植物生态学报 ›› 2016, Vol. 40 ›› Issue (2): 165-.DOI: 10.17521/cjpe.2015.0210
出版日期:
2016-02-10
发布日期:
2016-03-08
通讯作者:
黄菊莹
Ju-Ying HUANG1,*(), Hai-Long YU2
Online:
2016-02-10
Published:
2016-03-08
Contact:
Ju-Ying HUANG
摘要:
大气氮(N)沉降增加加速了生态系统N循环, 从而会对生态系统的结构和功能产生巨大的影响, 尤其是一些受N限制的生态系统.研究N添加对荒漠草原植物生长的影响, 可为深入理解N沉降增加对我国北方草原群落结构的影响提供基础数据.该文基于2011年在宁夏荒漠草原设置的N沉降增加的野外模拟试验, 研究了两年N添加下4个常见物种(牛枝子(Lespedeza potaninii),老瓜头(Cynanchum komarovii),针茅(Stipa capillata)和冰草(Agropyron cristatum))不同时期种群生物量和6-8月份相对生长速率的变化特征.并通过分析物种生长与植物(群落和叶片水平)和土壤碳(C),N,磷(P)生态化学计量学特征的关系, 探讨C:N:P化学计量比对植物生长养分限制的指示作用.结果显示N添加促进了4个物种的生长, 但具有明显的种间差异性, 且这种差异也存在于相同生活型的不同物种间.总体而言, 4个物种种群生物量与叶片N浓度,叶片N:P,群落N库,土壤全N含量和土壤N:P存在明显的线性关系, 与植物和土壤C:N和C:P的相关关系相对较弱.几个物种相对生长速率与植物和土壤N:P也呈现一定程度的正相关关系, 但与其他指标相关性较弱.以上结果表明, 短期N沉降增加提高了植物的相对生长速率, 促进了植物生长, 且更有利于针茅和老瓜头的生物量积累, 从而可能会逐渐改变荒漠草原群落结构.植物N:P和土壤N:P对荒漠草原物种生长具有较强的指示作用: 随着土壤N受限性逐渐缓解, 土壤N含量和N:P相继升高, 可供植物摄取的N增多, 因而有利于植物生长和群落N库积累.
黄菊莹, 余海龙. 四种荒漠草原植物的生长对不同氮添加水平的响应. 植物生态学报, 2016, 40(2): 165-. DOI: 10.17521/cjpe.2015.0210
Ju-Ying HUANG, Hai-Long YU. Responses of growth of four desert species to different N addition levels. Chinese Journal of Plant Ecology, 2016, 40(2): 165-. DOI: 10.17521/cjpe.2015.0210
图1 N添加对4个物种种群生物量的影响(平均值±标准误差, n = 5).F0,F2.5,F5,F10,F20和F40分别代表0.00,2.50,5.00,10.00,20.00和40.00 g·m-2·a-1的N施用量.不同小写字母代表N处理间种群生物量差异显著(p < 0.05), 相同小写字母表示差异不显著(p > 0.05).A,B,C分别为牛枝子6,7,8月种群生物量.D,E,F分别为老瓜头6,7,8月种群生物量.G,H,I分别为针茅6-8月种群生物量.J,K,L分别为冰草6,7,8月种群生物量.
Fig. 1 Effects of N addition on plant biomass of the four species (mean ± SE, n = 5). F0, F2.5, F5, F10, F20, and F40 represent N addition level at 0.00, 2.50, 5.00, 10.00, 20.00, and 40.00 g·m-2·a-1, respectively. Different lowercase letters indicate significant differences (p < 0.05) between population biomass within N levels. The same lowercase letters indicate insignificant differences (p > 0.05). A, B and C are data of Lespedeza potaninii in June, July, and August, respectively. D, E and F are data of Cynanchum komarovii in June, July, and August, respectively. G, H and I are data of Stipa capillata in June, July, and August, respectively. J, K and L are data of Agropyron cristatum in June, July, and August, respectively.
图2 N添加对4个物种6-8月份相对生长速率的影响(平均值±标准误差, n = 5).F0,F2.5,F5,F10,F20和F40分别代表0.00,2.50,5.00,10.00,20.00和40.00 g·m-2·a-1的N施用量.不同小写字母代表N处理间相对生长速率差异显著(p < 0.05), 相同小写字母表示差异不显著(p > 0.05).
