植物生态学报 ›› 2019, Vol. 43 ›› Issue (11): 1010-1020.DOI: 10.17521/cjpe.2019.0168
• 研究论文 • 上一篇
收稿日期:
2019-07-02
接受日期:
2019-10-06
出版日期:
2019-11-20
发布日期:
2020-03-26
通讯作者:
薛立
基金资助:
FENG Hui-Fang1,2,LIU Luo-Yu1,XUE Li1,*()
Received:
2019-07-02
Accepted:
2019-10-06
Online:
2019-11-20
Published:
2020-03-26
Contact:
XUE Li
Supported by:
摘要:
大气氮(N)沉降随着人类的活动而日趋严重, 加上中国热带亚热带红壤普遍缺磷(P), 许多森林生态系统由于广泛使用磷肥而产生P富集, 直接影响了森林土壤化学特性。林分密度改变林地的光照、温度、湿度和凋落物持水量, 从而影响土壤特性。为了解外源性N和P添加与林分密度对大叶相思(Acacia auriculiformis)林地土壤化学性质的影响, 为大叶相思人工林的种植密度和土壤养分管理提供科学依据, 该研究于2013到2015年, 以4种不同密度(1 667、2 500、4 444和10 000 trees·hm -2)的10年生大叶相思人工林为研究对象, 分别进行添加N、P和N+P处理, 在试验结束时采集0-10 cm土壤, 对其pH、有机质含量、N含量、P含量和钾(K)含量进行了测定分析。结果表明: 施N和N+P均显著降低了土壤的pH和速效K含量, 显著提高了林地土壤的碱解N含量。施N还显著提高了林分土壤的全N含量, 施P显著提高了土壤pH, 降低了林分土壤的全N含量。施P和N+P显著提高了土壤有机质、全P和有效P含量。随着林分密度的增加, 各处理的土壤有机质、全N、碱解N、全P、有效P和速效K含量显著提高。N、P添加处理和密度处理对大叶相思林的土壤pH、有机质和N、P、K含量有显著的交互作用。总体来看, N添加、P添加、林分密度及其交互作用对大叶相思的土壤化学性质有显著影响。
冯慧芳, 刘落鱼, 薛立. 氮磷添加及林分密度对大叶相思林土壤化学性质的影响. 植物生态学报, 2019, 43(11): 1010-1020. DOI: 10.17521/cjpe.2019.0168
FENG Hui-Fang, LIU Luo-Yu, XUE Li. Effects of nitrogen and phosphorus additions and stand density on soil chemical property in Acacia auriculiformis stands. Chinese Journal of Plant Ecology, 2019, 43(11): 1010-1020. DOI: 10.17521/cjpe.2019.0168
林分 Stand | 林龄 Stand age (a) | 郁闭度 Canopy density | 密度 Density (trees·hm-2) | 胸径 Diameter at breast height (cm) | 树高 Tree height (m) | 坡向 Aspect | 坡度 Slope (°) | 主要林下植物 Main undergrowth plant |
---|---|---|---|---|---|---|---|---|
低密度 Low density | 10 | 0.65 | 1 667 | 11.4 | 11.2 | SW 43° | 28 | 桃金娘、芒草、玉叶金花、梅叶冬青、了哥王、米碎花、滇牡丹、黑面神 Rhodomyrtus tomentosa, Miscanthus sinensis, Mussaenda pubescens, Ilex asprella, Wikstroemia indica, Eurya chinensis, Paeonia delavayi, Breynia fruticosa |
中密度 Medium density | 10 | 0.70 | 2 500 | 10.6 | 10.2 | SW 44° | 31 | 玉叶金花、桃金娘、芒草、芒萁、梅叶冬青、米碎花 M. pubescens, R. tomentosa, M. sinensis, Dicranopteris pedata, I. asprella, E. chinensis |
较高密度 Relatively high density | 10 | 0.75 | 4 444 | 9.8 | 10.1 | SW 44° | 30 | 芒萁、芒草、桃金娘、梅叶冬青、玉叶金花、米碎花 D. pedata, M. sinensis, R. tomentosa, I. asprella, M. pubescens, E. chinensis |
高密度 High density | 10 | 0.80 | 10 000 | 8.6 | 11.1 | SW 42° | 27 | 玉叶金花、桃金娘、海金沙、芒草、芒萁、梅叶冬青 M. pubescens, R. tomentosa, Lygodium japonicum, M. sinensis, D. pedata, I. asprella |
表1 大叶相思林分的基本特征
Table 1 Characteristics of the Acacia auriculiformis stands
林分 Stand | 林龄 Stand age (a) | 郁闭度 Canopy density | 密度 Density (trees·hm-2) | 胸径 Diameter at breast height (cm) | 树高 Tree height (m) | 坡向 Aspect | 坡度 Slope (°) | 主要林下植物 Main undergrowth plant |
---|---|---|---|---|---|---|---|---|
低密度 Low density | 10 | 0.65 | 1 667 | 11.4 | 11.2 | SW 43° | 28 | 桃金娘、芒草、玉叶金花、梅叶冬青、了哥王、米碎花、滇牡丹、黑面神 Rhodomyrtus tomentosa, Miscanthus sinensis, Mussaenda pubescens, Ilex asprella, Wikstroemia indica, Eurya chinensis, Paeonia delavayi, Breynia fruticosa |
