植物生态学报 ›› 2016, Vol. 40 ›› Issue (11): 1136-1144.DOI: 10.17521/cjpe.2016.0109
收稿日期:
2016-03-24
接受日期:
2016-07-23
出版日期:
2016-11-10
发布日期:
2016-11-25
通讯作者:
张蕊
基金资助:
Ping SONG1, Rui ZHANG1,*(), Yi ZHANG2, Zhi-Chun ZHOU1, Zhong-Ping FENG3
Received:
2016-03-24
Accepted:
2016-07-23
Online:
2016-11-10
Published:
2016-11-25
Contact:
Rui ZHANG
摘要:
根系是植物吸收土壤营养的关键部位, 不同径级根系的形态和功能差异不仅与植株自身的遗传因素有关, 而且受到土壤中营养元素分布和水平的影响。在我国亚热带高氮沉降和酸性红壤磷匮乏及不均一的土壤环境下, 研究林木不同径级根系对外界营养环境变化的响应有利于深入了解林木根系的觅养机制及规律。该文以马尾松(Pinus massoniana)无性系19-5 (高磷效率)和21-3 (低磷效率)为材料, 在同质低磷和异质低磷两种盆栽处理下, 设置3个氮水平(对照、中氮和高氮)的模拟氮沉降实验。结果表明: 1)马尾松无性系苗木的生长受磷环境、氮水平和无性系三因素共同影响, 模拟氮沉降显著促进了异质低磷下马尾松苗高和整株干物质量的增加, 而在同质低磷下氮效应不显著; 在异质低磷、高氮下, 无性系19-5的苗高和整株干物质量分别是无性系21-3的1.1倍和1.6倍。2)马尾松各径级细根长度和表面积随径级增大而减小, 模拟氮沉降促进了直径≤1.5 mm的细根的增生发育, 直径1.5-2.0 mm的细根和>2.0 mm的较粗根无明显变化; 另外, 直径≤1.5 mm的细根长度占总根长的比例保持在90.4%-92.8%范围内, 受氮影响较小。3)模拟氮沉降显著提高了异质低磷下无性系19-5≤1.5 mm的细根长度和表面积, 同时, 其根系氮、磷吸收效率较对照分别高出93.3%和148.4%; 无性系21-3的根系氮、磷吸收效率受氮影响较小; 根系氮、磷利用效率均无显著变化。上述结果表明, ≤1.5 mm的细根的增生发育和氮、磷吸收效率的提高可能是磷高效马尾松无性系应对高氮低磷环境的重要响应机制。
宋平, 张蕊, 张一, 周志春, 丰忠平. 模拟氮沉降对低磷胁迫下马尾松无性系细根形态和氮磷效率的影响. 植物生态学报, 2016, 40(11): 1136-1144. DOI: 10.17521/cjpe.2016.0109
Ping SONG, Rui ZHANG, Yi ZHANG, Zhi-Chun ZHOU, Zhong-Ping FENG. Effects of simulated nitrogen deposition on fine root morphology, nitrogen and phosphorus efficiency of Pinus massoniana clone under phosphorus deficiency. Chinese Journal of Plant Ecology, 2016, 40(11): 1136-1144. DOI: 10.17521/cjpe.2016.0109
图1 不同N-P处理下马尾松无性系幼苗苗高和干物质量(平均值±标准误差)。A, 苗高。B, 整株干物质量。不同小写字母表示同一无性系下不同N-P处理之间差异显著(p < 0.05)。
Fig. 1 Seedling height and dry mass of Pinus massoniana clones under different N and P conditions (mean ± SE). A, Seedling height. B, Seedling dry mass. Different lowercase letters indicate significant differences among different nutrient treatments under the same clone (p < 0.05).