Fig. 2 Effects of N addition on the relative growth rate (from June to August) of the four species (mean ± SE, n = 5). F0, F2.5, F5, F10, F20, and F40 represent N addition level at 0.00,2.50,5.00,10.00,20.00, and 40.00 g·m-2·a-1, respectively. Different lowercase letters indicate significant differences (p < 0.05) between relative growth rate among N addition levels. The same lowercase letters indicate insignificant differences (p > 0.05).
图3 8月份群落生物量,C库,N库,P库,C:N和N:P随N添加的变化(平均值±标准误差, n = 5).
Fig. 3 Changes of community biomass, C pool, N pool, P pool, C:N, and N:P with N addition levels in August (mean ± SE, n = 5).
指标 Index | 全C浓度 Total C | 全N浓度 Total N | 全P浓度 Total P | C:N | C:P | N:P | |
---|---|---|---|---|---|---|---|
牛枝子 Lespedeza potaninii | 种群生物量 Population biomass | -0.647 | 0.585 | 0.178 | -0.734 | -0.583 | 0.824* |
相对生长速率 Relative growth rate | -0.564 | 0.461 | 0.031 | -0.618 | -0.443 | 0.889* | |
老瓜头 Cynanchum komarovii | 种群生物量 Population biomass | -0.541 | 0.887* | -0.494 | -0.865* | -0.314 | 0.988** |
相对生长速率 Relative growth rate | -0.558 | 0.555 | -0.709 | -0.708 | -0.169 | 0.802* | |
冰草 Agropyron cristatum | 种群生物量 Population biomass | -0.276 | 0.499 | 0.667 | -0.561 | -0.655 | 0.245 |
相对生长速率 Relative growth rate | 0.669 | -0.321 | 0.049 | 0.483 | 0.390 | -0.585 | |
针茅 Stipa capillata | 种群生物量 Population biomass | -0.477 | 0.950** | 0.655 | -0.836* | -0.508 | -0.589 |
相对生长速率 Relative growth rate | -0.869* | 0.288 | 0.691 | -0.686 | -0.920** | -0.426 |
表1 8月份4个物种种群生物量和6-8月份相对生长速率与叶片C, N, P及其计量比的相关性
Table 1 Correlation coefficients between the C:N:P ratio of plant leaves and the plant biomass or the relative growth rate from June to August of the four species
指标 Index | 全C浓度 Total C | 全N浓度 Total N | 全P浓度 Total P | C:N | C:P | N:P | |
---|---|---|---|---|---|---|---|
牛枝子 Lespedeza potaninii | 种群生物量 Population biomass | -0.647 | 0.585 | 0.178 | -0.734 | -0.583 | 0.824* |
相对生长速率 Relative growth rate | -0.564 | 0.461 | 0.031 | -0.618 | -0.443 | 0.889* | |
老瓜头 Cynanchum komarovii | 种群生物量 Population biomass | -0.541 | 0.887* | -0.494 | -0.865* | -0.314 | 0.988** |
相对生长速率 Relative growth rate | -0.558 | 0.555 | -0.709 | -0.708 | -0.169 | 0.802* | |
冰草 Agropyron cristatum | 种群生物量 Population biomass | -0.276 | 0.499 | 0.667 | -0.561 | -0.655 | 0.245 |
相对生长速率 Relative growth rate | 0.669 | -0.321 | 0.049 | 0.483 | 0.390 | -0.585 | |
针茅 Stipa capillata | 种群生物量 Population biomass | -0.477 | 0.950** | 0.655 | -0.836* | -0.508 | -0.589 |
相对生长速率 Relative growth rate | -0.869* | 0.288 | 0.691 | -0.686 | -0.920** | -0.426 |
图4 8月份4个物种种群生物量与群落N库,C:N和N:P的关系(平均值±标准误差, n = 5).
Fig. 4 Relationships between the population biomass of the four species and community N pool, C:N, and N:P in August (mean ± SE, n = 5).
图5 4个物种6-8月相对生长速率与群落N库C:N和N:P的关系(平均值±标准误差, n = 5).
Fig. 5 Relationships between the relative growth rate of the four specie (from June to August) and community N pool, C:N ratio, and N:P ratio (mean ± SE, n = 5).
图6 8月份4个物种种群生物量与土壤全N含量,C:N和N:P的线性关系(平均值±标准误差, n = 5).
Fig. 6 Relationships between the population biomass of the four species and soil total N content, C:N ratio and N:P ratio in August (mean ± SE, n = 5).
