植物生态学报 ›› 2017, Vol. 41 ›› Issue (5): 585-596.DOI: 10.17521/cjpe.2016.0062
所属专题: 全球变化与生态系统
• 综述 • 上一篇
严月1,2,3,,A;*, 朱建军2,3,,A;*, 张彬2,3,4, 张艳杰1, 鲁顺保1,3,,A;,A;*, 潘庆民2,3,,A;,A;*
出版日期:
2017-05-10
发布日期:
2017-06-22
通讯作者:
严月,朱建军,鲁顺保,潘庆民
作者简介:
* 通信作者Author for correspondence (E-mail:
基金资助:
Yue YAN1,2,3,*, Jian-Jun ZHU2,3,*, Bin ZHANG2,3,4, Yan-Jie ZHANG1, Shun-Bao LU1,3,**, Qing-Min PAN2,3,**
Online:
2017-05-10
Published:
2017-06-22
Contact:
Yue YAN,Jian-Jun ZHU,Shun-Bao LU,Qing-Min PAN
About author:
KANG Jing-yao(1991-), E-mail:
摘要:
草原生态系统植物生物量在地上和地下器官之间的分配是联系地上生产力与地下碳固持的枢轴环节。由于地下生物量的准确测定是正确分析生物量分配的基础, 该文首先系统分析了植物地下生物量的测定方法及其优缺点; 在此基础上, 综述了当前草地生态系统地下生物量分配对全球气候变化主要驱动因子(降水、CO2浓度、温度和氮沉降)的响应, 并提出了今后相关研究中需解决的主要问题, 以期为开展全球变化背景下草地生态系统碳循环的研究提供参考。
严月, 朱建军, 张彬, 张艳杰, 鲁顺保, 潘庆民. 草原生态系统植物地下生物量分配及对全球变化的响应. 植物生态学报, 2017, 41(5): 585-596. DOI: 10.17521/cjpe.2016.0062
Yue YAN, Jian-Jun ZHU, Bin ZHANG, Yan-Jie ZHANG, Shun-Bao LU, Qing-Min PAN. A review of belowground biomass allocation and its response to global climatic change in grassland ecosystems. Chinese Journal of Plant Ecology, 2017, 41(5): 585-596. DOI: 10.17521/cjpe.2016.0062
过程 Step | 不确定性来源 Sources of uncertainty | 改善措失 Improvement measures | 参考文献 References |
---|---|---|---|
微根管的安装 Minirhizotron installation | 微根管材料 Material of minirhizotron tube | 一般选用聚碳酸酯管, 减小对根系的生长的影响 Polycarbonate tube is generally selected to reduce the I mpact on the growth of roots | Vannoordwijk et al., 1985; Brown & Pchurch, 1987; Withington et al., 2003 |
微根管的密封性 Sealability of minirhizotron tube | 顶端加盖密封, 防止光线透入影响根系生长 The top of tube was sealed to prevent root from light | Iversen et al., 2012; Rytter & Rytter, 2012 | |
安装角度 Installation angle | 一般选择偏离垂直方向30°或45°, 有角度的安装水平安装更易于研究根的垂直分布 The tubes are usually installed with an angle deviated from the vertical direction by 30° or 45°, with which the installation of tubes is convenient and the vertical distribution of the root is easier to be observed | Iversen et al., 2012; Johnson et al., 2001 | |
平衡期的确定 Determination for the duration of equilibrium | 几周、几月甚至一年以上不等; 尽量确保达到管土平衡 The duration of equilibrium may last several weeks, months, or even more than one year, depending on the soil and vegetation types. The purpose for such a duration is to ensure tubes equilibrate with surrounding soil | Weber & Day, 1996; Wells et al., 2002 | |
影像采集 Image capture | 图片数量和质量 Quantity and quality of images | 一般30-50张, 在预定时间可以完成的工作量范围内, 尽可能多的采集图片并确保图片采集清晰 Collecting enough images within the working period (usually 30-50 photos) and examining whether the pictures are in focus | Johnson et al., 2001; Shi et al., 2006 |
采集时间 Image capture time | 尽量保证在1-2天采集完成, 摄像头的光系统停留时间太长, 会改变土壤温度, 影响根系生长 Capturing the picture within 1 d to 2 d as soil temperature and root growth may be changed by long time lighting of camera | van Rees, 1998 | |
采集频率 Image capture frequency | 间隔约2周采集一次; 间隔时间太长会因观察不到细根周转而导致对根系动态的低估 Collect images every two weeks; the longer interval will underestimate root system dynamics due to miss the fine root turnover | Johnson et al., 2001 | |
数据处理 Data processing | 死活根的区分 Separation of the live and dead root | 一般将颜色为棕色或黑色根定义为死根; 如果在这次影像采集时可见, 下一次影像采集时看不到此根, 也将此根定义为死根 The dark-brown or black roots are usually regarded as dead roots. Also, the roots being seen in last time but disappeared this time are considered as dead roots | Espeleta & Donovan, 2002; Majdi & Ohrvik, 2004 ; West et al., 2004 |
表1 微根管法测定的不确定性及其改善措施
Table 1 The uncertainty and improvement needs for minirhizotron technology
过程 Step | 不确定性来源 Sources of uncertainty | 改善措失 Improvement measures | 参考文献 References |
---|---|---|---|
微根管的安装 Minirhizotron installation | 微根管材料 Material of minirhizotron tube | 一般选用聚碳酸酯管, 减小对根系的生长的影响 Polycarbonate tube is generally selected to reduce the I mpact on the growth of roots | Vannoordwijk et al., 1985; Brown & Pchurch, 1987; Withington et al., 2003 |