无性系 Clone | 性状 Trait | 同质低P Homogeneous low P | 异质低P Heterogeneous low P | |||||
---|---|---|---|---|---|---|---|---|
对照 Control | 中N Medium N | 高N High N | 对照 Control | 中N Medium N | 高N High N | |||
0 kg·hm-2·a-1 | 30 kg·hm-2·a-1 | 120 kg·hm-2·a-1 | 0 kg·hm-2·a-1 | 30 kg·hm-2·a-1 | 120 kg·hm-2·a-1 | |||
19-5 | 根生物量 Root biomass (g) | 1.27 ± 0.24a | 1.86 ± 0.50a | 3.15 ± 1.33a | 2.53 ± 0.27B | 2.57 ± 0.70B | 6.22 ± 2.16A | |
根长 Root length (cm) | 217.9 ± 77.6a | 507.1 ± 184.9a | 517.3 ± 164.8a | 362.1 ± 64.7B | 722.0 ± 133.2AB | 1 300.9 ± 426.0A | ||
根表面积 Root surface area (cm2) | 55.4 ± 16.3a | 108.9 ± 38.0a | 118.2 ± 47.8a | 89.1 ± 23.5B | 160.1 ± 25.6AB | 301.9 ± 143.9A | ||
21-3 | 根生物量 Root biomass (g) | 2.08 ± 0.92a | 2.74 ± 0.79a | 3.30 ± 0.87a | 2.17 ± 0.45A | 3.09 ± 0.66A | 3.89 ± 0.61A | |
根长 Root length (cm) | 491.8 ± 163.0a | 607.8 ± 174.5a | 709.1 ± 218.7a | 601.0 ± 202.0A | 712.1 ± 97.5A | 716.3 ± 148.6A | ||
根表面积 Root surface area (cm2) | 122.1 ± 49.1a | 153.1 ± 46.1a | 175.4 ± 53.2a | 145.5 ± 40.5A | 182.0 ± 33.3A | 186.0 ± 28.5A |
表1 不同N-P处理下马尾松无性系幼苗根系总体情况(平均值±标准误差)
Table 1 Root parameters of Pinus massoniana clones under different N and P conditions (mean ± SE)
无性系 Clone | 性状 Trait | 同质低P Homogeneous low P | 异质低P Heterogeneous low P | |||||
---|---|---|---|---|---|---|---|---|
对照 Control | 中N Medium N | 高N High N | 对照 Control | 中N Medium N | 高N High N | |||
0 kg·hm-2·a-1 | 30 kg·hm-2·a-1 | 120 kg·hm-2·a-1 | 0 kg·hm-2·a-1 | 30 kg·hm-2·a-1 | 120 kg·hm-2·a-1 | |||
19-5 | 根生物量 Root biomass (g) | 1.27 ± 0.24a | 1.86 ± 0.50a | 3.15 ± 1.33a | 2.53 ± 0.27B | 2.57 ± 0.70B | 6.22 ± 2.16A | |
根长 Root length (cm) | 217.9 ± 77.6a | 507.1 ± 184.9a | 517.3 ± 164.8a | 362.1 ± 64.7B | 722.0 ± 133.2AB | 1 300.9 ± 426.0A | ||
根表面积 Root surface area (cm2) | 55.4 ± 16.3a | 108.9 ± 38.0a | 118.2 ± 47.8a | 89.1 ± 23.5B | 160.1 ± 25.6AB | 301.9 ± 143.9A | ||
21-3 | 根生物量 Root biomass (g) | 2.08 ± 0.92a | 2.74 ± 0.79a | 3.30 ± 0.87a | 2.17 ± 0.45A | 3.09 ± 0.66A | 3.89 ± 0.61A | |
根长 Root length (cm) | 491.8 ± 163.0a | 607.8 ± 174.5a | 709.1 ± 218.7a | 601.0 ± 202.0A | 712.1 ± 97.5A | 716.3 ± 148.6A | ||
根表面积 Root surface area (cm2) | 122.1 ± 49.1a | 153.1 ± 46.1a | 175.4 ± 53.2a | 145.5 ± 40.5A | 182.0 ± 33.3A | 186.0 ± 28.5A |
图2 不同N-P处理下马尾松无性系各径级细根长度和表面积(平均值±标准误差)。不同小写字母表示不同处理之间差异显著(p < 0.05)。
Fig. 2 Fine root length and surface area of each diameter classification of Pinus massoniana clones under different N-P conditions (mean ± SE). Different lowercase letters indicate significant differences among treatments (p < 0.05).
