植物生态学报 ›› 2011, Vol. 35 ›› Issue (3): 322-329.DOI: 10.3724/SP.J.1258.2011.00322
收稿日期:
2010-06-23
接受日期:
2010-11-26
出版日期:
2011-06-23
发布日期:
2011-03-02
通讯作者:
张光灿
作者简介:
*E-mail: zhgc@sdau.edu.cn
XIA Jiang-Bao1, ZHANG Guang-Can2,*(), SUN Jing-Kuan1, LIU Xia2
Received:
2010-06-23
Accepted:
2010-11-26
Online:
2011-06-23
Published:
2011-03-02
Contact:
ZHANG Guang-Can
摘要:
以半干旱黄土丘陵区主要灌木树种山杏(Prunus sibirica)为试验材料, 应用CIRAS-2型光合作用仪测定不同土壤质量含水量(Wm)下山杏叶片净光合速率(Pn)、蒸腾速率(Tr)及水分利用效率(WUE)的光响应过程, 探讨山杏光合特性对土壤水分和光照条件的适应性。结果表明: Pn、Tr及WUE对Wm和光照强度的变化有明显的阈值响应。随着Wm (6.5%-18.6%)的递增, 光补偿点降低, 光饱和点、表观量子效率和最大净光合速率均升高; 在Wm为18.6%时, 山杏利用弱光和强光的能力最强, 光照生态幅最宽。随着Wm (9.2%-18.6%)的递增, Pn、Tr有明显升高的趋势, 水分过高或过低, 两者均呈现下降趋势; 山杏对光照环境的适应性较强, 在光合有效辐射为800-1 200 µmol∙m-2∙s-1时, Pn和WUE都具有较高水平, 饱和光强在983-1 365 µmol∙m -2∙s-1之间。以光合生理参数为指标对山杏土壤水分有效性及生产力进行分级与评价, 确定Wm < 9.2%或Wm > 22.3%时为“低产中效水”; Wm在20.5%-22.3%和9.2%-12.9%时, 分别为“中产低效水”和“中产中效水”; Wm在12.9%-20.5%时为“高产高效水”。其中Wm为18.6%时为“最佳产效水”, 对应光强为1 365 µmol∙m-2∙s-1。
夏江宝, 张光灿, 孙景宽, 刘霞. 山杏叶片光合生理参数对土壤水分和光照强度的阈值效应. 植物生态学报, 2011, 35(3): 322-329. DOI: 10.3724/SP.J.1258.2011.00322
XIA Jiang-Bao, ZHANG Guang-Can, SUN Jing-Kuan, LIU Xia. Threshold effects of photosynthetic and physiological parameters in Prunus sibirica to soil moisture and light intensity. Chinese Journal of Plant Ecology, 2011, 35(3): 322-329. DOI: 10.3724/SP.J.1258.2011.00322
土壤质量含水量(相对含水量) Wm (Wr) | 表观量子效率 AQY (μmol?mol-1) | 暗呼吸速率 Rd (μmol?m-2?s-1) | 光补偿点 LCP (μmol?m-2?s-1) | 光饱和点 LSP (μmol?m-2?s-1) | 最大净光合速率 Pnmax (μmol?m-2?s-1) |
---|---|---|---|---|---|
22.3% (81.8%) | 0.022 ± 0.005bc | -1.07 ± 0.14d | 61 ± 10b | 1 023 ± 20d | 6.46 ± 0.28d |
20.5% (74.5%) | 0.033 ± 0.002b | -1.24 ± 0.26c | 46 ± 8c | 1 110 ± 23c | 8.47 ± 0.56c |
18.6% (67.6%) | 0.083 ± 0.003a | -1.64 ± 0.15b | 22 ± 4d | 1 365 ± 32a | 13.30 ± 0.45a |
16.9% (61.5%) | 0.043 ± 0.005b | -1.85 ± 0.32a | 47 ± 6c | 1 268 ± 14b | 12.66 ± 0.40ab |
14.8% (53.8%) | 0.033 ± 0.012b | -1.92 ± 0.35a | 64 ± 10ab | 1 212 ± 28b | 11.62 ± 0.21b |
12.9% (46.9%) | 0.033 ± 0.008b | -1.64 ± 0.21b | 70 ± 11a | 1 025 ± 16d | 9.70 ± 0.38c |
