差)。不同小写字母表示同一施氮水平下不同浓度的硅肥处理间差异显著(p < 0.05)。N1-N3、Si0-Si3同表1。
Fig. 4 Effect of net photosynthetic rate of Elymus nutans with nitrogen combined with Silicon treatments (mean ± SD). Different lowercase letters indicate significant differences between different silicon treatments with the same nitrogen addition (p < 0.05). N1-N3, Si0-Si3 see Table 1.
图5 不同施氮量下添加硅肥, 叶片氮含量和净光合速率的相关性分析。N0-N3同表1。
Fig. 5 Relationships between leaf nitrogen content and net photosynthetic rate in different nitrogen application with silicon addition. N0-N3 see Table 1.
1 | Bin ZJ, Wang JJ, Zhang WP, Xu DH, Cheng XH, Li KJ, Cao DH (2014). Effects of N addition on ecological stoichiometric characteristics in six dominant plant species of alpine meadow on the Qinghai-Xizang Plateau, China.Chinese Journal of Plant Ecology, 38, 231-237.(in Chinese with English abstract)[宾振钧, 王静静, 张文鹏, 徐当会, 程雪寒, 李柯杰, 曹德昊 (2014). 氮肥添加对青藏高原高寒草甸6个群落优势种生态化学计量学特征的影响. 植物生态学报, 38, 231-237.] |
2 | Bojović B, Stojanović J (2005). Chlorophyll and carotenoid content in wheat cultivars as a function of mineral nutrition.Archives of Biological Sciences, 57, 283-290. |
3 | Cechin I, Terezinha FF (2004). Effect of nitrogen supply on growth and photosynthesis of sunflower plants grown in the greenhouse.Plant Science, 166, 1379-1385. |
4 | Chen W, Yao XQ, Cai KZ, Chen JN (2011). Silicon alleviates drought stress of rice plants by improving plant water status, photosynthesis and mineral nutrient absorption.Biological Trace Element Research, 142, 67-76. |
5 | Choudhury ATMA, Kennedy IR (2014). Nitrogen fertilizer losses from rice soils and control of environmental pollution problem.Communications in Soil Science and Plant Analysis, 36, 1625-1639. |
6 | Detmann KC, Araújo WL, Martins SCV, Sanglard LMVP, Reis JV, Detmann E, Rodrigues FA, Nunes-Nesi A, Fernie AR, Damatta FM (2012). Silicon nutrition increases grain yield, which, in turn, exerts a feed-forward stimulation of photosynthetic rates via enhanced mesophyll conductance and alters primary metabolism in rice.New Phytologist, 196, 752-762. |
7 | Gendy AGEl, Gohary AEEl, Omer EA, Hendawya SF, Husseina MS, Petrovab V, Stancheva I (2015). Effect of nitrogen and potassium fertilizer on herbage and oil yield of chervil plant (Anthriscus cerefolium L.). Industrial Crops and Products, 69, 167-174. |
8 | Gu MH, Du XG, Wen SJ, Ma T, Chen M, Ren QJ, Du GZ (2008). Effect of fertilization and clipping intensities on interspecific competition betweenElymus nutans, Festuca sinensis and Festuca ovina. Acta Ecologica Sinica, 28, 2472-2479.(in Chinese with English abstract)[顾梦鹤, 杜小光, 文淑均, 马涛, 陈敏, 任青吉, 杜国祯 (2008). 施肥和刈割对垂穗披碱草(Elymus nutans)、中华羊茅(Festuca sinensis)和羊茅(Festuca ovina)中间竞争力的影响. 生态学报, 28, 2472-2479. |
9 | Hattor T, Inanaga S, Araki H, Ping A, Morita S, Luxová M, Lux A (2005). Application of silicon enhanced drought tolerance inSorghum bicolor. Physiologia Plantarum, 123, 459-466. |
10 | Hossain MT, Mori R, Soga K, Wakabayashi K, Kamisaka S, Fujii S, Yamamoto R, Hoson T (2002). Growth promotion and an increase in cell wall extensibility by silicon in rice and some other Poaceae seedlings. Journal of Plant Research, 115, 23-27. |