图7 4个物种6-8月相对生长速率与土壤全N含量,C:N和N:P的线性关系(平均值±标准误差, n = 5).
Fig. 7 Relationships between the relative growth rate of the four species (from June to August) and soil total N content, C:N ratio, and N:P ratio (mean ± SE, n = 5).
[1] | Agren (2004). The C: N: P stoichiometry of autotrophs: Theory and observations.Ecology Letters, 7, 185-191. |
[2] | Bai CL (2014). Study on Nutrient Use and Stoichiometry of Dominant Plants in Desert Steppe . PhD dissertation, Inner Mongolia Agricultural University, Hohhot.(in Chinese with English abstract)[白春利 (2014). 荒漠草原优势植物养分利用及化学计量特征研究. 博士学位论文, 内蒙古农业大学, 呼和浩特.] |
[3] | Bao SD (2000). Soil and Agricultural Chemistry Analysis. 3rd edn. China Agriculture Press, Beijing. (in Chinese).[鲍士旦 (2000). 土壤农化分析 (第三版). 中国农业出版社, 北京.] |
[4] | Berman-Frank I, Dubinsky Z (1999). Balanced growth in aquatic plants: Myth or reality.BioScience, 49, 29-37. |
[5] | Bobbink R, Hicks K, Galloway J, Spranger T, Alkemade R, Ashmore M, Bustamante M, Cinderby S, Davidson E, Dentener F, Emmett B, Erisman JW, Fenn M, Gilliam F, Nordin A, Pardo L, de Vries W (2010). Global assessment of nitrogen deposition effects on terrestrial plant diversity: A synthesis.Ecological Applications, 20, 30-59. |
[6] | Bobbink R, Hornung M, Roelofs JGM (1998). The effects of air-borne nitrogen pollutants on species diversity in natural and semi-natural European vegetation.Journal of Ecology, 86, 717-738. |
[7] | Clark CM, Tilman D (2008). Loss of plant species after chronic low-level nitrogen deposition to prairie grasslands.Nature, 451, 712-715. |
[8] | Delgado-Baquerizo M, Maestre FT, Gallardol A, Bowker MA, Wallenstein MD, Quero JL, Ochoa V, Gozalo B, Garcí a-Gómez M, Soliveres S, García-Palacios P, Berdugo M, Valencia E, Escolar C, Arredondo T, Barraza-Zepeda C, Bran D, Carreira JA, Chaieb M, Conceicão AA, Derak M, Eldridge DJ, Escudero A, Espinosa CI, Gaitán J, Gatica MG, Gómez-González S, Guzman E, Gutiérrez JR, Florentino A, Hepper E, Hernández RM, Huber-Sannwald E, Jankju M, Liu J, Mau RL, Miriti M, Monerris J, Naseri K, Noumi Z, Polo V, Prina A, Pucheta E, Ramírez ERamírez-Collantes DA, Romão R, Tighe M, Torres D, Torres-Díaz C, Ungar ED, Val J, Wamiti W, Wang D, Zaady E(2013). Decoupling of soil nutrient cycles as a function of aridity in global drylands.Nature, 502, 672-676. |
[9] | Duan L, Hao JM, Xie SD, Zhou ZP (2002). Estimating critical loads of sulfur and nitrogen for Chinese soils by steady state method.Journal of Environmental Science, 23(2), 7-12. (in Chinese with English abstract).[段雷, 郝吉明, 谢绍东, 周中平 (2002). 用稳态法确定中国土壤的硫沉降和氮沉降临界负荷. 环境科学, 23(2), 7-12.] |
[10] | Elser JJ, Acharya K, Kyle M, Cotner J, Makino W, Markow T, Watts T, Hobbie S, Fagan W, Schade J, Hood J, Sterner RW (2003). Growth rate-stoichiometry couplings in diverse biota.Ecology Letters, 6, 936-943. |
[11] | Elser JJ, Fagan WF, Kerkhoff AJ, Swenson NG, Enquist BJ (2010). Biological stoichiometry of plant production: Metabolism, scaling and ecological response to global change.New Phytologist, 186, 593-608. |