9.2% (33.5%) | 0.033 ± 0.007b | -1.06 ± 0.19d | 41 ± 6c | 997 ± 21d | 5.72 ± 0.15de |
6.5% (23.6%) | 0.015 ± 0.006cd | -0.67 ± 0.05e | 47 ± 5c | 983 ± 20d | 4.14 ± 0.12e |
表1 不同土壤水分条件下山杏叶片的光合生理参数(平均值±标准误差)
Table 1 Photosynthetic and physiological parameters of Prunus sibirica leaf under different soil moisture conditions (mean ± SE)
土壤质量含水量(相对含水量) Wm (Wr) | 表观量子效率 AQY (μmol?mol-1) | 暗呼吸速率 Rd (μmol?m-2?s-1) | 光补偿点 LCP (μmol?m-2?s-1) | 光饱和点 LSP (μmol?m-2?s-1) | 最大净光合速率 Pnmax (μmol?m-2?s-1) |
---|---|---|---|---|---|
22.3% (81.8%) | 0.022 ± 0.005bc | -1.07 ± 0.14d | 61 ± 10b | 1 023 ± 20d | 6.46 ± 0.28d |
20.5% (74.5%) | 0.033 ± 0.002b | -1.24 ± 0.26c | 46 ± 8c | 1 110 ± 23c | 8.47 ± 0.56c |
18.6% (67.6%) | 0.083 ± 0.003a | -1.64 ± 0.15b | 22 ± 4d | 1 365 ± 32a | 13.30 ± 0.45a |
16.9% (61.5%) | 0.043 ± 0.005b | -1.85 ± 0.32a | 47 ± 6c | 1 268 ± 14b | 12.66 ± 0.40ab |
14.8% (53.8%) | 0.033 ± 0.012b | -1.92 ± 0.35a | 64 ± 10ab | 1 212 ± 28b | 11.62 ± 0.21b |
12.9% (46.9%) | 0.033 ± 0.008b | -1.64 ± 0.21b | 70 ± 11a | 1 025 ± 16d | 9.70 ± 0.38c |
9.2% (33.5%) | 0.033 ± 0.007b | -1.06 ± 0.19d | 41 ± 6c | 997 ± 21d | 5.72 ± 0.15de |
6.5% (23.6%) | 0.015 ± 0.006cd | -0.67 ± 0.05e | 47 ± 5c | 983 ± 20d | 4.14 ± 0.12e |
图1 不同土壤水分条件下山杏叶片净光合速率的光响应(平均值±标准误差)。
Fig. 1 Light responses of net photosynthetic rate (Pn) of Prunus sibirica leaf under different soil moisture conditions (mean ± SE). PAR, photosynthetically active radiation.
图2 不同土壤水分条件下山杏叶片蒸腾速率的光响应(平均值±标准误差)。
Fig. 2 Light responses of transpiration rate (Tr) of Prunus sibirica leaf under different soil moisture conditions (mean ± SE). PAR, photosynthetically active radiation.
图3 不同土壤水分条件下山杏叶片水分利用效率的光响应(平均值±标准误差)。
Fig. 3 Light responses of water use efficiency (WUE) of Prunus sibirica leaf under different soil moisture conditions (mean ± SE). PAR, photosynthetically active radiation.
图4 山杏叶片净光合速率和水分利用效率对土壤水分的响应(平均值±标准误差)。
Fig. 4 Soil moisture responses of net photosynthetic rate (Pn) and water use efficiency (WUE) of Prunus sibirica leaf (mean ± SE). Wm, soil mass water content.