微根管的密封性 Sealability of minirhizotron tube | 顶端加盖密封, 防止光线透入影响根系生长 The top of tube was sealed to prevent root from light | Iversen et al., 2012; Rytter & Rytter, 2012 | |
安装角度 Installation angle | 一般选择偏离垂直方向30°或45°, 有角度的安装水平安装更易于研究根的垂直分布 The tubes are usually installed with an angle deviated from the vertical direction by 30° or 45°, with which the installation of tubes is convenient and the vertical distribution of the root is easier to be observed | Iversen et al., 2012; Johnson et al., 2001 | |
平衡期的确定 Determination for the duration of equilibrium | 几周、几月甚至一年以上不等; 尽量确保达到管土平衡 The duration of equilibrium may last several weeks, months, or even more than one year, depending on the soil and vegetation types. The purpose for such a duration is to ensure tubes equilibrate with surrounding soil | Weber & Day, 1996; Wells et al., 2002 | |
影像采集 Image capture | 图片数量和质量 Quantity and quality of images | 一般30-50张, 在预定时间可以完成的工作量范围内, 尽可能多的采集图片并确保图片采集清晰 Collecting enough images within the working period (usually 30-50 photos) and examining whether the pictures are in focus | Johnson et al., 2001; Shi et al., 2006 |
采集时间 Image capture time | 尽量保证在1-2天采集完成, 摄像头的光系统停留时间太长, 会改变土壤温度, 影响根系生长 Capturing the picture within 1 d to 2 d as soil temperature and root growth may be changed by long time lighting of camera | van Rees, 1998 | |
采集频率 Image capture frequency | 间隔约2周采集一次; 间隔时间太长会因观察不到细根周转而导致对根系动态的低估 Collect images every two weeks; the longer interval will underestimate root system dynamics due to miss the fine root turnover | Johnson et al., 2001 | |
数据处理 Data processing | 死活根的区分 Separation of the live and dead root | 一般将颜色为棕色或黑色根定义为死根; 如果在这次影像采集时可见, 下一次影像采集时看不到此根, 也将此根定义为死根 The dark-brown or black roots are usually regarded as dead roots. Also, the roots being seen in last time but disappeared this time are considered as dead roots | Espeleta & Donovan, 2002; Majdi & Ohrvik, 2004 ; West et al., 2004 |
[1] | Aber JD, Melillo JM, Nadelhoffer KJ, Mcclaugherty CA, Pastor J (1985). Fine root turnover in forest ecosystems in relation to quantity and form of nitrogen availability: A comparison of two methods.Oecologia, 66, 317-321. |
[2] | Anderson LJ, Derner JD, Polley HW, Gordon WS, Eissenstat DM, Jackson RB (2010). Root responses along a subambient to elevated CO2 gradient in a C3-C4 grassland.Global Change Biology, 16, 454-468. |
[3] | Angelo CL, Pau S (2015). Root biomass and soilδ13C in C3 and C4 grasslands along a precipitation gradient. Plant Ecology, 216, 615-627. |
[4] | Backhaus S, Kreyling J, Grant K, Beierkuhnlein C, Walter J, Jentsch A (2014). Recurrent mild drought events increase resistance toward extreme drought stress. Ecosystems, 17, 1068-1081. |
[5] | Bai WM, Guo DL, Tian QY, Liu NN, Cheng WX, Li LH, Zhang WH (2015). Differential responses of grasses and forbs led to marked reduction in below-ground productivity in temperate steppe following chronic N deposition.Journal of Ecology, 103, 1570-1579. |
[6] | Bai YF, Wu JG, Xing Q, Pan QM, Huang JH, Yang DL, Han XG (2008). Primary production and rain use efficiency across a precipitation gradient on the Mongolia plateau.Ecology, 89, 2140-2153. |
[7] | Ballantyne AP, Alden CB, Miller JB, Tans PP, White JW (2012). Increase in observed net carbon dioxide uptake by land and oceans during the past 50 years.Nature, 488, 70-72. |
[8] | Bloom AJ, Chapin FS, Mooney HA (1985). Resource limitation in plants—An economic analogy.Annual Review of Ecology and Systematics, 16, 363-392. |
[9] | Brown DA, Upchurch DR 1987). (Minirhizotrons: Asummary of methods and instruments in current use. In: Taylor HM ed. Minirhizotron Observation Tubes: Methods and Applications for Measuring Rhizosphere Dynamics . American Society of Agronomy , Madison. 15-30. |