中密度 Medium density | 10 | 0.70 | 2 500 | 10.6 | 10.2 | SW 44° | 31 | 玉叶金花、桃金娘、芒草、芒萁、梅叶冬青、米碎花 M. pubescens, R. tomentosa, M. sinensis, Dicranopteris pedata, I. asprella, E. chinensis |
较高密度 Relatively high density | 10 | 0.75 | 4 444 | 9.8 | 10.1 | SW 44° | 30 | 芒萁、芒草、桃金娘、梅叶冬青、玉叶金花、米碎花 D. pedata, M. sinensis, R. tomentosa, I. asprella, M. pubescens, E. chinensis |
高密度 High density | 10 | 0.80 | 10 000 | 8.6 | 11.1 | SW 42° | 27 | 玉叶金花、桃金娘、海金沙、芒草、芒萁、梅叶冬青 M. pubescens, R. tomentosa, Lygodium japonicum, M. sinensis, D. pedata, I. asprella |
图1 不同处理和密度的大叶相思林土壤pH (平均值±标准误差)。CK, 对照; N, 添加N; P, 添加P; N+P, 添加N和P。不同小写字母表示氮、磷添加间有显著差异(p < 0.05)。
Fig. 1 Soil pH value of the Acacia auriculiformis stands under different treatments and densities (mean ± SE). CK, control; N, N addition; P, P addition; N+P, N and P addition. Different lowercase letters indicate significant differences at 0.05 levels between nitrogen and phosphorus additions (p < 0.05).
图2 不同处理和密度的大叶相思林的土壤有机质含量(平均值±标准误差)。CK, 对照; N, 添加N; P, 添加P; N+P, 添加N和P。不同小写字母表示氮、磷添加间有显著差异(p < 0.05)。
Fig. 2 Soil organic matter (SOM) content of Acacia auriculiformis stands under different treatments and densities (mean ± SE). CK, control; N, N addition; P, P addition; N+P, N and P addition. Different lowercase letters indicate significant differences at 0.05 levels between nitrogen and phosphorus additions (p < 0.05).
图3 不同处理和密度的大叶相思林的土壤全氮含量(平均值±标准误差)。CK, 对照; N, 添加N; P, 添加P; N+P, 添加N和P。不同小写字母表示氮、磷添加间有显著差异(p < 0.05)。
Fig. 3 Soil total N (TN) content of Acacia auriculiformis stands under different treatments and densities (mean ± SE). CK, control; N, N addition; P, P addition; N+P, N and P addition. Different lowercase letters indicate significant differences at 0.05 levels between nitrogen and phosphorus additions (p < 0.05).
图4 不同处理和密度的大叶相思林的土壤碱解氮含量(平均值±标准误差)。CK, 对照; N, 添加N; P, 添加P; N+P, 添加N和P。不同小写字母表示氮、磷添加间有显著差异(p < 0.05)。
Fig. 4 Soil alkaline N (AN) content of Acacia auriculiformis stands under different treatments and densities (mean ± SE). CK, control; N, N addition; P, P addition; N+P, N and P addition. Different lowercase letters indicate significant differences at 0.05 levels between nitrogen and phosphorus additions (p < 0.05).
图5 不同处理和密度的大叶相思林的土壤全磷含量(平均值±标准误差)。CK, 对照; N, 添加N; P, 添加P; N+P, 添加N和P。不同小写字母表示氮、磷添加间有显著差异(p < 0.05)。
Fig. 5 Soil total P (TP) content of Acacia auriculiformis stands under different treatments and densities (mean ± SE). CK, control; N, N addition; P, P addition; N+P, N and P addition. Different lowercase letters indicate significant differences at 0.05 levels between nitrogen and phosphorus additions (p < 0.05).