图3 不同N-P处理下马尾松无性系根系N、P效率(平均值±标准误差)。不同小写字母表示无性系19-5在不同处理间差异显著。*, p < 0.05; **, p < 0.01。
Fig. 3 N and P efficiency in root of Pinus massoniana clones under different N and P conditions (mean ± SE). Different lowercase letters indicate significant differences among treatments in clone 19-5. *, p < 0.05; **, p < 0.01.
[1] | Agren GI, Wetterstedt JÅM, Billberger MFK (2012). Nutrient limitation on terrestrial plant growth-modeling the inter- action between nitrogen and phosphorus.New Phytologist, 194, 953-960. |
[2] | Anderson JM, Ingram JSI (1933). Tropical Soil Biology and Fertility: A Handbook of Methods. 2th edn. CAB International Press, Wallingford, USA. 157. |
[3] | Band LR, Bennett MJ (2013). Mapping the site of action of the Green Revolution hormone gibberellin.Proceedings of the National Academy of Science of the United States of America, 110, 4443-4444. |
[4] | Bremner JM, Mulvaney CS (1982). Nitrogen-total. In: Page AL, Miller RH, Keeney DR eds. Methods of Soil Analysis. Part 2: Chemical and Microbial Properties, Agronomy Monograph 9. Agronomy Society of America, Madison, USA. 595-624. |
[5] | Burton AJ, Pregitzer KS, Hendrick RL (2000). Relationships between fine root dynamics and nitrogen availability in Michigan northern hardwood forests. Oecologia, 125, 389-399. |
[6] | Cao J, Zhang FS (2000). Phosphorus uptake and utilization efficiency in seedlings of different wheat genotypes as influenced by water supply at low soil phosphorus availability.Acta Phytoecologica Sinica, 24, 731-735. (in Chinese with English abstract)[曹靖, 张福锁 (2000). 低磷条件下不同基因型小麦幼苗对磷的吸收和利用效率及水分的影响. 植物生态学报, 24, 731-735.] |
[7] | Cheng YH, Han YZ, Wang QC, Wang ZQ (2005). Seasonal dynamics of fine root biomass, root length density, specific root length and soil resource availability in a Larix gmelini plantation. Acta Phytoecologica Sinica, 29, 403-410. (in Chinese with English abstract)[程云环, 韩有志, 王庆成, 王政权 (2005). 落叶松人工林细根动态与土壤资源有效性关系研究. 植物生态学报, 29, 403-410.] |
[8] | Eissenstat DM, Yanni RD (2002). Root lifespan, efficiency and turnover. In: Waisel Y, Eshel A, Kafkafi U eds. Plant Roots: The Hidden Half. 3rd edn. Dekker, New York. 221-238. |
[9] | Guo DL, Li H, Mitchell RJ, Han WX, Hendricks JJ, Fahey TJ. Hendrick RL (2008). Heterogeneity by root branch order: Exploring the discrepancy in root longevity and turnover estimates between minirhizotron and C isotope methods.New Phytologist, 177, 443-456. |
[10] | He Y, Liao H, Yan XL (2003). Localized supply of phosphorus induces root morphological and architectural changes of rice in split and stratified soil cultures.Plant and Soil, 248, 247-256. |
[11] | Henry A, Kleinman PJ, Lynch JP (2009). Phosphorus runoff from a phosphorus deficient soil under common bean (Phaseolus vulgaris L.) and soybean(Glycine max L.) genotypes with contrasting root architecture. Plant and Soil, 317, 1-16. |
