植物生态学报 ›› 2011, Vol. 35 ›› Issue (9): 937-945.DOI: 10.3724/SP.J.1258.2011.00937
谭小梅1,2(), 周志春1,**(), 金国庆1, 张一1
收稿日期:
2011-03-08
接受日期:
2011-07-22
出版日期:
2011-03-08
发布日期:
2011-09-01
通讯作者:
周志春
作者简介:
**(E-mail:zczhou_risf@163.com)TAN Xiao-Mei1,2(), ZHOU Zhi-Chun1,**(), JIN Guo-Qing1, ZHANG Yi1
Received:
2011-03-08
Accepted:
2011-07-22
Online:
2011-03-08
Published:
2011-09-01
Contact:
ZHOU Zhi-Chun
摘要:
目前国内较早建立的马尾松(Pinus massoniana)二代种子园正陆续进入正常开花结实期。研究马尾松二代种子园花粉散布和自由授粉子代的父本组成, 可为生产上指导马尾松高世代种子园的规划设计和遗传管理提供理论依据。该文利用筛选的11对SSR引物, 对马尾松二代无性系种子园内8个无性系单株的320个自由授粉子代和48个候选父本进行了扩增, 并采用最大似然法对子代进行父本分析。结果表明: 11个位点共检测到61个等位基因, 每个位点的等位基因数在2-11之间, 平均为5.55个。试验亲本和子代群体的总平均观测杂合度(Ho)、期望杂合度(He)及多态信息含量(PIC)分别为0.428、0.433和0.387。在80%的可信度水平下可为232 (72.50%)个子代确定其父本。平均每个采种母树与19个父本产生子代。在自由授粉状态下, 马尾松二代种子园自交率为1.72%, 自交现象很弱, 其交配方式以异交为主。绝大多数亲本无性系的雄性繁殖适合度在1.00%-4.00%之间, 候选父本平均繁殖适合度为2.17%, 平均形成5个后代。马尾松有效花粉的散布距离和固定交配距离的父本繁殖适合度均符合正态分布, 两者呈极显著负相关, 其主要散布距离集中在0-100 m, 而检测到的最大散布距离为192 m。种子园花粉污染率较低, 仅为4.06%。总体看来, 树冠南面子代亲本交配距离较北面有增加的趋势, 但树冠南、北面子代父本组成数并未表现明显的规律。
谭小梅, 周志春, 金国庆, 张一. 马尾松二代无性系种子园子代父本分析及花粉散布. 植物生态学报, 2011, 35(9): 937-945. DOI: 10.3724/SP.J.1258.2011.00937
TAN Xiao-Mei, ZHOU Zhi-Chun, JIN Guo-Qing, ZHANG Yi. Paternity analysis and pollen dispersal for the second generation clonal seed orchard of Pinus massoniana. Chinese Journal of Plant Ecology, 2011, 35(9): 937-945. DOI: 10.3724/SP.J.1258.2011.00937
位点 Locus | 来源 Source | 引物序列(5′-3′) Primer sequences (5′-3′) | 重复单位 Repeat units | 参考文献 Reference |
---|---|---|---|---|
PTest1 | 火炬松 Pinus taeda | F)CGATGTCGATTAGGGATTGG R)CCTGTTCTTCGTCGGATGTT | (GGA)6 | |
PtTX4001 | 火炬松 P. taeda | F)CTATTTGAGTTAAGAAGGGAGTC R)CTGTGGGTAGCATCATC | (GT)5 | |
RPTest11 | 火炬松 P. taeda | F)AGGATGCCTATGATATGCGC R)AACCATAACAAAAGCGGTCG | (CAT)7 | |
PtTX2123 | 火炬松 P. taeda | F)AAGAACCCACAAACACAAG R)GGGCAAGAATTCAATGATAA | (AGC)8 | |
PtTX3116 | 火炬松 P. taeda | F)CCTCCCAAAGCCTAAAGAAT R)CATACAAGGCCTTATCTTACAGAA | (TTG)7…(TTG)5 | |
RPS160 | 北美乔松 P. strobus | F)ACTAAGAACTCTCCCTCTCACC R)TCATTGTTCCCCAAATCAT | (ACAG)3AGGC(ACAC)3 | |
PtTX4062 | 火炬松 P. taeda | F)TCTAGGCAATCTTTTTACCAAC R)ATCATAGCCTCATCCAATACA | (T)8(GT)13 | |
PR203 | 辐射松 P. radiata | F)TGGGACCCCATATTCTGATG R)CATTCCACTAGTTCTCTCGCAC | (GA)14 | |
PR4.6 | 辐射松 P. radiata | F)GAAAAAAAGGCAAAAAAAAGGAG R)ACCCAAGGCTACATAACTCG | (CA)21(TA)6 | |
PtTX4084 | 火炬松 P. taeda | F)ACTGGCGAAGGCGAGCCGACAC R)ACCGCTGTGGGAACCCTCCTCGTC | (GCT)8 | |
Cjgssr170 | 日本柳杉 Cryptomeria japonica | F)TGGCGATGTGGTTCTTATGG R)CAACCGCATCTTTCCCTAATTC | (CT)33 |
表1 SSR引物序列
Table 1 The sequence of SSR primers