图6 不同处理和密度的大叶相思林的土壤有效磷含量(平均值±标准误差)。CK, 对照; N, 添加N; P, 添加P; N+P, 添加N和P。不同小写字母表示氮、磷添加间有显著差异(p < 0.05)。
Fig. 6 Soil available P (AP) content of Acacia auriculiformis stands s under different treatments and densities (mean ± SE). CK, control; N, N addition; P, P addition; N+P, N and P addition. Different lowercase letters indicate significant differences at 0.05 levels between nitrogen and phosphorus additions (p < 0.05).
图7 不同处理和密度的大叶相思林的土壤全钾含量(平均值±标准误差)。CK, 对照; N, 添加N; P, 添加P; N+P, 添加N和P。不同小写字母表示氮、磷添加间有显著差异(p < 0.05)。
Fig. 7 Soil total K (TK) content of Acacia auriculiformis stands under different treatments and densities (mean ± SE). CK, control; N, N addition; P, P addition; N+P, N and P addition. Different lowercase letters indicate significant differences at 0.05 levels between nitrogen and phosphorus additions (p < 0.05).
图8 不同处理和密度的大叶相思林的土壤速效钾含量(平均值±标准误差)。CK, 对照; N, 添加N; P, 添加P; N+P, 添加N和P。不同小写字母表示氮、磷添加间有显著差异(p < 0.05)。
Fig. 8 Soil available K (AK) content of Acacia auriculiformis stands under different treatments and densities (mean ± SE). CK, control; N, N addition; P, P addition; N+P, N and P addition. Different lowercase letters indicate significant differences at 0.05 levels between nitrogen and phosphorus additions (p < 0.05)
指标 Parameter | NP处理 NP treatments | 密度 Density | 密度与NP处理交互作用 Interaction between density and NP treatments | |||
---|---|---|---|---|---|---|
F | p | F | p | F | p | |
pH | 734.716 | 0.000 | 52.721 | 0.000 | 10.57 | 0.000 |
有机质 SOC | 379.581 | 0.000 | 2 764.643 | 0.000 | 36.204 | 0.000 |
全氮 TN | 81.08 | 0.000 | 680.233 | 0.000 | 6.732 | 0.000 |
全磷 TP | 2 445.366 | 0.000 | 651.776 | 0.000 | 16.592 | 0.000 |
全钾 TK | 4.887 | 0.007 | 189.284 | 0.000 | 8.448 | 0.000 |
碱解氮 AN | 1 734.794 | 0.000 | 265.347 | 0.000 | 8.02 | 0.000 |
有效磷 AP | 1 345.668 | 0.000 | 322.54 | 0.000 | 43.607 | 0.000 |
速效钾 AK | 412.176 | 0.000 | 536.283 | 0.000 | 24.536 | 0.000 |
表2 施肥处理和密度对大叶相思林土壤化学性质的交互作用
Table 2 Interaction between NP treatments and density in soil chemical properties of Acacia auriculiformis stands
指标 Parameter | NP处理 NP treatments | 密度 Density | 密度与NP处理交互作用 Interaction between density and NP treatments | |||
---|---|---|---|---|---|---|
F | p | F | p | F | p | |
pH | 734.716 | 0.000 | 52.721 | 0.000 | 10.57 | 0.000 |
有机质 SOC | 379.581 | 0.000 | 2 764.643 | 0.000 | 36.204 | 0.000 |
全氮 TN | 81.08 | 0.000 | 680.233 | 0.000 | 6.732 | 0.000 |
全磷 TP | 2 445.366 | 0.000 | 651.776 | 0.000 | 16.592 | 0.000 |
全钾 TK | 4.887 | 0.007 | 189.284 | 0.000 | 8.448 | 0.000 |
碱解氮 AN | 1 734.794 | 0.000 | 265.347 | 0.000 | 8.02 | 0.000 |
有效磷 AP | 1 345.668 | 0.000 | 322.54 | 0.000 | 43.607 | 0.000 |
速效钾 AK | 412.176 | 0.000 | 536.283 | 0.000 | 24.536 | 0.000 |
[1] | Azad S, Manik MR, Hasan SM, Matin A ( 2011). Effect of different pre-sowing treatments on seed germination percentage and growth performance of Acacia auriculiformis. Journal of Forestry Research, 22, 183-188. |