类群 Cluster | 土壤质量含水量 Soil mass water content (Wm) | 土壤水分生产力分级 Grading of soil moisture productivity | 土壤质量含水量预测阈值 The Wm threshold value of predication | 光合生理参数(平均值±标准误差) Photosynthetic and physiological parameters (mean ± SE) | ||
---|---|---|---|---|---|---|
净光合速率 Pn (μmol?m-2?s-1) | 蒸腾速率 Tr (mmol?m-2?s-1) | 水分利用效率 WUE (mmol?mol-1) | ||||
A | 22.3%, 9.2%, 6.5% | 低产中效水 Low productivity and middle WUE | >22.3% or <9.2% | 4.30 ± 0.89c | 1.29 ± 0.29b | 2.93 ± 0.34b |
B | 20.5%, 12.9% | 中产低效水 Middle productivity and low WUE | 20.5%-22.3% | 6.92 ± 0.43b | 2.48 ± 0.88a | 2.66 ± 0.95c |
中产中效水 Middle productivity and middle WUE | 9.2%-12.9% | |||||
C | 18.6%, 16.9%, 14.8% | 高产高效水 High productivity and high WUE | 12.9%-20.5% | 10.09 ± 1.35a | 2.53 ± 0.28a | 3.82 ± 0.35a |
表2 土壤水分生产力及有效性分级与评价标准
Table 2 Grading and evaluation criterion of soil moisture productivity and availability
类群 Cluster | 土壤质量含水量 Soil mass water content (Wm) | 土壤水分生产力分级 Grading of soil moisture productivity | 土壤质量含水量预测阈值 The Wm threshold value of predication | 光合生理参数(平均值±标准误差) Photosynthetic and physiological parameters (mean ± SE) | ||
---|---|---|---|---|---|---|
净光合速率 Pn (μmol?m-2?s-1) | 蒸腾速率 Tr (mmol?m-2?s-1) | 水分利用效率 WUE (mmol?mol-1) | ||||
A | 22.3%, 9.2%, 6.5% | 低产中效水 Low productivity and middle WUE | >22.3% or <9.2% | 4.30 ± 0.89c | 1.29 ± 0.29b | 2.93 ± 0.34b |
B | 20.5%, 12.9% | 中产低效水 Middle productivity and low WUE | 20.5%-22.3% | 6.92 ± 0.43b | 2.48 ± 0.88a | 2.66 ± 0.95c |
中产中效水 Middle productivity and middle WUE | 9.2%-12.9% | |||||
C | 18.6%, 16.9%, 14.8% | 高产高效水 High productivity and high WUE | 12.9%-20.5% | 10.09 ± 1.35a | 2.53 ± 0.28a | 3.82 ± 0.35a |
[1] |
Chaves MM, Oliveira MM (2004). Mechanisms underlying plant resilience to water deficits: prospects for water- saving agriculture. Journal of Experimental Botany, 55, 2365-2384.
DOI URL PMID |
[2] | Chen J (陈建), Zhang GC (张光灿), Zhang SY(张淑勇), Wang MJ (王梦军) (2008). Response processes of Aralia elata photosynthesis and transpiration to light and soil moisture. Chinese Journal of Applied Ecology (应用生态学报), 19, 1185-1190. (in Chinese with English abstract) |
[3] | Cui XD (崔旭东), Yang CD (杨承栋), He JQ (何家庆), Fu DX (傅得贤), Huang RD (黄汝多), Huang XD (黄训端) (2009). Analysis of soil amino acid’s composition and content in Armeniaca sibirica’s seedling place. Forest Research (林业科学研究), 22, 512-520. (in Chinese with English abstract) |
[4] | Du JW (杜金伟), Cui SM (崔世茂), Jin LP (金丽萍), Li HT (李海涛), Song Y (宋阳), Li HJ (李红杰), Zhao HD (赵恒栋) (2009). Effects of water stress on activity of cell protective enzymes and osmotic adjustment in Armeniaca Sibirica. Journal of Inner Mongolia Agricultural University (内蒙古农业大学学报), 30, 88-93. (in Chinese with English abstract) |
[5] | Fan HR (范红荣), Yu WQ (于武琴), Miao XW (苗吸旺) (2009). Culture technique on Prunus sibirica L. in drought mountain area. Forestry of China (中国林业), (20), 52-53. (in Chinese with English abstract) |
[6] | Fang QX (房全孝), Chen YH (陈雨海), Li QQ (李全起), Yu SZ (于舜章), Luo Y (罗毅), Yu Q (于强), Ouyang Z (欧阳竹) (2006). Effects of soil moisture on radiation utilization during late growth stages and water use efficiency of winter wheat. Acta Agronomica Sinica (作物学报), 32, 861-866. (in Chinese with English abstract) |
[7] | Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA (2009). Plant drought stress: effects, mechanisms and management. Sustainable Agriculture, 23, 153-188. |
[8] |
Harrison K, Were LM (2007). Effect of gamma irradiation on total phenolic content yield and antioxidant capacity of almond skin extracts. Food Chemistry, 102, 932-937.
DOI URL |
[9] |
Islam MR, Hamid A, Karim MA, Haque MM, Khaliq QA, Abdul KQ, Ahmed JU (2008). Gas exchanges and yield responses of mungbean (Vigna radiata (L.) Wilczek) genotypes differing in flooding tolerance. Acta Physiologiae Plantarum, 30, 697-707.