[12] | Hodge (2004). The plastic plant: Root responses to heteroge- neous supplies of nutrients.New Phytologist, 162, 9-24. |
[13] | Holland EA, Braswell BH, Sulzman J (2004). Nitrogen Deposition onto the United States and Western Europe: Synthesis of observations and models.Ecological Applications, 15, 38-57. |
[14] | Jackson RB, Caldwell MM (1996). Integrating resource heterogeneity and plant plasticity: Modelling nitrate and phosphate uptake in a patchy soil environment.Journal of Ecology, 84, 891-903. |
[15] | Kanno S, Arrighi JF, Chiarenza S, Bayle V, Berthom R, Peret B, Javot H, Delannoy E, Marin E, Nakanishi TM, Thibaud MC, Nussanme L (2016). A novel role for the root cap in phosphate uptake and homeostasis. Plant Biology, 5, e14577. doi: 10.7554/e Life.14577. |
[16] | Liu JL, Mei L, Gu JC, Quan XK, Wang ZQ (2009). Effects of nitrogen fertilization on fine root biomass and morphology of Fraxinus mandshurica and Larix gmelinii: A study with in-growth core approach. Chinese Journal of Ecology, 28, 1-6. (in Chinese with English abstract)[刘金梁, 梅莉, 谷加存, 全先奎, 王政权 (2009). 内生长法研究施氮肥对水曲柳和落叶松细根生物量和形态的影响. 生态学杂志, 28, 1-6.] |
[17] | Liu Y, Wang GL, Liu GB, Qu QL, Yuan ZC (2010). Difference and inherent linkage of root characteristics in different root classification of Pinus tabulaeformis seedlings. Chinese Journal of Plant Ecology, 34, 1386-1393. (in Chinese with English abstract)[刘莹, 王国梁, 刘国彬, 曲秋玲, 袁子成 (2010).不同分类系统下油松幼苗根系特征的差异与联系. 植物生态学报, 34, 1386-1393.] |
[18] | Meinen C, Hertel D, Leuschner C (2009). Biomass and mor- phology of fine roots in temperate broad-leaved forests differing in tree species diversity: Is there evidence of below-ground over yielding?Oecologia, 161, 99-111. |
[19] | Miao Y, Chen YL, Li XW, Fan C, Liu YK, Yang ZJ, Zhang J, Cai XL (2013). Effects of fertilization on Alnus formosana fine root morphological characteristics, biomass and issue content of C, N under A. formosana-Hemarthria compre- ssa compound mode. Chinese Journal of Plant Ecology, 37, 674-683. (in Chinese with English abstract)[苗宇, 陈栎霖, 李贤伟, 范川, 刘运科, 杨正菊, 张军, 蔡新莉 (2013). 施肥对台湾桤木-扁穗牛鞭草复合模式下桤木细根形态特征、生物量及组织碳氮含量的影响. 植物生态学报, 37, 674-683.] |
[20] | Miller CR, Ochoa I, Nielsen KL, Beck D, Lynch JP (2003). Genetic variation for adventitious rooting in response to low phosphorus availability: Potential utility for phos- phorus acquisition from stratified soils.Functional Plant Biology, 30, 973-985. |
[21] | Mou P, Robert HJ, Tan ZQ, Bao Z, Chen HM (2013). Morpho- logical and physiological plasticity of plant roots when nutrients are both spatially and temporally heterogeneous.Plant and Soil, 364, 373-384. |