[2] | Blanes MC, Emmett BA, Viñegla B, Carreira JA ( 2012). Alleviation of P limitation makes tree roots competitive for N against microbes in a N-saturated conifer forest: A test through P fertilization and 15N labelling. Soil Biology & Biochemistry, 48, 51-59. |
[3] | Boxman AW, Peters RCJH, Roelofs JGM ( 2008). Long term changes in atmospheric N and S throughfall deposition and effects on soil solution chemistry in a Scots pine forest in the Netherlands. Environmental Pollution, 156, 1252-1259. |
[4] | Chen H, Gurmesa GA, Zhang W, Zhu XM, Zheng MH, Mao QG, Zhang T, Mo JM ( 2016). Nitrogen saturation in humid tropical forests after 6 years of nitrogen and phosphorus addition: Hypothesis testing. Functional Ecology, 30, 305-313. |
[5] | Chen Z, Yin HJ, Wei YY, Liu Q ( 2010). Short-term effects of night warming and nitrogen addition on soil available nitrogen and microbial properties in subalpine coniferous forest, Western Sichuan, China. Chinese Journal of Plant Ecology, 34, 1254-1264. |
[ 陈智, 尹华军, 卫云燕, 刘庆 ( 2010). 夜间增温和施氮对川西亚高山针叶林土壤有效氮和微生物特性的短期影响. 植物生态学报, 34, 1254-1264.] | |
[6] | Coûteaux MM, Bottner P, Berg B ( 1995). Litter decomposition, climate and litter quality. Trends in Ecology & Evolution, 10, 63-66. |
[7] | Dong W, Liu TR, Qin ZJ, Guo JP, Zhang YX ( 2019). Research on the characteristics of soil physicochemical properties and microbial biomass carbon and nitrogen in natural Pinus tabulaeformis forests with different stand densities. Ecology and Environmental Sciences, 28, 65-72. |
[ 董威, 刘泰瑞, 覃志杰, 郭晋平, 张芸香 ( 2019). 不同林分密度油松天然林土壤理化性质及微生物量碳氮特征研究. 生态环境学报, 28, 65-72.] | |
[8] | Ellis RH, Mai-Hong T, Hong TD, Tan TT, Xuan-Chuong ND, Hung LQ, Ngoc-Tam B, Le-Tam VT ( 2007). Comparative analysis by protocol and key of seed storage behaviour of sixty Vietnamese tree species. Seed Science and Technology, 35, 460-476. |
[9] | Fan HB, Liu WF, Yang YL, Zhang ZW, Cao HY, Xu L ( 2008). Decomposition of leaf litter of Chinese fir in response to increased nitrogen deposition. Journal of Beijing Forestry University, 30(2), 8-13. |
[ 樊后保, 刘文飞, 杨跃霖, 张子文, 曹汉洋, 徐雷 ( 2008). 杉木人工林凋落物分解对氮沉降增加的响应. 北京林业大学学报, 30(2), 8-13.] | |
[10] | Fang H, Mo JM, Peng SL, Li ZA, Wang H ( 2007). Cumulative effects of nitrogen additions on litter decomposition in three tropical forests in southern China. Plant and Soil, 297, 233-242. |
[11] | Fang YT, Gundersen P, Mo JM, Zhu WX ( 2008). Input and output of dissolved organic and inorganic nitrogen in subtropical forests of South China under high air pollution. Biogeosciences, 5, 339-352. |
[12] | Feng HF, Xue L ( 2019). Competition-density effect of tree organs in Acacia auriculiformis stands. Journal of Forestry Research, 30, 891-898. |
[13] | Feng HF, Xue L, Chen HY ( 2018). Responses of decomposition of green leaves and leaf litter to stand density, N and P additions in Acacia auriculaeformis stands. European Journal of Forest Research, 137, 819-830. |
[14] | Feng YM, Li Y, Cao XW, Liu JQ, Qi R, Zhao Y, Chen XL ( 2018). Characteristics of stand structure and soil physicochemical properties of artificial young Picea asperata plantation with different densities in southern Gansu. Scientia Silvae Sinicae, 54(10), 20-30. |
