植物生态学报 ›› 2016, Vol. 40 ›› Issue (2): 165-.DOI: 10.17521/cjpe.2015.0210

• 研究论文 • 上一篇    下一篇

四种荒漠草原植物的生长对不同氮添加水平的响应

黄菊莹1,,A;*(), 余海龙2   

  1. 1宁夏大学新技术应用研究开发中心, 银川 750021
    2宁夏大学资源环境学院, 银川 750021
  • 出版日期:2016-02-10 发布日期:2016-03-08
  • 通讯作者: 黄菊莹

Responses of growth of four desert species to different N addition levels

Ju-Ying HUANG1,*(), Hai-Long YU2   

  1. 1Center of New Technology Application and Research, Ningxia University, Yinchuan 750021, China

    2College of Resources and Environment, Ningxia University, Yinchuan 750021, China
  • Online:2016-02-10 Published:2016-03-08
  • Contact: Ju-Ying HUANG

摘要:

大气氮(N)沉降增加加速了生态系统N循环, 从而会对生态系统的结构和功能产生巨大的影响, 尤其是一些受N限制的生态系统.研究N添加对荒漠草原植物生长的影响, 可为深入理解N沉降增加对我国北方草原群落结构的影响提供基础数据.该文基于2011年在宁夏荒漠草原设置的N沉降增加的野外模拟试验, 研究了两年N添加下4个常见物种(牛枝子(Lespedeza potaninii),老瓜头(Cynanchum komarovii),针茅(Stipa capillata)和冰草(Agropyron cristatum))不同时期种群生物量和6-8月份相对生长速率的变化特征.并通过分析物种生长与植物(群落和叶片水平)和土壤碳(C),N,磷(P)生态化学计量学特征的关系, 探讨C:N:P化学计量比对植物生长养分限制的指示作用.结果显示N添加促进了4个物种的生长, 但具有明显的种间差异性, 且这种差异也存在于相同生活型的不同物种间.总体而言, 4个物种种群生物量与叶片N浓度,叶片N:P,群落N库,土壤全N含量和土壤N:P存在明显的线性关系, 与植物和土壤C:N和C:P的相关关系相对较弱.几个物种相对生长速率与植物和土壤N:P也呈现一定程度的正相关关系, 但与其他指标相关性较弱.以上结果表明, 短期N沉降增加提高了植物的相对生长速率, 促进了植物生长, 且更有利于针茅和老瓜头的生物量积累, 从而可能会逐渐改变荒漠草原群落结构.植物N:P和土壤N:P对荒漠草原物种生长具有较强的指示作用: 随着土壤N受限性逐渐缓解, 土壤N含量和N:P相继升高, 可供植物摄取的N增多, 因而有利于植物生长和群落N库积累.

关键词: C, N, P生态化学计量学特征, 荒漠草原, 相对生长速率, 大气N沉降增加, 种群生物量

Abstract:

Aims The increase in atmospheric N deposition has accelerated N cycling of ecosystems, thus altering the structure and function of ecosystems, especially in those limited by N availability. Studies on the response of plant growth to artificial N addition could provide basic data for a better understanding of how the structure of grasslands in northern China responds to increasing N deposition. Methods We investigated the seasonal dynamics of plant growth of four species after 2-year multi-level N addition in a field experiment conducted in a desert steppe of Ningxia in 2011. Plant biomass and the relative growth rate (RGR) of the studied species were measured and their relationships with C:N:P ratios of plants (community and leaf levels) and soils were analyzed. Important findings Results in 2012 showed that 2-year N addition promoted the growth of the four species and the effects were different among growth forms and were species-specific. In general, the plant biomass of the studied species was significantly correlated with leaf N concentration, leaf N:P ratio, community N pool, soil total N content and soil N:P ratio, while only weak relationships were observed between plant biomass and C:N and C:P ratios of plants and soils. In contrast, there was a significant linear relationship between RGR and N:P ratios both of plants and soils.Our results suggest that short-term N addition promoted the accumulation of plant biomass, and the species-specific responses to stimulated N addition can directly affect the structure of the desert steppe ecosystem. Plant N:P ratio and soil N:P ratio could indicate nutrient limitation of plant growth to a certain extent: N addition increased soil N content and N:P ratio, and thus relieved N limitation gradually. Once more N is available to plants, the growth of plants and the accumulation of community N was stimulated in turn.

Key words: C:N:P ecological stoichiometry, desert steppe, relative growth rate, increase in atmospheric N deposition, population biomass