[22] | Pang L, Zhang Y, Zhou ZC, Feng ZP, Chu DY (2014). Effects of simulated nitrogen deposition on growth and phospho- rus efficiency of Pinus massoniana under low phosphorus stress. Chinese Journal of Applied Ecology, 25, 1275-1282. (in Chinese with English abstract)[庞丽, 张一, 周志春, 丰忠平, 储徳裕 (2014). 模拟氮沉降对低磷胁迫下马尾松生长和磷效率的影响. 应用生态学报, 25, 1275-1282.] |
[23] | Pregitzer KS, Deforest JL, Burton AJ, Allen MF, Ruess RW, Hendrick RL (2002). Fine root architecture of nine north American trees.Ecological Monographs, 72, 293-309. |
[24] | Pregitzer KS, Kubiske ME, Yu CK, Hendrick RL (1997). Rela- tionships among root branch order, carbon, and nitrogen in four temperate species.Oecologia, 111, 302-308. |
[25] | Robinson D (1994). The responses of plants to non-uniform supplies of nutrients.New Phytologist, 127, 635-674. |
[26] | Saito MA, Goepfert TJ, Riit JT (2008). Some thoughts on the concept of colimitation: Three definitions and the impor- tance of bioavailability.Limnology & Oceanography, 53, 276-290. |
[27] | [国家林业局 (2014. 国家林业局第八次全国森林资源清查报告(2009-2013).] . |
[28] | Tinker PB, Nye PH (2000). Solute Movement in the Rhizos- phere. Oxford University Press, Oxford. 444. |
[29] | Wang L, Mou PP, Jones RH (2006). Nutrient foraging via phy- siological and morphological plasticity in three plant species.Canadian Journal of Forest Research, 36, 164-173. |
[30] | Wang P, Mou P, Li YB (2012). Review of root nutrient forag- ing plasticity and root competition of plants. Chinese Journal of Plant Ecology, 36, 1184-1196. (in Chinese with English abstract)[王鹏, 牟溥, 李云斌 (2012). 植物根系养分捕获塑性与根竞争.植物生态学报, 36, 1184-1196.] |
[31] | Wells CE, Glenn DM, Eissenstat DM (2002). Changes in the risk of fine-root mortality with age: A case study in peach,Prunus persica (Rosaceae). American Journal of Botany, 89, 79-87. |
[32] | Yan XL, Liao H, Nian H (2007). Plant Root Biology. Science Press, Beijing. 43. (in Chinese)[严小龙, 廖红, 年海 (2007). 根系生物学. 科学出版社, 北京. 43.] |
[33] | Yang Q, Zhang Y, Zhou ZC, Ma XH, Liu WH, Feng ZP (2011). Genetic variation in root architecture and phos- phorrus efficiency in response to heterogeneous phosph- orus deficiency in Pinus massoniana families. Chinese Journal of Plant Ecology, 35, 1226-1235. (in Chinese with English abstract)[杨青, 张一, 周志春, 马雪红, 刘伟宏, 丰忠平 (2011). 异质低磷胁迫下马尾松家系根构型和磷效率的遗传变异. 植物生态学报, 35, 1226-1235.] |
[34] | Yu LZ, Ding GQ, Shi JW, Yu SQ, Zhu JJ, Zhao LF (2007). Effects of fertilization on fine root diameter, root length and specific root length in Larix kaempferi plantation. Chinese Journal of Applied Ecology, 18, 957-962. (in Chinese with English abstract)[于立忠, 丁国泉, 史建伟,于水强, 朱教君, 赵连富 (2007). 施肥对日本落叶松人工林细根直径、根长和比根长的影响. 应用生态学报, 18, 957-962.] |