[ 冯宜明, 李毅, 曹秀文, 刘锦乾, 齐瑞, 赵阳, 陈学龙 ( 2018). 甘肃南部不同密度云杉人工幼林的林分结构特征及土壤理化性质. 林业科学, 54(10), 20-30.] | |
[15] | Gundersen P, Sevel L, Christiansen JR, Vesterdal L, Hansen K, Bastrup-Birk A ( 2009). Do indicators of nitrogen retention and leaching differ between coniferous and broadleaved forests in Denmark? Forest Ecology and Management, 258, 1137-1146. |
[16] | Hagedorn F, Spinnler D, Siegwolf R ( 2003). Increased N deposition retards mineralization of old soil organic matter. Soil Biology and Biochemistry, 35, 1683-1692. |
[17] | Hu YL, Han SJ, Li XF, Zhao YT, Li D ( 2009). Responses of soil available nitrogen of natural forest and secondary forest to simulated N deposition in Changbai Mountain. Journal of Northeast Forestry University, 37(5), 36-38, 42. |
[ 胡艳玲, 韩士杰, 李雪峰, 赵玉涛, 李东 ( 2009). 长白山原始林和次生林土壤有效氮含量对模拟氮沉降的响应. 东北林业大学学报, 37(5), 36-38, 42.] | |
[18] | Kumar R, Pandey KK, Chandrashekar N, Mohan S ( 2011). Study of age and height wise variability on calorific value and other fuel properties of Eucalyptus hybrid, Acacia auriculaeformis and Casuarina equisetifolia. Biomass and Bioenergy, 35, 1339-1344. |
[19] | Li CC, Liu N, Guo JP, Zhang YX, Yang SH, Bai JH ( 2014). Short term effect of nitrogen deposition on needle of Larix and forest soil. Ecology and Environmental Sciences, 23, 1924-1932. |
[ 李琛琛, 刘宁, 郭晋平, 张芸香, 杨三红, 白晋华 ( 2014). 氮沉降对华北落叶松叶特性和林下土壤特性的短期影响. 生态环境学报, 23, 1924-1932.] | |
[20] | Li J, Xue L ( 2017). Research progress in the effect of nitrogen and phosphorus deposition on biochemical characteristics of forest soil. World Forestry Research, 30(2), 14-19. |
[ 李洁, 薛立 ( 2017). 氮磷沉降对森林土壤生化特性影响研究进展. 世界林业研究, 30(2), 14-19.] | |
[21] | Li Y, Zeng SC, Huang WJ ( 2011). Effects of simulated nitrogen deposition on soil acid phosphomonoesterase activity and soil available phosphorus content in subtropical forests in Dinghushan Mountain. Chinese Journal of Applied Ecology, 22, 631-636. |
[ 李银, 曾曙才, 黄文娟 ( 2011). 模拟氮沉降对鼎湖山森林土壤酸性磷酸单酯酶活性和有效磷含量的影响. 应用生态学报, 22, 631-636.] | |
[22] | Liang LL, Xue L, Fu JD, Zheng WG, Shi XL, Feng HF ( 2009). Density effects on interactions between above and belowground competition in young Acacia auriculaeformis stands. Journal of South China Agricultural University, 30(3), 59-62. |
[ 梁丽丽, 薛立, 傅静丹, 郑卫国, 史小玲, 冯慧芳 ( 2009). 密度对大叶相思幼林地上竞争和地下竞争的影响. 华南农业大学学报, 30(3), 59-62.] | |
[23] | Lie ZY, Wang ZM, Xue L ( 2016). Effect of density of Tephrosia candida stands on soil characteristics. Legume Research, 40, 551-555. |
[24] | Lieb AM, Darrouzet-Nardi A, Bowman WD ( 2011). Nitrogen deposition decreases acid buffering capacity of alpine soils in the southern Rocky Mountains. Geoderma, 164, 220-224. |
[25] | Lin WQ, Cai JH, Xue L ( 2019). Short-term interactive effects of nitrogen and phosphorus additions and different planting densities on soil chemical properties of Cinnamomum camphora seedlings. Acta Ecologica Sinica, 39, 9162-9170. |
[ 林婉奇, 蔡金桓, 薛立 ( 2019). 氮磷添加与不同栽植密度交互对樟树幼苗土壤化学性质的短期影响. 生态学报, 39, 9162-9170.] | |