[10] | Carney KM, Hungate BA, Drake, BG, Megonigal JP (2007). Altered soil microbial community at elevated CO2 leads to loss of soil carbon.Proceedings of the National Academy of Sciences of the United States of America, 104, 4990-4995. |
[11] | Chai X, Liang CZ, Liang MW, Han WH, Li ZY, Miao BL, Wang W, Wang LX (2014). Seasonal dynamics of belowground biomass and productivity and potential of carbon sequestration in meadow steppe and typical steppe, in Inner Mongolia, China.Acta Ecologica Sinica, 34, 5530-5540. (in Chinese with English abstract)[柴曦, 梁存柱, 梁茂伟, 韩伟华, 李智勇, 苗白岭, 王玮, 王立新 (2014). 内蒙古草甸草原与典型草原地下生物量与生产力季节动态及其碳库潜力. 生态学报, 34, 5530-5540.] |
[12] | Chapin FS, Bloom AJ, Field CB, Waring RH (1987). Plant responses to multiple environmental factors.BioScience, 37, 49-57. |
[13] | Chen D, Jia M, Chu PF, Cheng JH, Zhang LX, Pan QM, Xie YC, Bai YF (2014). Patterns and drivers of soil microbial communities along a precipitation gradient on the Mongolian Plateau.Landscape Ecology, 30, 1669-1682. |
[14] | Chen LP, Zhao NX, Zhang LH, Gao YB (2013). Responses of two dominant plant species to drought stress and defoliation in the Inner Mongolia Steppe of China.Plant Ecology, 214, 221-229. |
[15] | Crous KY, Reich PB, Hunter MD, Ellsworth DS (2010). Maintenance of leaf N controls the photosynthetic CO2 response of grassland species exposed to 9 years of free-air CO2 enrichment.Global Change Biology, 16, 2076-2088. |
[16] | de Boeck HJ, Bassin S, Verlinden M, Zeiter M, Hiltbrunner E (2016). Simulated heat waves affected alpine grassland only in combination with drought.New Phytologist, 209, 531-541. |
[17] | Dingkuhn M, Luquet D, Clement-Vidal A, Tambour L, Kim HK, Song YH (2007). Is plant growth driven by sink regulation? In: Spiertz JHJ, Struik PC, VanLaar HH eds . Scale and Complexity in Plant Systems Research . Springer, Wageningen, the Netherlands.157-170. |
[18] | Dubach M, Russelle MP (1995). Reducing the cost of estimating root turnover with horzontally installed minirhizotrons.Agronomy Journal, 87, 258-263. |
[19] | Espeleta JF, Donovan LA (2002). Fine root demography and morphology in response to soil resources availability among xeric and mesic sandhill tree species.Functional Ecology, 16, 113-121. |
[20] | Fang JY, Yang YH, Ma WH, Mohammat A, Shen HH (2010). Ecosystem carbon stocks and their changes in China’s grasslands.Science China-Life Sciences, 53, 757-765. |
[21] | Fathy TJ, Bledsoe CS, Day FP, Ruess RW, Smucker AJM (1999). Fine root production and demography. In: Roberson GP, Bledsoe CS, Coleman D, Sollins P eds. Standard Soil Methods for Long-term Ecological Research Oxford University Press., New York. 437-455. |
[22] | Gao KM, Liu JC, Liang QH, Temme AA, Cornelissen JHC (2015). Growth responses to the interaction of elevated CO2 and drought stress in six annual species.Acta Ecologica Sinica, 35, 6110-6119. (in Chinese with English abstract)[高凯敏, 刘锦春, 梁千惠, Temme AA, Cornelissen JHC (2015). 6种草本植物对干旱胁迫和CO2浓度升高交互作用的生长响应. 生态学报, 35, 6110-6119.] |
[23] | Gao YZ, Giese M, Lin S, Sattelmacher B, Zhao Y, Brueck H (2008). Belowground net primary productivity and biomass allocation of a grassland in Inner Mongolia is affected by grazing intensity. Plant and Soil, 307, 41-50. |
[24] | Grechi I, Vivin P, Hilbert G, Milin S, Robert T, Gaudillere JP (2007). Effect of light and nitrogen supply on internal C:N balance and control of root-to-shoot biomass allocation in grapevine.Environmental and Experimental Botany, 59, 139-149. |
[25] | Guo ZG, Liu HX, Wang YR (2004). Effect of cutting on root growth in lucerne.Acta Botanica Boreali-Occidentalia Sinica, 24, 215-220. (in Chinese with English abstract)[郭正钢, 刘慧霞, 王彦荣 (2004). 刈割对紫花苜蓿根系生长影响的初步分析. 西北植物学报, 24, 215-220. |