[12] | Faust C, Storm C, Schwabe A (2012)(2012). Shifts in plant community structure of a threatened sandy grassland over a 9-yr period under experimentally induced nutrient regimes: Is there a lag phase?Journal of Vegetation Science, Journal of Vegetation Science, 23, 372-386. |
[13] | Galloway JN, Aber JD, Erisman JW, Seitzinger SP, Howarth RW, Cowling EB, Cosby BJ (2003). The nitrogen cascade.BioScience, 53, 341-356. |
[14] | He JS, Wang L, Flynn DFB, Wang XP, Ma WH, Fang JY (2008). Leaf nitrogen:phosphorus stoichiometry across Chinese grassland biomes.Oecologia, 155, 301-310. |
[15] | He YH, Liu XP, Xie ZK (2015). Effect of nitrogen addition on species diversity and plant productivity of herbaceous plants in desert grassland of the Loess Plateau.Journal of Desert Research, 35(1), 66-71. (in Chinese with English abstract).[何玉惠, 刘新平, 谢忠奎 (2015). 氮素添加对黄土高原荒漠草原草本植物物种多样性和生产力的影响. 中国沙漠, 35(1), 66-71.] |
[16] | Huang JY, Zhu XG, Yuan ZY, Song SH, Li X, Li LH (2008). Changes in nitrogen resorption traits of six temperate grassland species on a multi-level N addition gradient.Plant and Soil, 306(1-2), 149-158. |
[17] | IPCC (Intergovernmental Panel on Climate Change) (2013). Climate Change 20y3: The Physical Science Basis. Cambridge University Press, Cambridge, UK. |
[18] | Jones AG, Power SA (2012). Field-scale evaluation of effects of nitrogen deposition on the functioning of heathland ecosystems.Journal of Ecology, 100, 331-342. |
[19] | Li LJ, Zeng DH, Yu ZY, Ai GY, Yang D, Mao R (2009). Effects of nitrogen addition on grassland species diversity and productivity in Keerqin Sandy Land.Journal of Applied Ecology, 20, 1838-1844. (in Chinese with English abstract).[李禄军, 曾德慧, 于占源, 艾桂艳, 杨丹, 毛瑢 (2009). 氮素添加对科尔沁沙质草地物种多样性和生产力的影响. 应用生态学报, 20, 1838-1844.] |
[20] | Li LS, Cheng SL, Fang HJ, Yu GR, Xu MJ, Wang YS, Dang XS, Li YN (2015). Effects of nitrogen enrichment on transfer and accumulation of soil organic carbon in alpine meadows on the Qinhai-Tibetan Plateau.Acta Pedologica Sinica, 52, 183-193. (in Chinese with English abstract).[李林森, 程淑兰, 方华军, 于贵瑞, 徐敏杰, 王永生, 党旭升, 李英年 (2015). 氮素富集对青藏高原高寒草甸土壤有机碳迁移和累积过程的影响. 土壤学报, 52, 183-193.] |
[21] | Li YH (2014). Responses of Plant Community Structure and Function to Warming and Nitrogen Addition in a Desert Steppe of Inner Mongolia . PhD dissertation, Inner Mongolia Agricultural University, Hohhot.(in Chinese with English abstract).[李元恒 (2014). 内蒙古荒漠草原植物群落结构和功能对增温和氮素添加的响应. 博士学位论文, 内蒙古农业大学, 呼和浩特.] |
[22] | Liu P, Huang JH, Sun O JX (2010). Litter decomposition and nutrient release as affected by soil nitrogen availability and litter quality in a semiarid grassland ecosystem.Oecologia, 162, 771-780. |
[23] | Liu XJ, Zhang Y, Han WX, Tang AH, Shen JL, Cui ZL, Vitousek P, Erisman JW, Goulding K, Christie P, Fangmeier A, Zhang FS (2013). Enhanced nitrogen deposition over China.Nature, 494, 459-462. |
[24] | Menge DNL, Field CB (2007). Simulated global changes alter phosphorus demand in annual grassland.Global Change Biology, 13, 2582-2591. |