[26] | Liu JX, Fang X, Deng Q, Han TF, Huang WJ, Li YY ( 2015). CO2 enrichment and N addition increase nutrient loss from decomposing leaf litter in subtropical model forest ecosystems. Scientific Reports, 5, 7952. DOI: 10.1038/srep07952. |
[27] | Lu RK ( 2000). Methods of Soil Agricultural Chemical Analysis. China Agricultural Science and Technology Press, Beijing. |
[ 鲁如坤 ( 2000). 土壤农业化学分析方法. 中国农业科技出版社, 北京.] | |
[28] | Lu XK, Mo JM, Gundersern P, Zhu WX, Zhou GY, Li DJ, Zhang X ( 2009). Effect of simulated N deposition on soil exchangeable cations in three forest types of subtropical China. Pedosphere, 19, 189-198. |
[29] | Meiwes KJ, Meesenburg H, Bartens H, Khanna PK ( 2002). Accumulation of humus in the litter layer of forest stands at Solling: Possible causes and significance for the nutrient cycling. Forst Holz, 57, 428-433. |
[30] | Mellert KH, Prietzel J, Straussberger R, Rehfuess KE, Kahle HP, Perez P, Spiecker H ( 2008). Relationships between long-term trends of air temperature, precipitation, nitrogen nutrition and growth of coniferous stands in Central Europe and Finland. European Journal of Forest Research, 127, 507-524. |
[31] | Nakaji T, Takenaga S, Kuroha M, Izuta T ( 2002). Photosynthetic response of Pinus densiflora seedlings to high nitrogen load. Environmental Sciences, 9, 269-282. |
[32] | Prietzel J, Rehfuess KE, Stetter U, Pretzsch H ( 2008). Changes of soil chemistry, stand nutrition, and stand growth at two Scots pine ( Pinus sylvestris L.) sites in Central Europe during 40 years after fertilization, liming, and lupine introduction. European Journal of Forest Research, 127, 43-61. |
[33] | Saiya-Cork KR, Sinsabaugh RL, Zak DR ( 2002). The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil. Soil Biology & Biochemistry, 34, 1309-1315. |
[34] | She HJ, Cai JH, Xue L, Zheng XY ( 2018). Effects of nitrogen and phosphorus additions on leaf litter decomposition and soil biochemical characteristics in an Acacia mangium plantation. Forest Research, 31(2), 107-113. |
[ 佘汉基, 蔡金桓, 薛立, 郑欣颖 ( 2018) 模拟外源性氮磷对马占相思凋落叶分解及土壤生化特性的影响. 林业科学研究, 31(2), 107-113.] | |
[35] | Sheng R, Xiao HA, Tan ZJ, Ding LJ, Xie DP ( 2010). Advance in phosphorus-dissolving microorganisms and the mechanisms on phosphorus transformation and availability. Chinese Journal of Soil Science, 41, 1505-1510. |
[ 盛荣, 肖和艾, 谭周进, 丁龙君, 谢达平 ( 2010). 土壤解磷微生物及其磷素有效性转化机理研究进展. 土壤通报, 41, 1505-1510. | |
[36] | Srivastava NK, Ram LC, Masto RE ( 2014). Reclamation of overburden and lowland in coal mining area with fly ash and selective plantation: A sustainable ecological approach. Ecological Engineering, 71, 479-489. |
[37] | Sun QH, Wu X, Wang MZ, Zhang LH, Yao XL, Qi JQ, Hao JF ( 2018). Effects of stand density on understory species diversity and soil physicochemical properties of Pinus massoniana plantation. Chinese Journal of Applied Ecology, 29, 732-738. |
[ 孙千惠, 吴霞, 王媚臻, 张柳桦, 姚小兰, 齐锦秋, 郝建锋 ( 2018). 林分密度对马尾松林林下物种多样性和土壤理化性质的影响. 应用生态学报, 29, 732-738.] | |