[26] | He X, Ma WH, Liang CZ, Hong M, Chai X, Zhao BYNNL, Zhang YP, Yang SH, Zhang JX, Xin XP (2015). Effects of nutrient additions on community biomass varied among different grassland ecosystems of Inner Mongolia.Acta Scientiarum Naturalium Universitatis Pekinensis, 51, 657-666. (in Chinese with English abstract)[贺星, 马文红, 梁存柱, 红梅, 柴曦, 赵巴音那木拉, 张宇平, 杨绍欢, 张佳鑫, 辛晓平 (2015). 养分添加对内蒙古不同草地生态系统生物量的影响. 北京大学学报(自然科学版), 51, 657-666.] |
[27] | Holub P, Tuma I, Fiala K (2013). Effect of fertilization on root growth in the wet submontane meadow.Plant, Soil and Environment, 59, 342-347. |
[28] | Hovenden MJ, Newton PC, Wills KE (2014). Seasonal not annual rainfall determines grassland biomass response to carbon dioxide.Nature, 511, 583-586. |
[29] | Huang J, Zeng H, Xiong YM, Guo DL (2015). Lower-order roots biomass of temperate steppe and the environmental controls in Inner Mongolia.Acta Scientiarum Naturalium Universitatis Pekinensis, 51, 931-938. (in Chinese with English abstract)[黄静, 曾辉, 熊艳梅, 郭大立 (2015).内蒙古温带草地低级根生物量格局及其与环境因子的关系. 北京大学学报(自然科学版), 51, 931-938.] |
[30] | Hui D, Jackson RB (2006). Geographical and interannual variability in biomass partitioning in grassland ecosystems: A synthesis of field data.New phytologist, 169, 85-93. |
[31] | IPCC (Intergovernmental Panel on Climate Change) (2007). Climate Change 2007: The Physical Science Basis. Cambridge University Press ,Cambridge, UK. |
[32] | IPCC(Intergovernmental Panel on Climate Change) (2012). Climate Change 2012:Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. ambridge University Press , Cambridge, UK. |
[33] | Iversen CM, Murphy MT, Allen MF, Childs J, Eissenstat DM, Lilleskov EA, Sarjala TM, Sloan VL, Sullivan PF (2012). Advancing the use of minirhizotrons in wetlands.Plant and Soil, 352, 23-39. |
[34] | Jentsch A, Kreyling J, Elmer M, Gellesch E, Glaser B, Grant K, Hein R, Lara M, Mirzae H, Nadler SE, Nagy L, Otieno D, Pritsch K, Rascher U, Schaedler M, Schloter M, Singh BK, Stadler J, Walter J, Wellstein C, Woellecke J, Beierkuhnlein C (2011). Climate extremes initiate ecosystem-regulating functions while maintaining productivity.Journal of Ecology, 99, 689-702. |
[35] | Jiang HM, Baoyin TGT (2014). Study on the root growth characteristics ofMedicago falcata L. Chinese Journal of Grassland, 36(1), 53-57. (in Chinese with English abstract)[姜慧敏, 宝音陶格涛 (2014). 黄花苜蓿根系生长特征研究. 中国草地学报, 36(1), 53-57.] |
[36] | Johnson MG, Tingey DT, Phillips DL, Storm MJ (2001). Advancing fine root research with minirhizotrons.Environmental and Experimental Botany, 45, 263-289. |
[37] | Kang MY, Dai C, Ji WY, Jiang Y, Yuan ZZ, Chen HYH (2013). Biomass and its allocation in relation to temperature, precipitation, and soil nutrients in Inner Mongolia grasslands, China.PLOS ONE, 8, e69561. doi: 10.1371/ journal.pone.0069561. |
[38] | Knapp AK, Briggs JM, Koelliker JK (2001). Frequency and extent of water limitation to primary production in a mesic temperate grassland.Ecosystems, 4, 19-28. |
[39] | Ksiksi T, Youssef T (2010). Effects of CO2 enrichment on growth partitioning of Chloris gayana in the arid environment of the UAE.Grassland Science, 56, 183-187. |
[40] | Lee M, Manning P, Rist J, Power SA, Marsh C (2010). A global comparison of grassland biomass responses to CO2 and nitrogen enrichment.Philosophical Transactions of the Royal Society B-Biological Sciences, 365, 2047-2056. |
[41] | Li JY, Fu BY, Ma YC (2006). A review and methods for fine-root production and turnover of trees.Shanxi Agricultural University, 26(5), 1-6. (in Chinese with English abstract)[李俊英`, 傅宝春, 马迎春 (2006). 树木细根生产与周转研究及方法评述. 山西农业大学学报, 26(5), 1-6.] |
[42] | Li JY, Wang MB, Shi JW (2007). Minirhizotron technique in measuring fine root indices: A review.Chinese Journal of Ecology, 26, 1842-1848. (in Chinese with English abstract)[李俊英, 王孟本, 史健伟 (2007). 应用微根管法测定细根指标方法评述. 生态学杂志, 26, 1842-1848.] |