[35] | Zhang R, Wang Y, Jin GQ, Zhou ZC, Feng ZP (2013). Nitro- gen addition affects root growth, phosphorus and nitrogen efficiency of three provenances of Schima superba in barren soil. Acta Ecologica Sinica, 33, 3611-3621. (in Chinese with English abstract)[张蕊, 王艺, 金国庆, 周志春, 丰忠平 (2013). 施氮对木荷3个种源幼苗根系发育和氮磷效率的影响. 生态学报, 33, 3611-3621.] |
[36] | Zhang R, Zhou ZC, Luo WJ, Wang Y, Feng ZP (2013). Effects of nitrogen deposition on growth and phosphate efficiency of Schima superba of different provenances grown in phosphorus-barren soil. Plant and Soil, 370, 435-445. |
[37] | Zhang Y, Zhou ZC, Yang Q (2013a). Genetic variations in root morphology and phosphorus efficiency of Pinus massoniana under heterogeneous and homogeneous low phosphorus conditions. Plant and Soil, 364, 93-104. |
[38] | Zhang Y, Zhou ZC, Yang Q (2013b). Deposition impacts seed- ling growth of Pinus massoniana via N:P ratio effects and the modulation of adaptive responses to low P (phosphor- rus). PLOS ONE, 8, e79229. doi: 10.1371/journal.Pone. 0079229. |
[39] | Zhou ZC, Xie YR, Jin GQ, Wu JF, Wu JF, Chen Y (2003). Genetic response of Pinus massoniana provenances to phosphorus supply and nutrient characteristics of their rhizosphere soil. Scientia Silvae Sinicae, 39(6), 62-67. (in Chinese with English abstract)[周志春, 谢钰容, 金国庆, 吴吉富, 陈跃 (2003). 马尾松种源对磷肥的遗传反应及根际土壤营养差异. 林业科学, 39(6), 62-67.] |
[1] | 俞庆水 倪晓凤 吉成均 朱江玲 唐志尧 方精云. 10年氮磷添加对海南尖峰岭两种热带雨林优势植物叶片非结构性碳水化合物的影响[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 刘瑶 钟全林 徐朝斌 程栋梁 郑跃芳 邹宇星 张雪 郑新杰 周云若. 不同大小刨花楠细根功能性状与根际微环境关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[3] | 徐子怡 金光泽. 阔叶红松林不同菌根类型幼苗细根功能性状的变异与权衡[J]. 植物生态学报, 2024, 48(5): 612-622. |
[4] | 曲泽坤, 朱丽琴, 姜琦, 王小红, 姚晓东, 蔡世锋, 罗素珍, 陈光水. 亚热带常绿阔叶林丛枝菌根树种养分觅食策略及其与细根形态间的关系[J]. 植物生态学报, 2024, 48(4): 416-427. |
[5] | 韩大勇, 李海燕, 张维, 杨允菲. 松嫩草地全叶马兰种群分株养分的季节运转及衰老过程[J]. 植物生态学报, 2024, 48(2): 192-200. |
[6] | 杜旭龙, 黄锦学, 杨智杰, 熊德成. 增温对植物叶片和细根氧化损伤与防御特征及其相互关联影响的研究进展[J]. 植物生态学报, 2024, 48(2): 135-146. |
[7] | 舒韦维, 杨坤, 马俊旭, 闵惠琳, 陈琳, 刘士玲, 黄日逸, 明安刚, 明财道, 田祖为. 氮添加对红锥不同序级细根形态和化学性状的影响[J]. 植物生态学报, 2024, 48(1): 103-112. |
[8] | 张英, 张常洪, 汪其同, 朱晓敏, 尹华军. 氮沉降下西南山地针叶林根际和非根际土壤固碳贡献差异[J]. 植物生态学报, 2023, 47(9): 1234-1244. |
[9] | 吴晨, 陈心怡, 刘源豪, 黄锦学, 熊德成. 增温对森林细根生长、死亡及周转特征影响的研究进展[J]. 植物生态学报, 2023, 47(8): 1043-1054. |
[10] | 孙佳慧, 史海兰, 陈科宇, 纪宝明, 张静. 植物细根功能性状的权衡关系研究进展[J]. 植物生态学报, 2023, 47(8): 1055-1070. |
[11] | 吴帆, 吴晨, 张宇辉, 余恒, 魏智华, 郑蔚, 刘小飞, 陈仕东, 杨智杰, 熊德成. 增温对成熟杉木人工林不同季节细根生长、形态及生理代谢特征的影响[J]. 植物生态学报, 2023, 47(6): 856-866. |
[12] | 郑炀, 孙学广, 熊洋阳, 袁贵云, 丁贵杰. 叶际微生物对马尾松凋落针叶分解的影响[J]. 植物生态学报, 2023, 47(5): 687-698. |
[13] | 仲琦, 李曾燕, 马炜, 况雨潇, 邱岭军, 黎蕴洁, 涂利华. 氮添加和凋落物处理对华西雨屏区常绿阔叶林凋落叶分解的影响[J]. 植物生态学报, 2023, 47(5): 629-643. |
[14] | 祝维, 周欧, 孙一鸣, 古丽米热·依力哈木, 王亚飞, 杨红青, 贾黎明, 席本野. 混交林内毛白杨和刺槐根系吸水的动态生态位划分[J]. 植物生态学报, 2023, 47(3): 389-403. |
[15] | 陈心怡, 吴晨, 黄锦学, 熊德成. 增温对林木细根物候影响的研究进展[J]. 植物生态学报, 2023, 47(11): 1471-1482. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19