[38] | Tang GY, Gao CJ, Li K ( 2015). Effects of vegetation restoration on the amelioration of degraded soil in a dry-hot valley. Acta Ecologica Sinica, 35, 5157-5167. |
[ 唐国勇, 高成杰, 李昆 ( 2015). 植被恢复对干热河谷退化土壤改良的影响. 生态学报, 35, 5157-5167.] | |
[39] | Tu LH, Hu TX, Zhang J, Li RH, Dai HZ, Luo SH, Xiang YB, Huang LH ( 2009). Soil enzyme activities in a Pleioblastus amurus plantation in Rainy Area of West China under simulated nitrogen deposition. Chinese Journal of Applied Ecology, 20, 2943-2948. |
[ 涂利华, 胡庭兴, 张健, 李仁洪, 戴洪忠, 雒守华, 向元彬, 黄立华 ( 2009). 华西雨屏区苦竹林土壤酶活性对模拟氮沉降的响应. 应用生态学报, 20, 2943-2948.] | |
[40] | Vitousek PM, Porder S, Houlton BZ, Chadwick OA ( 2010). Terrestrial phosphorus limitation: Mechanisms, implications, and nitrogen-phosphorus interactions. Ecological Applications, 20, 5-15. |
[41] | Wang H, Wang H, Zhao QY, Zhuang HF, Song YH, Zhu ZH ( 2013). Influence of different planting spacing of Areca nut intercropping with Vanilla on soil microbes and nutrients. Journal of Plant Nutrition and Fertilizer, 19, 988-994. |
[ 王华, 王辉, 赵青云, 庄辉发, 宋应辉, 朱自慧 ( 2013). 槟榔不同株行距间作香草兰对土壤养分和微生物的影响. 植物营养与肥料学报, 19, 988-994.] | |
[42] | Wang MZ, Bi HJ, Jin S, Liu J, Liu YH, Wang Y, Qi JQ, Hao JF ( 2019). Effects of stand density on understory species diversity and soil physicochemical properties of a Cupressus funebris plantation in Yunding Mountain. Acta Ecologica Sinica, 39, 981-988. |
[ 王媚臻, 毕浩杰, 金锁, 刘佳, 刘宇航, 王宇, 齐锦秋, 郝建锋 ( 2019). 林分密度对云顶山柏木人工林林下物种多样性和土壤理化性质的影响. 生态学报, 39, 981-988.] | |
[43] | Wei RP, Xue L, Chen HY, Hu DH, Xie TF, Wang XE ( 2009). Effects of rare earth on seeds germination and seedlings growth of Acacia angium and Acacia auriculiformis. Chinese Journal of Soil Science, 40, 896-901. |
[ 韦如萍, 薛立, 陈红跃, 胡德活, 谢腾芳, 王相娥 ( 2009). 稀土对马占相思和大叶相思种子萌发和幼苗生长的影响. 土壤通报, 40, 896-901.] | |
[44] | Wei XH, Blanco JA, Jiang H, Kimmins JPH ( 2012). Effects of nitrogen deposition on carbon sequestration in Chinese fir forest ecosystems. Science of the Total Environment, 416, 351-361. |
[45] | Xu SK, Wang XE, Xie TF, Zeng F, Huang LM ( 2008). Soil fertility of young Acacia auriculiformis stands with different densities. Journal of South China Agricultural University, 29, 79-81. |
[ 许松葵, 王相娥, 谢腾芳, 曾锋, 黄丽铭 ( 2008). 不同密度大叶相思幼林的土壤肥力. 华南农业大学学报, 29, 79-81.] | |
[46] | Xu SK, Xue L, Chen HY, Huang YF, Liu CY ( 2006). Soil physical and chemical properties of model woodlands in Nansha, Guangzhou. Chinese Journal of Soil Science, 37, 36-40. |
[ 许松葵, 薛立, 陈红跃, 黄永芳, 刘春燕 ( 2006). 广州南沙典型林地土壤理化性质的研究. 土壤通报, 37, 36-40.] | |
[47] | Yuan YH, Fan HB, Wang Q, Qiu XQ, Chen QF, Li YY, Huang YZ, Liao YC ( 2007). Available nutrients with increased N deposition in soils of Cunninghamia lanceolata plantations. Journal of Zhejiang Forestry College, 24, 437-444. |
[ 袁颖红, 樊后保, 王强, 裘秀群, 陈秋凤, 李燕燕, 黄玉梓, 廖迎春 ( 2007). 模拟氮沉降对杉木人工林土壤有效养分的影响. 浙江林学院学报, 24, 437-444.] | |
[48] | Zhan N, Huang LJ ( 2016). Conditions for in vitro germination and testing method for pollen viability of Acacia auriculiformis. Scientia Silvae Sinicae, 52(2), 67-73. |
[ 詹妮, 黄烈健 ( 2016). 大叶相思花粉离体萌发适宜条件及活力检测方法. 林业科学, 52(2), 67-73.] | |