[43] | Li JZ, Lin S, Taube F, Pan QM, Dittert K (2011a). Above and belowground net primary productivity of grassland influenced by supplemental water and nitrogen in Inner Mongolia.Plant and Soil, 340, 253-264. |
[44] | Li LH, Wang QB, Bai YF (2000). Soil respiration ofLeymus Chinenses grassland stand in the Xilin River Basin as affected by overgrazing and climate. Acta Phytoecologica Sinica, 24, 680-686. (in Chinese with English abstract)[李凌浩, 王其兵, 白永飞 (2000). 锡林河流域羊草草原草原群落土壤呼吸及其影响因子的研究. 植物生态学报, 24, 680-686.] |
[45] | Li WR, Zhang SQ, Ding SY, Shan L (2010). Root morphological variation and water use in alfalfa under drought stress.Acta Ecologica Sinica, 30, 5140-5150. (in Chinese with English abstract)[李文娆, 张岁岐, 丁圣彦, 山仑 (2010). 干旱胁迫下紫花苜蓿根系形态变化及与水分利用的关系. 生态学报, 30, 5140-5150.] |
[46] | Li XJ, Zhang XZ, Wu JS, Shen ZX, Zhang YJ, Xu XL, Fan YZ, Zhao YP, Yan W (2011b). Root biomass distribution in alpine ecosystems of the northern Tibetan Plateau.Environmental Earth Sciences, 64, 1911-1919. |
[47] | Li XZ, Liu XD, Ma ZG (2004). Analysis on the drought characteristics in the main arid regions in the world since recent hundred-odd years.Arid Zone Research, 21(2), 97-103. (in Chinese with English abstract)[李新周, 刘晓东, 马柱国 (2004). 近百年来全球主要干旱区的干旱化特征分析. 干旱区研究, 21(2), 97-103.] |
[48] | Li ZL, Zhang YT, Yu DF, Zhang N, Lin JX, Zhang JW, Jiang HT, Wang JF, Mu CS (2014). The influence of precipitation regimes and elevated CO2 on photosynthesis and biomass accumulation and partitioning in seedlings of the rhizomatous perennial grassLeymus chinensis. PLOS ONE, 9, e103633. doi: 10.1371/journal.pone.0103633. |
[49] | Litton CM, Raich JW, Ryan MG (2007). Carbon allocation in forest ecosystems.Global Change Biology, 13, 2089-2109. |
[50] | Liu XL, Liu LJ (2013). Root research methods.Bulletin of Agricultural Science and Technology, 3(2), 147-246. (in Chinese)[刘秀林, 刘丽君 (2013). 根系研究概述. 农业科技通讯, 3(2), 147-246.] |
[51] | Luo WT, Jiang Y, Lu XT, Wang X, Li MH, Bai E, Han XG, Xu ZW (2013). Patterns of plant biomass allocation in temperate grasslands across a 2500-km transect in northern China.PLOS ONE, 8, e71749. doi: 10.1371/journal.pone. 0071749. |
[52] | Ma WH, Liu ZL, Wang ZH, Wang W, Liang CZ, Tang YH, He JS, Fang JY (2010). Climate change alters interannual variation of grassland aboveground productivity: Evidence from a 22-year measurement series in the Inner Mongolian grassland.Journal of Plant Research, 123, 509-517. |
[53] | Ma XF, Song FB, Zhang JZ (2011). Advances of research of roots responses to environmental stress on soil.Chinese Agricultural Science Bulletin, 27, 44-48. (in Chinese with English abstract)[马献发, 宋凤斌, 张继舟 (2011). 根系对土壤环境胁迫响应的研究进展. 中国农学通报, 27, 44-48.] |
[54] | Majdi H, Ohrvik J (2004). Interactive effects of soil warming and fertilization on root production, mortality, and longevity in a Norway spruce stand in Northern Sweden.Global Change Biology, 10, 182-188. |
[55] | Milchunas DG, Lauenroth WK (2001). Belowground primary production by carbon isotope decay and long-term root biomass dynamics.Ecosystems, 4, 139-150. |
[56] | Milchunas DG (2009). Estimating root production: Comparison of 11 methods in shortgrass steppe and review of biases.Ecosystems, 12, 1381-1402. |
[57] | Milchunas DG, Morgan JA, Mosier AR, Le CDR (2005). Root dynamics and demography in shortgrass steppe under elevated CO2, and comments on minirhizotron methodology.Global Change Biology, 11, 1837-1855. |
[58] | Mokany K, Raison RJ, Prokushkin AS (2006). Critical analysis of root: shoot ratios in terrestrial biomes.Global Change Biology, 12, 84-96. |
[59] | Niklaus PA, Leadley PW, Schmid B, Korner C (2001). A long- term field study on biodiversity × elevated CO2 interactions in grassland.Ecological Monographs, 71, 341-356. |