11 | Li QF, Ma CC, Shang QL (2007). Effects of silicon on photosynthesis and antioxidative enzymes of maize under drought stress.Chinese Journal of Applied Ecology, 18, 531-536.(in Chinese with English abstract)[李清芳, 马成仓, 尚启亮 (2007). 干旱胁迫下硅对玉米光合作用和保护酶的影响. 应用生态学报, 18, 531-536.] |
12 | Seo SW, Ola Y (1983). Effect of supplying of silicon and potassium during reproductive stage on the form and function of hulls.Japanese Journal of Crop Science ,52, 73-79. |
13 | Tamai K, Ma JF (2008). Reexamination of silicon effects on rice growth and production under field conditions using a low silicon mutant.Plant and Soil, 307, 21-27. |
14 | Wang XF, Du GZ, Ma YS, Zhang ZL, Zhang ST (2008). The impacts of shading, fertilization and cutting on growth ofElymus nutans. Acta Ecologica Sinica, 28, 6212-6218.(in Chinese with English abstract)[王晓芬, 杜国祯, 马银山, 张作亮, 张世挺 (2008). 光照, 施肥及刈割对垂穗披碱草生长的影响. 生态学报, 28, 6212-6218.] |
15 | Yao XQ, Liu Q (2006). Changes in morphological, photosynthetic and physiological responses of mono maple seedlings to enhanced UV-B and to nitrogen addition.Plant Growth Regulation, 50, 165-177. |
16 | Zhang GQ, Xu K, Wang XC, Zhang XY, Dong CX (2008). Effects of silicon on exchange characteristics of H2O and CO2 in ginger leaves.Chinese Journal of Applied Ecology, 19, 1702-1707.(in Chinese with English abstract)[张国芹, 徐坤, 王兴翠, 张晓艳, 董灿兴 (2008). 硅对生姜叶片水、二氧化碳交换特性的影响. 应用生态学报, 19, 1702-1707.] |
17 | Zhao JY, Yu ZW (2006). Effects of nitrogen rate on nitrogen fertilizer use of winter wheat and content of soil nitrate-N under different fertility condition.Acta Ecologica Sinica, 26, 815-822.(in Chinese with English abstract)[赵俊晔, 于振文 (2006). 不同土壤肥力条件下施氮量对小麦氮肥利用和土壤硝态氮含量的影响. 生态学报, 26, 815-822.] |
[1] | 冯旭飞, 雷长英, 张玉洁, 向导, 杨明凤, 张旺锋, 张亚黎. 棉花花铃期叶片氮分配对光合氮利用效率的影响[J]. 植物生态学报, 2023, 47(11): 1600-1610. |
[2] | 李绍阳, 马红媛, 赵丹丹, 马梦谣, 亓雯雯. 火烧信号对种子萌发影响的研究进展[J]. 植物生态学报, 2021, 45(11): 1177-1190. |
[3] | 冯慧芳, 刘落鱼, 薛立. 氮磷添加及林分密度对大叶相思林土壤化学性质的影响[J]. 植物生态学报, 2019, 43(11): 1010-1020. |
[4] | 唐海萍, 薛海丽, 房飞. 叶片和群落尺度净光合速率关系的探讨[J]. 植物生态学报, 2015, 39(9): 924-931. |
[5] | 刘万德, 苏建荣, 李帅锋, 郎学东, 张志钧, 黄小波. 云南普洱季风常绿阔叶林优势物种不同生长阶段叶片碳、氮、磷化学计量特征[J]. 植物生态学报, 2015, 39(1): 52-62. |
[6] | 王荣荣, 夏江宝, 杨吉华, 赵艳云, 刘京涛, 孙景宽. 贝壳砂生境干旱胁迫下杠柳叶片光合光响应模型比较[J]. 植物生态学报, 2013, 37(2): 111-121. |
[7] | 陈卫英, 陈真勇, 罗辅燕, 彭正松, 余懋群. 光响应曲线的指数改进模型与常用模型比较[J]. 植物生态学报, 2012, 36(12): 1277-1285. |
[8] | 夏江宝, 张光灿, 孙景宽, 刘霞. 山杏叶片光合生理参数对土壤水分和光照强度的阈值效应[J]. 植物生态学报, 2011, 35(3): 322-329. |
[9] | 叶子飘, 于强. 光合作用光响应模型的比较[J]. 植物生态学报, 2008, 32(6): 1356-1361. |
[10] | 黄娟, 吴彤, 孔国辉, 陈志东, 张进忠. 油页岩废渣地12种木本植物光合作用的季节变化[J]. 植物生态学报, 2006, 30(4): 666-674. |
[11] | 陈志刚, 樊大勇, 张旺锋, 谢宗强. 林隙与林下环境对锐齿槲栎和米心水青冈种群更新的影响[J]. 植物生态学报, 2005, 29(3): 354-360. |
[12] | 童贯和. 不同供钾水平对小麦旗叶光合速率日变化的影响[J]. 植物生态学报, 2004, 28(4): 547-553. |
[13] | 许红梅, 高琼, 黄永梅, 贾海坤. 黄土高原森林草原区6种植物光合特性研究[J]. 植物生态学报, 2004, 28(2): 157-163. |
[14] | 王海洋, 杜国祯, 任金吉. 种群密度与施肥对垂穗披碱草刈割后补偿作用的影响[J]. 植物生态学报, 2003, 27(4): 477-483. |
[15] | 于云江, 史培军, 鲁春霞, 刘家琼. 不同风沙条件对几种植物生态生理特征的影响[J]. 植物生态学报, 2003, 27(1): 53-58. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 2389
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 1170
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19 51La