位点 Locus | 来源 Source | 引物序列(5′-3′) Primer sequences (5′-3′) | 重复单位 Repeat units | 参考文献 Reference |
---|---|---|---|---|
PTest1 | 火炬松 Pinus taeda | F)CGATGTCGATTAGGGATTGG R)CCTGTTCTTCGTCGGATGTT | (GGA)6 | |
PtTX4001 | 火炬松 P. taeda | F)CTATTTGAGTTAAGAAGGGAGTC R)CTGTGGGTAGCATCATC | (GT)5 | |
RPTest11 | 火炬松 P. taeda | F)AGGATGCCTATGATATGCGC R)AACCATAACAAAAGCGGTCG | (CAT)7 | |
PtTX2123 | 火炬松 P. taeda | F)AAGAACCCACAAACACAAG R)GGGCAAGAATTCAATGATAA | (AGC)8 | |
PtTX3116 | 火炬松 P. taeda | F)CCTCCCAAAGCCTAAAGAAT R)CATACAAGGCCTTATCTTACAGAA | (TTG)7…(TTG)5 | |
RPS160 | 北美乔松 P. strobus | F)ACTAAGAACTCTCCCTCTCACC R)TCATTGTTCCCCAAATCAT | (ACAG)3AGGC(ACAC)3 | |
PtTX4062 | 火炬松 P. taeda | F)TCTAGGCAATCTTTTTACCAAC R)ATCATAGCCTCATCCAATACA | (T)8(GT)13 | |
PR203 | 辐射松 P. radiata | F)TGGGACCCCATATTCTGATG R)CATTCCACTAGTTCTCTCGCAC | (GA)14 | |
PR4.6 | 辐射松 P. radiata | F)GAAAAAAAGGCAAAAAAAAGGAG R)ACCCAAGGCTACATAACTCG | (CA)21(TA)6 | |
PtTX4084 | 火炬松 P. taeda | F)ACTGGCGAAGGCGAGCCGACAC R)ACCGCTGTGGGAACCCTCCTCGTC | (GCT)8 | |
Cjgssr170 | 日本柳杉 Cryptomeria japonica | F)TGGCGATGTGGTTCTTATGG R)CAACCGCATCTTTCCCTAATTC | (CT)33 |
位点 Locus | 等位基因数目 Number of alleles | 观测杂合度 Observed heterozygosity | 期望杂合度 Expected heterozygosity | 多态性信息含量 Polymorphic information content |
---|---|---|---|---|
PTest1 | 4 | 0.462 | 0.500 | 0.377 |
PtTX4001 | 6 | 0.291 | 0.321 | 0.292 |
RPTest11 | 2 | 0.467 | 0.359 | 0.294 |
PtTX2123 | 4 | 0.554 | 0.519 | 0.430 |
PtTX3116 | 9 | 0.758 | 0.841 | 0.820 |
RPS160 | 4 | 0.318 | 0.281 | 0.253 |
PtTX4062 | 4 | 0.272 | 0.236 | 0.209 |
PR203 | 8 | 0.568 | 0.691 | 0.637 |
PR4.6 | 11 | 0.598 | 0.605 | 0.563 |
PtTX4084 | 4 | 0.133 | 0.125 | 0.118 |
Cjgssr170 | 5 | 0.288 | 0.280 | 0.261 |
平均值 Mean | 5.55 | 0.428 | 0.433 | 0.387 |
表2 马尾松SSR的多态性
Table 2 Polymorphism of SSR in Pinus massoniana
位点 Locus | 等位基因数目 Number of alleles | 观测杂合度 Observed heterozygosity | 期望杂合度 Expected heterozygosity | 多态性信息含量 Polymorphic information content |
---|---|---|---|---|
PTest1 | 4 | 0.462 | 0.500 | 0.377 |
PtTX4001 | 6 | 0.291 | 0.321 | 0.292 |
RPTest11 | 2 | 0.467 | 0.359 | 0.294 |
PtTX2123 | 4 | 0.554 | 0.519 | 0.430 |
PtTX3116 | 9 | 0.758 | 0.841 | 0.820 |
RPS160 | 4 | 0.318 | 0.281 | 0.253 |
PtTX4062 | 4 | 0.272 | 0.236 | 0.209 |
PR203 | 8 | 0.568 | 0.691 | 0.637 |
PR4.6 | 11 | 0.598 | 0.605 | 0.563 |
PtTX4084 | 4 | 0.133 | 0.125 | 0.118 |
Cjgssr170 | 5 | 0.288 | 0.280 | 0.261 |
平均值 Mean | 5.55 | 0.428 | 0.433 | 0.387 |
父本 Male parent | 交配母本 Female parent mated | 子代数Numbers of progeny | 繁殖贡献率Reproductive success (%) | 父本 Male parent | 交配母本 Female parent mated | 子代数Numbers of progeny | 繁殖贡献率Reproductive success (%) |