[60] | Nordquist MH, Moore JN (2000). Current Fisheries Issues and the Food and Agriculture Organization of the United Nations. Martinus Nijhoff Publishers, the Hague, Boston, London. |
[61] | Partavian A, Mikkelsen TN, Vestergård M (2015). Plants increase laccase activity in soil with long-term elevated CO2 legacy.European Journal of Soil Biology, 70, 97-103. |
[62] | Phillips RP, Finzi AC, Bernhardt ES (2011). Enhanced root exudation induces microbial feedbacks to N cycling in a pine forest under long-term CO2 fumigation.Ecology Letters, 14, 187-194. doi: 10.1111/j.1461-0248.2010.01570.x. |
[63] | Pilon R, Picon-Cochard C, Bloor JMG, Revaillot S, Kuhn E, Falcimagne R, Balandier P, Soussana JF (2012). Grassland root demography responses to multiple climate change drivers depend on root morphology.Plant and Soil, 364, 395-408. |
[64] | Ping XY, Zhou GS, Zhuang QL, Wang YL, Zuo WQ, Shi GX, Lin XL, Wang YH (2010). Effects of sample size and position from monolith and core methods on the estimation of total root biomass in a temperate grassland ecosystem in Inner Mongolia.Geoderma, 155, 262-268. |
[65] | Polley HW, Morgan JA, Cambell BD, Smith MS (2000). Crop ecosystem responses to climatic change: Rrangelands. In: Reddy KR, Hodges HF eds. Climate Change and Global Crop Productivity. CAB International, New York. 293-314. |
[66] | Potvin C, Chapin FSI, Gonzalez A, Leadley P, Reich PB, Roy J (2007). Plant biodiversity and responses to elevated carbon dioxide . In: Canadell J, Pitelka LF, Pataki D eds. Terrestrial Ecosystems in a Changing World. Springer-Verlag, New York.102-113. |
[67] | Qi Y, Huang HM, Wang Y, Zhao J, Zhang JH (2011). Biomass and its allocation of four grassland species under different nitrogen levels.Acta Ecologica Sinica, 31, 5121-5129. (in Chinese with English abstract)[祁瑜, 黄永梅, 王艳, 赵杰, 张景慧 (2011). 施氮对几种草地植物生物量及其分配的影响. 生态学报, 31, 5121-5129.] |
[68] | Reich PB, Hobbie SE, Lee T, Ellsworth DS, West JB, Tilman D, Knops JMH, Naeem S, Trost J (2006). Nitrogen limitation constrains sustainability of ecosystem response to CO2.Nature, 440, 922-925. |
[69] | Rytter RM, Rytter L (2012). Quantitative estimates of root densities at minirhizotrons differ from those in the bulk soil.Plant and Soil, 350, 205-220. |
[70] | Shi FS, Wu N, Wu Y (2010). Responses of plant growth and substance allocation of three dominant plant species to experimental warming in an alpine grassland, Northwestern Sichuan, China.Chinese Journal of Plant Ecology, 34, 488-497. (in Chinese with English abstract)[石福孙, 吴宁, 吴彦 (2010). 川西北高寒草地3种主要植物的生长及物质分配对温度升高的响应. 植物生态学报, 34, 488-497.] |
[71] | Shi JW, Yu SQ, Yu LZ, Han YZ, Wang ZQ, Guo DL (2006). Application of minirhizotron in fine root studies.Chinese Journal of Applied Ecology, 17, 715-719. (in Chinese with English abstract)[史健伟, 于水强, 于立忠, 韩有志, 王政权, 郭大立 (2006). 微根管在细根研究中的应用. 应用生态学报, 17, 715-719.] |
[72] | Shilo T, Rubin B, Ephrath JE, Eizenberg H (2013). Continuous non-destructive monitoring of Cyperusrotundus development using a minirhizotron.Weed Research, 53, 164-168. |
[73] | Smit B, Cai YL (1996). Climate change and agriculture in China.Global Environmental Change, 6, 205-214. |
[74] | Steingrobe B, Schmid H, Claassen N (2001). The use of the ingrowth core method for measuring root production of arable crops—Influence of soil and root disturbance during installation of the bags on root ingrowth into the cores.European Journal of Agronomy, 15, 143-151. |
[75] | Sun LA, Liu GB, Liang YM (1994). Studies on determining methods of underground biomass with different diameter.Grassland of China, (2), 32-35. (in Chinese with English abstract)[孙力安, 刘国彬, 梁一民 (1994). 不同直径土钻测定草地地下生物量方法探讨. 中国草地, (2), 32-35.] |