[49] | Zhang DH, Tu CJ, Shen PS, Liu GL ( 2008). Phosphorus status of main soil groups in Fujian mountainous regions. Scientia Silvae Sinicae, 44(8), 29-36. |
[ 张鼎华, 涂传进, 沈乒松, 刘桂林 ( 2008). 福建山地几种主要土类土壤磷的研究. 林业科学, 44(8), 29-36.] | |
[50] | Zhang HL, Liang CH, Sun TH ( 2007). Effects of long-term localized fertilization on soil potassium supply in a sheltered vegetable field. Chinese Journal of Ecology, 26, 1339-1343. |
[ 张鸿龄, 梁成华, 孙铁珩 ( 2007). 长期定位施肥对保护地土壤供钾特性的影响. 生态学杂志, 26, 1339-1343.] | |
[51] | Zhao WW, Liang WJ, Wei X ( 2019). Soil nutrient characteristics of Larix principis rupprechtii plantations with different stand densities. Journal of Southwest China Normal University (Natural Science Edition), 44, 84-92. |
[ 赵伟文, 梁文俊, 魏曦 ( 2019). 不同林分密度华北落叶松人工林土壤养分特征. 西南师范大学学报(自然科学版), 44, 84-92.] | |
[52] | Zhao Y, Zhang C, Zhao HF, Xu XN ( 2013). Effects of N and P addition on soil nitrogen mineralization in a subtropical evergreen broadleaved forest. Chinese Journal of Ecology, 32, 1690-1697. |
[ 赵阳, 张驰, 赵竑绯, 徐小牛 ( 2013). 氮磷添加对亚热带常绿阔叶林土壤氮素矿化的影响. 生态学杂志, 32, 1690-1697.] | |
[53] | Zhou DY, Bu DR, Ge ZW, Yan J, Xiao HR, Ruan HH, Cao GH ( 2015). Effects of nitrogen addition on soil fauna in poplar plantation with different ages in a coastal area of eastern China. Chinese Journal of Ecology, 34, 2553-2560. |
[ 周丹燕, 卜丹蓉, 葛之葳, 严靖, 肖晗冉, 阮宏华, 曹国华 ( 2015). 氮添加对沿海不同林龄杨树人工林土壤动物群落的影响. 生态学杂志, 34, 2553-2560.] |
[1] | 黄玲, 王榛, 马泽, 杨发林, 李岚, SEREKPAYEV Nurlan, NOGAYEV Adilbek, 侯扶江. 长期放牧和氮添加对黄土高原典型草原长芒草种群生长的影响[J]. 植物生态学报, 2024, 48(3): 317-330. |
[2] | 吴君梅, 曾泉鑫, 梅孔灿, 林惠瑛, 谢欢, 刘苑苑, 徐建国, 陈岳民. 土壤磷有效性调控亚热带森林土壤酶活性和酶化学计量对凋落叶输入的响应[J]. 植物生态学报, 2024, 48(2): 242-253. |
[3] | 颜辰亦, 龚吉蕊, 张斯琦, 张魏圆, 董学德, 胡宇霞, 杨贵森. 氮添加对内蒙古温带草原土壤活性有机碳的影响[J]. 植物生态学报, 2024, 48(2): 229-241. |
[4] | 耿雪琪, 唐亚坤, 王丽娜, 邓旭, 张泽凌, 周莹. 氮添加增加中国陆生植物生物量并降低其氮利用效率[J]. 植物生态学报, 2024, 48(2): 147-157. |
[5] | 舒韦维, 杨坤, 马俊旭, 闵惠琳, 陈琳, 刘士玲, 黄日逸, 明安刚, 明财道, 田祖为. 氮添加对红锥不同序级细根形态和化学性状的影响[J]. 植物生态学报, 2024, 48(1): 103-112. |
[6] | 赵艳超, 陈立同. 土壤养分对青藏高原高寒草地生物量响应增温的调节作用[J]. 植物生态学报, 2023, 47(8): 1071-1081. |
[7] | 苏炜, 陈平, 吴婷, 刘岳, 宋雨婷, 刘旭军, 刘菊秀. 氮添加与干季延长对降香黄檀幼苗非结构性碳水化合物、养分与生物量的影响[J]. 植物生态学报, 2023, 47(8): 1094-1104. |
[8] | 李红琴, 张法伟, 仪律北. 高寒草甸表层土壤和优势植物叶片的化学计量特征对降水改变和氮添加的响应[J]. 植物生态学报, 2023, 47(7): 922-931. |
[9] | 张雅琪, 庞丹波, 陈林, 曹萌豪, 何文强, 李学斌. 荒漠草原土壤氨氧化细菌群落结构对氮添加和枯落物输入的响应[J]. 植物生态学报, 2023, 47(5): 699-712. |
[10] | 罗来聪, 赖晓琴, 白健, 李爱新, 方海富, Nasir SHAD, 唐明, 胡冬南, 张令. 氮添加背景下土壤真菌和细菌对不同种源入侵植物乌桕生长特征的影响[J]. 植物生态学报, 2023, 47(2): 206-215. |
[11] | 安凡, 李宝银, 钟全林, 程栋梁, 徐朝斌, 邹宇星, 张雪, 邓兴宇, 林秋燕. 不同种源刨花楠苗木生长与主要功能性状对氮添加的响应[J]. 植物生态学报, 2023, 47(12): 1693-1707. |
[12] | 葛萍, 李昂, 王银柳, 姜良超, 牛国祥, 哈斯木其尔, 王彦兵, 薛建国, 赵威, 黄建辉. 草甸草原温室气体排放对氮添加量的非线性响应[J]. 植物生态学报, 2023, 47(11): 1483-1492. |
[13] | 董六文, 任正炜, 张蕊, 谢晨笛, 周小龙. 功能多样性比物种多样性更好解释氮添加对高寒草地生物量的影响[J]. 植物生态学报, 2022, 46(8): 871-881. |
[14] | 谢欢, 张秋芳, 陈廷廷, 曾泉鑫, 周嘉聪, 吴玥, 林惠瑛, 刘苑苑, 尹云锋, 陈岳民. 氮添加促进丛枝菌根真菌和根系协作维持土壤磷有效性[J]. 植物生态学报, 2022, 46(7): 811-822. |
[15] | 赵阳, 栾军伟, 王一, 杨怀, 刘世荣. 模拟干旱和磷添加对热带低地雨林氮矿化过程的影响[J]. 植物生态学报, 2022, 46(1): 102-113. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19