---|---|---|---|---|---|---|---|
1 | 31, 39 | 3 | 1.29 | 32 | 9, 19, 31, 52 | 6 | 2.59 |
2 | 19, 52 | 3 | 1.29 | 37 | 16, 39, 51, 52 | 6 | 2.59 |
3 | 31 | 2 | 0.86 | 38 | 39, 51 | 3 | 1.29 |
6 | 39, 51 | 3 | 1.29 | 39 | 16, 39, 51, 52 | 5 | 2.16 |
7 | 39, 51, 53 | 3 | 1.29 | 43 | 39, 52 | 2 | 0.86 |
11 | 16, 19 | 2 | 0.86 | 44 | 16, 31 | 5 | 2.16 |
12 | 9, 31, 39, 51, 53 | 9 | 3.88 | 48 | 16, 51, 52 | 3 | 1.29 |
13 | 16 | 2 | 0.86 | 49 | 16, 19, 52 | 5 | 2.16 |
14 | 9, 19, 31, 51 | 7 | 3.02 | 50 | 53 | 1 | 0.43 |
15 | 19, 39, 51 | 7 | 3.02 | 51 | 19 | 1 | 0.43 |
16 | 16, 19, 51, 52, 53 | 7 | 3.02 | 52 | 51 | 1 | 0.43 |
17 | 31, 51, 53 | 4 | 1.72 | 53 | 19 | 1 | 0.43 |
20 | 19, 52 | 2 | 0.86 | 54 | 9, 39, 51, 53 | 7 | 3.02 |
21 | 31, 53 | 2 | 0.86 | 55 | 9, 31, 39, 52 | 5 | 2.16 |
23 | 16, 19, 39, 51, 52 | 9 | 3.88 | 57 | 9, 16, 53 | 3 | 1.29 |
25 | 16, 19, 31, 52, 53 | 6 | 2.59 | 60 | 16, 19, 39 | 5 | 2.16 |
26 | 16, 39, 53 | 4 | 1.72 | 61 | 16, 39, 51, 53 | 12 | 5.17 |
28 | 9, 52, 53 | 3 | 1.29 | 63 | 19, 53 | 5 | 2.16 |
29 | 19, 31 | 4 | 1.72 | 66 | 16, 31, 52, 53 | 5 | 2.16 |
30 | 9, 16, 31, 51, 52, 53 | 8 | 3.45 | 62 | 9, 19, 39, 51, 53 | 6 | 2.59 |
31 | 9, 16, 31, 51, 53 | 7 | 3.02 | 88 | 16, 19, 39, 53 | 4 | 1.72 |
19 | 9, 16, 31, 39, 51, 52, 53 | 11 | 4.74 | 45 | 9, 16, 19, 31, 39, 53 | 8 | 3.45 |
47 | 16, 19, 31, 52, 53 | 10 | 4.31 | 58 | 9, 16, 19, 39, 52, 53 | 15 | 6.47 |
表3 马尾松二代无性系种子园子代父本分析及父本繁殖贡献率
Table 3 Paternity analysis and male reproductive success of the second generation clonal seed orchard of Pinus massoniana
父本 Male parent | 交配母本 Female parent mated | 子代数Numbers of progeny | 繁殖贡献率Reproductive success (%) | 父本 Male parent | 交配母本 Female parent mated | 子代数Numbers of progeny | 繁殖贡献率Reproductive success (%) |
---|---|---|---|---|---|---|---|
1 | 31, 39 | 3 | 1.29 | 32 | 9, 19, 31, 52 | 6 | 2.59 |
2 | 19, 52 | 3 | 1.29 | 37 | 16, 39, 51, 52 | 6 | 2.59 |
3 | 31 | 2 | 0.86 | 38 | 39, 51 | 3 | 1.29 |
6 | 39, 51 | 3 | 1.29 | 39 | 16, 39, 51, 52 | 5 | 2.16 |
7 | 39, 51, 53 | 3 | 1.29 | 43 | 39, 52 | 2 | 0.86 |
11 | 16, 19 | 2 | 0.86 | 44 | 16, 31 | 5 | 2.16 |
12 | 9, 31, 39, 51, 53 | 9 | 3.88 | 48 | 16, 51, 52 | 3 | 1.29 |
13 | 16 | 2 | 0.86 | 49 | 16, 19, 52 | 5 | 2.16 |
14 | 9, 19, 31, 51 | 7 | 3.02 | 50 | 53 | 1 | 0.43 |
15 | 19, 39, 51 | 7 | 3.02 | 51 | 19 | 1 | 0.43 |
16 | 16, 19, 51, 52, 53 | 7 | 3.02 | 52 | 51 | 1 | 0.43 |
17 | 31, 51, 53 | 4 | 1.72 | 53 | 19 | 1 | 0.43 |
20 | 19, 52 | 2 | 0.86 | 54 | 9, 39, 51, 53 | 7 | 3.02 |