DOI URL |
[10] | Jiang GM (蒋高明) (2004). Plant Ecophysiology (植物生理生态学). Higher Education Press, Beijing. 65-67. (in Chinese) |
[11] | Li HS (李合生) 2002. Modern Plant Physiology 现代植物生理学. Higher Education Press, Beijing. (in Chinese) |
[12] | Li XL (李小磊), Zhang GC (张光灿), Zhou ZF (周泽福), Liu X (刘霞), Chen XJ (陈新军), Zhang SY (张淑勇) (2005). Response to light of water utilization efficiency of walnut leaf in different soil moisture in loess hilly region. Science of Soil and Water Conservation (中国水土保持科学), 3(1), 43-47. (in Chinese with English abstract) |
[13] | Li Y (李扬), Huang JH (黄建辉) (2009). Photosynthetic physiological responses of Glycyrrhiza uralensis under different water and nutrient supplies in Kubuqi desert, China. Chinese Journal of Plant Ecology (植物生态学报), 33, 1112-1124. (in Chinese with English abstract) |
[14] | Meng FJ (孟繁静) 2000. Plant Physiology 植物生理学. Huazhong University of Science and Technology Press, Wuhan. (in Chinese) |
[15] |
Mielke MS, Oliva MA, de Barros NF, Penchel RM, Martinez CA, de Fonseca S, de Almeida AC (2000). Leaf gas exchange in a clonal eucalypt plantation as related to soil moisture, leaf water potential and microclimate variables. Trees, 14, 263-270.
DOI URL |
[16] |
Montanaro G, Dichio B, Xiloyannis C (2009). Shade mitigates photoinhibition and enhances water use efficiency in kiwifruit under drought. Photosynthetica, 47, 363-371.
DOI URL |
[17] |
Saldaña A, Gianoli E, Lusk CH (2005). Ecophysiological responses to light availability in three Blechnum species (Pteridophyta, Blechnaceae) of different ecological breadth. Oecologia, 145, 252-257.
DOI URL PMID |
[18] |
Saldaña AO, Hernández C, Coopman RE, Bravo LA, Corcuera LJ (2010). Differences in light usage among three fern species of genus Blechnum of contrasting ecological breadth in a forest light gradient. Ecology Research, 25, 273-281.
DOI URL |
[19] |
Sofo A, Dichio B, Montanaro G, Xiloyannis C (2009). Photosynthetic performance and light response of two olive cultivars under different water and light regimes. Photosynthetica, 47, 602-608.
DOI URL |
[20] | Wang HX (王会肖), Liu CM (刘昌明) (2003). Experimental study on crop photosynthesis, transpiration and high efficient water use. Chinese Journal of Applied Ecology (应用生态学报), 14, 1632-1636. (in Chinese with English abstract) |
[21] | Wang LB (王利兵) (2008). Progress of exploitation and utilization research of wild apricot. Journal of Zhejiang Forestry Science and Technology (浙江林业科技), 28(6), 76-80. (in Chinese with English abstract) |
[22] | Wei L (魏磊), Cui SM (崔世茂) (2008). The effect of soil drought stress on photosynthetic character of Prunus armeniaca. Acta Agriculturae Boreali-Sinica (华北农学报), 23, 194-197. (in Chinese with English abstract) |
[23] | Xia JB (夏江宝), Zhang GC (张光灿), Liu G (刘刚), Han W (韩炜), Chen J (陈建), Liu X (刘霞) (2007). Response of Wisteria sinensis leaves physiological parameters to light under different soil water conditions. Chinese Journal of Applied Ecology (应用生态学报), 18, 30-34. (in Chinese with English abstract) |
[24] | Xu DQ (许大全) (2002). Efficiency of Photosynthesis (光合作用效率). Shanghai Science and Technology Press, Shanghai. 13-18, 99-101. (in Chinese) |
[25] |
Ye ZP (2007). A new model for relationship between light intensity and the rate of photosynthesis in Oryza sativa. Photosynthetica, 45, 637-640.