[25] | Mo JM, Fang YT, Xu GL, Li DJ, Xu JH (2005). The short-term responses of soil CO2 emission and CH4 uptake to simulated N deposition in nursery and forests of Dinghushan in subtropical China.Acta Ecologica Sinica, 25, 682-690. (in Chinese with English abstract).[莫江明, 方运霆, 徐国良, 李德军, 薛璟花 (2005). 鼎湖山苗圃和主要森林土壤CO2排放和CH4吸收对模拟N沉降的短期响应. 生态学报, 25, 682-690.] |
[26] | Peňuelas J, Sardans J, Rivas-Ubach A, Janssens IA(2012). The human-induced imbalance between C, N and P in Earth's life system.Global Change Biology, 18, 3-6. |
[27] | Phuyal M, Artz RRE, Sheppard L, Leith ID, Johnson D (2008). Long-term nitrogen deposition increases phosphorus limitation of bryophytes in an ombrotrophic bog.Plant Ecology, 196, 111-121. |
[28] | Stark S, Mannisto MK, Eskelinen A (2014). Nutrient availab- ility and pH jointly constrain microbial extracellular enzyme activities in nutrient-poor tundra soils.Plant and Soil, 383, 373-385. |
[29] | Stevens CJ, Thompson K, Grime JP, Long, CJ, Gowing DJG (2010). Contribution of acidification and eutrophication to declines in species richness of calcifuge grasslands along a gradient of atmospheric nitrogen deposition.Functional Ecology, 24, 478-484. |
[30] | Su JQ, Li XR, Li XJ, Feng L (2013). Effects of additional N on herbaceous species of desertified steppe in arid regions of China: A four-year field study.Ecological Research, 28, 21-28. |
[31] | Tian HQ, Chen GS, Zhang C, Melillo JM, Hall CAS (2010). Pattern and variation of C:N:P ratios in China's soils: A synthesis of observational data.Biogeochemistry, 98, 139-151. |
[32] | Vitousek PM, Porder S, Houlton BZ, Chadwick OA (2010). Terrestrial phosphorus limitation: Mechanisms, implica- tions, and nitrogen-phosphorus interactions.Ecological Application, 20, 5-15. |
[33] | Wang SQ, Yu GR (2008). Ecological stoichiometry character- istics of ecosystem carbon, nitrogen and phosphorus elements.Acta Ecologica Sinica, 28, 3937-3947. (in Chinese with English abstract).[王绍强, 于贵瑞 (2008). 生态系统碳氮磷元素的生态化学计量学特征. 生态学报, 28, 3937-3947.] |
[34] | Wardle DA, Gundale MJ, Jaderlund A, Nilsson MC (2013). Decoupled long-term effects of nutrient enrichment on aboveground and belowground properties in subalpine tundra.Ecology, 94, 904-919. |
[35] | Yang XX, Ren F, Zhou HK, He JS (2014). Responses of plant community biomass to nitrogen and phosphorus additions in an alpine meadow on the Qinghai-Xizang Plateau.Chinese Journal of Plant Ecology, 38, 159-166. (in Chinese with English abstract)[杨晓霞, 任飞, 周华坤, 贺金生 (2014). 青藏高原高寒草甸植物群落生物量对氮,磷添加的响应. 植物生态学报, 38, 159-166.] |
[36] | Yang YH, Fang JY, Ji CJ, Datta A, Li P, Ma WH, Mohammat A, Shen HH, Hu HF, Knapp BO, Smith P (2014). Stoichiometric shifts in surface soils over broad geographical scales: Evidence from China's grasslands.Global Ecology and Biogeography, 23, 947-955. |
[37] | Yu Q, Wu HH, He NP, LüXT, Wang ZP, Elser JJ, Wu JG, Han XG (2012). Testing the growth-rate hypothesis in vascular plants with above- and below-ground biomass.PLoS ONE, 7, e32162. |