21 | 31, 53 | 2 | 0.86 | 55 | 9, 31, 39, 52 | 5 | 2.16 |
23 | 16, 19, 39, 51, 52 | 9 | 3.88 | 57 | 9, 16, 53 | 3 | 1.29 |
25 | 16, 19, 31, 52, 53 | 6 | 2.59 | 60 | 16, 19, 39 | 5 | 2.16 |
26 | 16, 39, 53 | 4 | 1.72 | 61 | 16, 39, 51, 53 | 12 | 5.17 |
28 | 9, 52, 53 | 3 | 1.29 | 63 | 19, 53 | 5 | 2.16 |
29 | 19, 31 | 4 | 1.72 | 66 | 16, 31, 52, 53 | 5 | 2.16 |
30 | 9, 16, 31, 51, 52, 53 | 8 | 3.45 | 62 | 9, 19, 39, 51, 53 | 6 | 2.59 |
31 | 9, 16, 31, 51, 53 | 7 | 3.02 | 88 | 16, 19, 39, 53 | 4 | 1.72 |
19 | 9, 16, 31, 39, 51, 52, 53 | 11 | 4.74 | 45 | 9, 16, 19, 31, 39, 53 | 8 | 3.45 |
47 | 16, 19, 31, 52, 53 | 10 | 4.31 | 58 | 9, 16, 19, 39, 52, 53 | 15 | 6.47 |
项目 Item | 母树 Maternity | ||||||
---|---|---|---|---|---|---|---|
16 | 19 | 31 | 39 | 51 | 52 | 53 | |
树冠南面父本数 Male numbers in the south of crown | 14 | 12 | 9 | 13 | 12 | 9 | 13 |
树冠北面父本数 Male numbers in the north of crown | 15 | 11 | 12 | 9 | 12 | 13 | 11 |
树冠南面平均交配距离 Average mating distance in the south of crown (m) | 74 | 124 | 54 | 41 | 73 | 49 | 40 |
树冠北面平均交配距离 Average mating distance in the north of crown (m) | 64 | 86 | 42 | 28 | 66 | 51 | 39 |
树冠南面确定父本的子代数 Assigning paternity progenies in the south of crown | 16 | 16 | 13 | 18 | 14 | 12 | 16 |
树冠北面确定父本的子代数 Assigning paternity progenies in the north of crown | 19 | 14 | 16 | 16 | 14 | 15 | 15 |
表4 树冠南面与北面子代的父本组成数及亲本交配距离
Table 4 Paternity constitution and parents mating distance of progeny in the south and north of crown
项目 Item | 母树 Maternity | ||||||
---|---|---|---|---|---|---|---|
16 | 19 | 31 | 39 | 51 | 52 | 53 | |
树冠南面父本数 Male numbers in the south of crown | 14 | 12 | 9 | 13 | 12 | 9 | 13 |
树冠北面父本数 Male numbers in the north of crown | 15 | 11 | 12 | 9 | 12 | 13 | 11 |
树冠南面平均交配距离 Average mating distance in the south of crown (m) | 74 | 124 | 54 | 41 | 73 | 49 | 40 |
树冠北面平均交配距离 Average mating distance in the north of crown (m) | 64 | 86 | 42 | 28 | 66 | 51 | 39 |
树冠南面确定父本的子代数 Assigning paternity progenies in the south of crown | 16 | 16 | 13 | 18 | 14 | 12 | 16 |
树冠北面确定父本的子代数 Assigning paternity progenies in the north of crown | 19 | 14 | 16 | 16 | 14 | 15 | 15 |
[1] | Ai C ( 艾畅), Xu LA ( 徐立安), Lai HL ( 赖焕林), Huang MR ( 黄敏仁), Wang ZR ( 王章荣) (2006). Genetic diversity and paternity analysis of a seed orchard in Pinus massoniana. Scientia Silvae Sinicae (林业科学), 42(11), 146-150. (in Chinese with English abstract) |
[2] |
Botstein D, White RL, Skolnick M, Davis RW (1980). Construction of a genetic linkage map in man using restriction fragment length polymorphisms. The American Journal of Human Genetics, 32, 314-331.