[76] | Suter D, Frehner M, Fischer BU, Nosberger J, Luscher A (2002). Elevated CO2 increases carbon allocation to the roots ofLolium perenne under free-air CO2 enrichment but not in a controlled environment. New Phytologist, 154, 65-75. |
[77] | van Rees KCJ (1998). Soil temperature effects from minirhizotron lighting systems.Plant and Soil, 200, 113-118. |
[78] | Vannoordwijk M, Dejager A, Floris J (1985). A new dimension to observations in minirhizotrons: A stereoscopic view on root photographs.Plant and Soil, 86, 447-453. |
[79] | Vestergard M, Reinsch S, Bengtson P, Ambus P, Christensen S (2016). Enhanced priming of old, not new soil carbon at elevated atmospheric CO2.Soil Biology & Biochemistry, 100, 140-148. |
[80] | Wang KB, Li JP, Shangguan ZP (2012). Biomass components and environmental controls in Ningxia grasslands.Journal of Integrative Agriculture, 11, 2079-2087. |
[81] | Wang L, Niu KC, Yang YH, Zhou P (2010). Patterns of above- and belowground biomass allocation in China’s grasslands: Evidence from individual-level observations.Science China-Life Sciences, 53, 851-857. |
[82] | Wang LM, Li LH, Chen X, Tian X, Wang XK, Luo GP (2014). Biomass allocation patterns across China’s terrestrial biomes.PLOS ONE, 9, e93566. doi: 10.1371/journal.pone. 0093566. |
[83] | Wang RZ (2004). C4 species and their response to large-scale longitudinal climate variables along the Northeast China Transect (NECT).Photosynthetica, 42, 71-79. |
[84] | Wang W, Peng SS, Fang JY (2008). Biomass distribution of natural grasslands and it response to climate change in North China.Arid Zone Research, 25, 90-97. (in Chinese with English abstract)[王娓, 彭书时, 方精云 (2008). 中国北方天然草地的生物量分配及其对气候的响应. 干旱区研究, 25, 90-97.] |
[85] | Weber EP, Day FP (1996). The effect of nitrogen fertilization on the phenology of roots in a barrier island sand dune community.Plant and Soil, 182, 139-148. |
[86] | Wells CE, Glenn DM, Eissenstat DM (2002). Soil insects alter fine root demography in peach (Prunus persica). Plant, Cell & Environment, 25, 431-439. |
[87] | West JB, Espeleta JF, Donovan LA (2004). Fine root production and turnover across a complex edaphic gradient of a Pinuspalustris-Aristidastricta savanna ecosystem.Forest Ecology and Management, 189, 397-406. |
[88] | Withington JM, Elkin AD, Bulaj B, Olesinski J, Tracy KN, Bouma TJ, Oleksyn J, Anderson LJ, Modrzynski J, Reich PB, Eissenstat DM (2003). The impact of material used for minirhizotron tubes for root research.New Phytologist, 160, 533-544. |
[89] | Woodward FI, Cramer W (1996). Plant functional types and climatic changes: Introduction.Journal of Vegetation Science, 7, 306-308. |
[90] | Wu YB, Che RX, Ma S, Deng YC, Zhu MJ, Cui XY (2014). Estimation of root production and turnover in an alpine meadow: comparison of three measurement methods.Acta Ecologica Sinica, 34, 3529-3537. (in Chinese with English abstract)[吴伊波, 车荣晓, 马双, 邓永翠, 朱敏健, 崔骁勇 (2014). 高寒草甸植被细根生产和周转的比较研究. 生态学报, 34, 3529-3537.] |
[91] | Xia JY, Wan SQ (2008). Global response patterns of terrestrial plant species to nitrogen addition. New Phytologist, 179, 428-439. |
[92] | Xia JZ, Liu SG, Liang SL, Chen Y, Xu WF, Yuan WP (2014). Spatio-temporal patterns and climate variables controlling of biomass carbon stock of global grassland ecosystems from 1982 to 2006.Remote Sensing, 6, 1783-1802. |
[93] | Xu MH, Liu M, Xue X, Zhai DT (2016). Warming effects on plant biomass allocation and correlations with the soil environment in an alpine meadow, China.Journal of Arid Land, 8, 773-786. |
[94] | Xu X, Niu SL, Sherry RA, Zhou XH, Zhou JH, Luo YQ (2012). Interannual variability in responses of belowground net primary productivity (NPP) and NPP partitioning to long-term warming and clipping in a tall grass prairie. Global Change Biology, 18, 1648-1656. |
[95] | Yang YH, Fang JY, Ji CJ, Han WX (2009). Above- and belowground biomass allocation in Tibetan grasslands.Journal of Vegetation Science, 20, 177-184. |