DOI URL |
[26] | Ye ZP (叶子飘) (2007). Application of light-response model in estimating the photosynthesis of super-hybrid rice combination-II Youming 86. Chinese Journal of Ecology (生态学杂志), 26, 1323-1326. (in Chinese with English abstract) |
[27] | Ye ZP (叶子飘), Yu Q (于强) (2008). Comparison of new and several classical models of photosynthesis in response to irradiance. Journal of Plant Ecology (Chinese Version) (植物生态学报)), 32, 1356-1361. (in Chinese with English abstract) |
[28] | Zhang GC (张光灿), Liu X (刘霞), He KN (贺康宁) (2003). Grading of Robinia pseudoacacia and Platycladus orientalis woodland soil’s water availability and productivity in semi-arid region of Loess Plateau. Chinese Journal of Applied Ecology (应用生态学报), 14, 858-862 . (in Chinese with English abstract) |
[29] | Zhang SY (张淑勇), Zhou ZF (周泽福), Zhang GC (张光灿) , Wang MJ (王梦军), Zhan HX (战海霞) (2008). Gas exchange characteristics of natural secondary shrubs Prunus davidiana and Prunus sibirica under different water stresses. Acta Botanica Boreali-Occidentalia Sinica (西北植物学报), 28, 2492-2499. (in Chinese with English abstract) |
[30] | Zhang SY (张淑勇), Zhou ZF (周泽福), Zhang GC (张光灿), Xia JB (夏江宝) (2009). Changes of gas exchange parameters in leaves of natural secondary shrubs Prunus davidiana and Prunus sibirica L. in semi-arid Loess Hilly region. Acta Ecologica Sinica (生态学报), 29, 499-507. (in Chinese with English abstract) |
[1] | 李伟斌, 张红霞, 张玉书, 陈妮娜. 昼夜不对称增温对长白山阔叶红松林碳汇能力的影响[J]. 植物生态学报, 2023, 47(9): 1225-1233. |
[2] | 冯旭飞, 雷长英, 张玉洁, 向导, 杨明凤, 张旺锋, 张亚黎. 棉花花铃期叶片氮分配对光合氮利用效率的影响[J]. 植物生态学报, 2023, 47(11): 1600-1610. |
[3] | 郑周涛, 张扬建. 1982-2018年青藏高原水分利用效率变化及归因分析[J]. 植物生态学报, 2022, 46(12): 1486-1496. |
[4] | 韩璐, 杨菲, 吴应明, 牛云明, 曾祎明, 陈立欣. 晋西黄土区典型乔灌木短期水分利用效率对环境因子的响应[J]. 植物生态学报, 2021, 45(12): 1350-1364. |
[5] | 周雄, 孙鹏森, 张明芳, 刘世荣. 西南高山亚高山区植被水分利用效率时空特征及其与气候因子的关系[J]. 植物生态学报, 2020, 44(6): 628-641. |
[6] | 冯兆忠, 李品, 张国友, 李征珍, 平琴, 彭金龙, 刘硕. 二氧化碳浓度升高对陆地生态系统的影响: 问题与展望[J]. 植物生态学报, 2020, 44(5): 461-474. |
[7] | 艾则孜提约麦尔·麦麦提, 玉素甫江·如素力, 何辉, 拜合提尼沙·阿不都克日木. 2000-2017年新疆天山植被水分利用效率时空特征及其与气候因子关系分析[J]. 植物生态学报, 2019, 43(6): 490-500. |
[8] | 李鑫豪, 闫慧娟, 卫腾宙, 周文君, 贾昕, 查天山. 油蒿资源利用效率在生长季的相对变化及对环境因子的响应[J]. 植物生态学报, 2019, 43(10): 889-898. |
[9] | 冯朝阳, 王鹤松, 孙建新. 中国北方植被水分利用效率的时间变化特征及其影响因子[J]. 植物生态学报, 2018, 42(4): 453-465. |
[10] | 徐婷, 赵成章, 韩玲, 冯威, 段贝贝, 郑慧玲. 张掖湿地旱柳叶脉密度与水分利用效率的关系[J]. 植物生态学报, 2017, 41(7): 761-769. |
[11] | 刘晓, 戚超, 闫艺兰, 袁国富. 不同生态系统水分利用效率指标在黄土高原半干旱草地应用的适宜性评价[J]. 植物生态学报, 2017, 41(5): 497-505. |
[12] | 黄小涛, 罗格平. 新疆草地蒸散与水分利用效率的时空特征[J]. 植物生态学报, 2017, 41(5): 506-518. |
[13] | 王丹, 乔匀周, 董宝娣, 葛静, 杨萍果, 刘孟雨. 昼夜不对称性与对称性升温对大豆产量和水分利用的影响[J]. 植物生态学报, 2016, 40(8): 827-833. |
[14] | 范嘉智, 王丹, 胡亚林, 景盼盼, 王朋朋, 陈吉泉. 最优气孔行为理论和气孔导度模拟[J]. 植物生态学报, 2016, 40(6): 631-642. |
[15] | 司晓林, 王文银, 高小刚, 徐当会. 氮硅添加对高寒草甸垂穗披碱草叶片全氮含量及净光合速率的影响[J]. 植物生态学报, 2016, 40(12): 1238-1244. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19