[38] | Yuan ZY, Chen HYH (2015). Decoupling of nitrogen and phosphorus in terrestrial plants associated with global changes.Nature Climate Change, 5, 465-469. |
[39] | Zhao XF, Xu HL, Zhang P, Tu WX, Zhang QQ (2014). Effects of nutrient and water additions on plant community struc- ture and species diversity in desert grasslands.Chinese Journal of Plant Ecology, 38, 167-177. (in Chinese with English abstract).[赵新风, 徐海量, 张鹏, 涂文霞, 张青青 (2014). 养分与水分添加对荒漠草地植物群落结构和物种多样性的影响. 植物生态学报, 38, 167-177.] |
[40] | Zhou XB, Zhang YM (2009). Review on the ecological effects of N deposition in arid and semi-arid areas.Acta Ecologica Sinica, 29, 3835-3845. (in Chinese with Eng- lish abstract)[周晓兵, 张元明 (2009). 干旱半干旱区氮沉降生态效应研究进展. 生态学报, 29, 3835-3845.] |
[41] | Zhou XB, Zhang YM, Wang SS, Zhang BC (2010). Combined effects of simulated nitrogen deposition and drought stress on growth and photosynthetic physiological responses of two annual desert plants in Junggar Basin, China.Chinese Journal of Plant Ecology, 34, 1394-1403. (in Chinese with English abstract).[周晓兵, 张元明, 王莎莎, 张丙昌 (2010). 模拟氮沉降和干旱对准噶尔盆地两种一年生荒漠植物生长和光合生理的影响. 植物生态学报, 34, 1394-1403.] |
[42] | Zhu FF, Yoh M, Gilliam FS, Lu XK, Mo JM (2013). Nutrient limitation in three lowland tropical forests in southern China receiving high nitrogen deposition: Insights from fine root responses to nutrient additions.PLoS ONE, 8, e82661. |
[1] | 江康威 张青青 王亚菲 李宏 丁雨 杨永强 吐尔逊娜依·热依木. 放牧干扰下天山北坡中段植物功能群特征及其与土壤环境因子的关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 张智洋 赵颖慧 甄贞. 1986-2022年松花江流域陆地生态系统碳储量动态监测[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[3] | 张文瑾 佘维维 秦树高 乔艳桂 张宇清. 氮和水分添加对黑沙蒿群落优势植物叶片氮磷化学计量特征的影响[J]. 植物生态学报, 2024, 48(5): 590-600. |
[4] | 萨其拉, 张霞, 朱琳, 康萨如拉. 长期不同放牧强度下荒漠草原优势种无芒隐子草叶片解剖结构变化[J]. 植物生态学报, 2024, 48(3): 331-340. |
[5] | 杨安娜, 李曾燕, 牟凌, 杨柏钰, 赛碧乐, 张立, 张增可, 王万胜, 杜运才, 由文辉, 阎恩荣. 上海大金山岛不同植被类型土壤细菌群落的变异[J]. 植物生态学报, 2024, 48(3): 377-389. |
[6] | 程可心, 杜尧, 李凯航, 王浩臣, 杨艳, 金一, 何晓青. 玉米与叶际微生物组的互作遗传机制[J]. 植物生态学报, 2024, 48(2): 215-228. |
[7] | 李冰, 朱湾湾, 韩翠, 余海龙, 黄菊莹. 降水量变化下荒漠草原土壤呼吸及其影响因素[J]. 植物生态学报, 2023, 47(9): 1310-1321. |
[8] | 李伯新, 姜超, 孙建新. CMIP6模式对中国西南部地区植被碳利用率模拟能力综合评估[J]. 植物生态学报, 2023, 47(9): 1211-1224. |
[9] | 李安艳, 黄先飞, 田源斌, 董继兴, 郑菲菲, 夏品华. 贵州草海草-藻型稳态转换过程中叶绿素a的变化及其影响因子[J]. 植物生态学报, 2023, 47(8): 1171-1181. |
[10] | 何斐, 李川, Faisal SHAH, 卢谢敏, 王莹, 王梦, 阮佳, 魏梦琳, 马星光, 王卓, 姜浩. 丛枝菌根菌丝桥介导刺槐-魔芋间碳转运和磷吸收[J]. 植物生态学报, 2023, 47(6): 782-791. |
[11] | 张雅琪, 庞丹波, 陈林, 曹萌豪, 何文强, 李学斌. 荒漠草原土壤氨氧化细菌群落结构对氮添加和枯落物输入的响应[J]. 植物生态学报, 2023, 47(5): 699-712. |
[12] | 钟姣, 姜超, 刘世荣, 龙文兴, 孙建新. 海南长臂猿食源植物的潜在物种丰富度分布格局[J]. 植物生态学报, 2023, 47(4): 491-505. |
[13] | 何茜, 冯秋红, 张佩佩, 杨涵, 邓少军, 孙小平, 尹华军. 基于叶片和土壤酶化学计量的川西亚高山岷江冷杉林养分限制海拔变化规律[J]. 植物生态学报, 2023, 47(12): 1646-1657. |
[14] | 林马震, 黄勇, 李洋, 孙建. 高寒草地植物生存策略地理分布特征及其影响因素[J]. 植物生态学报, 2023, 47(1): 41-50. |
[15] | 姚萌, 康荣华, 王盎, 马方园, 李靳, 台子晗, 方运霆. 利用15N示踪技术研究木荷与马尾松幼苗叶片对NO2的吸收与分配[J]. 植物生态学报, 2023, 47(1): 114-122. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19