[96] | Yang YH, Fang JY, Ma WH, Guo DL, Mohammat A (2010). Large-scale pattern of biomass partitioning across China’s grasslands.Global Ecology and Biogeography, 19, 268-277. |
[97] | Yang YH, Luo YQ (2011). Isometric biomass partitioning pattern in forest ecosystems: Evidence from temporal observations during stand development.Journal of Ecology, 99, 431-437. |
[98] | Zavalloni C, Vicca S, Büscher M, de la Providencia Sanchez IE, de Boulois HD, Declerck S, Nijs I, Ceulemans R (2012). Exposure to warming and CO2 enrichment promotes greater above-ground biomass, nitrogen, phosphorus and arbuscular mycorrhizal colonization in newly established grasslands. Plant and Soil, 359, 121-136. |
[99] | Zhang B, Zhu JJ, Liu HM, Pan QM (2014). Effects of extreme rainfall and drought events on grassland ecosystems.Chinese Journal of Plant Ecology, 38, 1008-1018. (in Chinese with English abstract)[张彬, 朱建军, 刘华民, 潘庆民 (2014). 极端降水和极端干旱事件对草原生态系统的影响. 植物生态学报, 38, 1008-1018.] |
[100] | Zhang L, Wu DX, Shi HQ, Zhang CJ, Zhan XY, Zhou SX (2011). Effects of elevated CO2 and N addition on growth and N2 fixation of a legume subshrub (Caragana microphylla Lam.) in temperate grassland in China. PLOS ONE, 6, e26842. doi:10.1371/journal.pone.0026842. |
[101] | Zhang L, Yang YX, Zhan XY, Zhang CJ, Zhou SX, Wu DX (2010). Responses of a dominant temperate grassland plant (Leymus chinensis) to elevated carbon dioxide and nitrogen addition in China. Journal of Environmental Quality, 39, 251-259. doi: 10.2134/jeq2009.0109. |
[102] | Zhou BZ, Zhang SG, Fu MY (2007). Minirhizotron, a new technique for plant root system research: Its invention, development and application.Chinese Journal of Ecology, 26, 253-260. (in Chinese with English abstract)[周本智, 张守攻, 傅懋毅(2007). 植物根系研究新技术Minirhizotron的起源、发展和应用. 生态学杂志, 26, 253-260.] |
[103] | Zhou XH, Talley M, Luo YQ (2009). Biomass, litter, and soil respiration along a precipitation gradient in Southern Great Plains, USA. Ecosystems, 12, 1369-1380. |
[104] | Zhu GL, Wei WS, Wu DX (2008). An overview of methods of measuring underground-biomass and introduction of new technique.Chinese Journal of Grassland, 30(3), 94-99. (in Chinese with English abstract)[朱桂林, 韦文珊, 吴冬秀(2008). 植物地下生物量测定方法概述及新技术介绍. 中国草地学报, 30(3), 94-99. |
[1] | 俞庆水 倪晓凤 吉成均 朱江玲 唐志尧 方精云. 10年氮磷添加对海南尖峰岭两种热带雨林优势植物叶片非结构性碳水化合物的影响[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 高敏, 缑倩倩, 王国华, 郭文婷, 张宇, 张妍. 低温胁迫对不同母树年龄柠条锦鸡儿种子萌发幼苗生理和生长的影响[J]. 植物生态学报, 2024, 48(2): 201-214. |
[3] | 李冰, 朱湾湾, 韩翠, 余海龙, 黄菊莹. 降水量变化下荒漠草原土壤呼吸及其影响因素[J]. 植物生态学报, 2023, 47(9): 1310-1321. |
[4] | 张英, 张常洪, 汪其同, 朱晓敏, 尹华军. 氮沉降下西南山地针叶林根际和非根际土壤固碳贡献差异[J]. 植物生态学报, 2023, 47(9): 1234-1244. |
[5] | 仲琦, 李曾燕, 马炜, 况雨潇, 邱岭军, 黎蕴洁, 涂利华. 氮添加和凋落物处理对华西雨屏区常绿阔叶林凋落叶分解的影响[J]. 植物生态学报, 2023, 47(5): 629-643. |
[6] | 王晓悦, 许艺馨, 李春环, 余海龙, 黄菊莹. 长期降水量变化下荒漠草原植物生物量、多样性的变化及其影响因素[J]. 植物生态学报, 2023, 47(4): 479-490. |
[7] | 冯继广, 张秋芳, 袁霞, 朱彪. 氮磷添加对土壤有机碳的影响: 进展与展望[J]. 植物生态学报, 2022, 46(8): 855-870. |
[8] | 董六文, 任正炜, 张蕊, 谢晨笛, 周小龙. 功能多样性比物种多样性更好解释氮添加对高寒草地生物量的影响[J]. 植物生态学报, 2022, 46(8): 871-881. |
[9] | 张英, 张常洪, 汪其同, 朱晓敏, 尹华军. 氮沉降下西南山地针叶林根际和非根际土壤微生物养分限制特征差异[J]. 植物生态学报, 2022, 46(4): 473-483. |
[10] | 田磊, 朱毅, 李欣, 韩国栋, 任海燕. 不同降水条件下内蒙古荒漠草原主要植物物候对长期增温和氮添加的响应[J]. 植物生态学报, 2022, 46(3): 290-299. |
[11] | 谢欢, 张秋芳, 曾泉鑫, 周嘉聪, 马亚培, 吴玥, 刘苑苑, 林惠瑛, 尹云锋, 陈岳民. 氮添加对杉木苗期磷转化和分解类真菌的影响[J]. 植物生态学报, 2022, 46(2): 220-231. |
[12] | 李斐, 孙明伟, 钟尚志, 宋文政, 钟晓月, 孙伟. 不同光合类型牧草对干旱-复水的光合生理响应及生长适应策略[J]. 植物生态学报, 2022, 46(1): 74-87. |
[13] | 朱湾湾, 王攀, 许艺馨, 李春环, 余海龙, 黄菊莹. 降水量变化与氮添加下荒漠草原土壤酶活性及其影响因素[J]. 植物生态学报, 2021, 45(3): 309-320. |
[14] | 张宏锦, 王娓. 生态系统多功能性对全球变化的响应: 进展、问题与展望[J]. 植物生态学报, 2021, 45(10): 1112-1126. |
[15] | 冯继广, 朱彪. 氮磷添加对树木生长和森林生产力影响的研究进展[J]. 植物生态学报, 2020, 44(6): 583-597. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19