URL PMID |
[3] |
Chaix G, Gerber S, Razafimaharo V, Vigneron P, Verhaegen D, Hamon S (2003). Gene flow estimating with microsatellites in a Malagasy seed orchard of Eucalyptus grandis. Theoretical and Applied Genetics, 107, 705-712.
DOI URL PMID |
[4] | Chen XY ( 陈小勇), Song YC ( 宋永昌) (2001). Analysis of parentage for naturally established seedlings of Cyclo- balanopsis glauca. Journal of Wuhan Botanical Research (武汉植物学研究), 18(3), 174-180. (in Chinese with English abstract) |
[5] | Clark MS (1997). Plant Molecular Biology—A Laboratory Manual. Translated by Gu HY (顾红雅), Qu LJ (瞿礼嘉)(1998). Higher Education Press, Beijing. 3-11. (in Chinese) |
[6] | Feng FJ, Sui X, Chen MM, Zhao D, Han SJ, Li MH (2010). Mode of pollen spread in clonal seed orchard of Pinus koraiensis. Journal of Biophysical Chemistry, 1, 33-39. |
[7] | Gerber S, Chabrier P, Kremer A (2003). FAMOZ: a software for parentage analysis using dominant, codominant and uniparentally inherited markers. Molecular Ecology Notes, 3, 479-481. |
[8] |
Goto S, Miyahara F, Ide Y (2002). Identification of the male parents of half-sib progeny from Japanese black pine (Pinus thunbergii Parl.) clonal seed orchard using RAPD markers. Breeding Science, 52, 71-77.
DOI URL |
[9] | Hansen OK, Kjær ED (2006). Paternity analysis with microsatellites in a Danish Abies nordmanniana clonal seed orchard reveals dysfunctions. Canada Journal of Forest Research, 36, 1054-1058. |
[10] | He TH ( 何田华), Ge S ( 葛颂) (2001). Mating system, paternity analysis and gene flow in plant populations. Acta Phytoecologica Sinica (植物生态学报), 25, 144-154. (in Chinese with English abstract) |
[11] | Huang SQ ( 黄双全), Guo YH ( 郭友好) (2000). Advances in the study of pollination biology. Chinese Science Bulletin (科学通报), 45, 225-237. (in Chinese) |
[12] | Jones ME, Shepherd M, Henry R, Delves A (2008). Pollen flow in Eucalyptus grandis determined by paternity analysis using microsatellite markers. Tree Genetics & Genomes, 4, 37-47. |
[13] |
Kalinowski ST, Taper ML, Marshall TC (2007). Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Molecular Ecology, 16, 1099-1106.
DOI URL PMID |
[14] |
Lian CL, Miwa M, Hogetsu T (2001). Outcrossing and paternity analysis of Pinus densiflora(Japanese red pine) by microsatellite polymorphism. Heredity, 87, 88-98.
URL PMID |
[15] |
Marshall TC, Slate J, Kruuk LEB, Pemberton JM (1998). Statistical confidence for likelihood-based paternity inference in natural populations. Molecular Ecology, 7, 639-655.
DOI URL PMID |
[16] |
Moriguchi Y, Tani N, Itoo S, Kanehira F, Tanaka K, Yomogida H, Taira H, Tsumura Y (2005). Gene flow and mating system in five Cryptomeria japonica D. Don seed orchards as revealed by analysis of microsatellite markers. Tree Genetics & Genomes, 1, 174-183.
DOI URL |
[17] | Ritland K, Jain S (1981). A model for the estimation of outcrossing rate and gene frequencies using n independent loci. Heredity, 47, 35-52. |
[18] |
Robledo-Arnuncio JJ, Gil L (2005). Patterns of pollen dispersal in a small population of Pinus sylvestris L. revealed by total-exclusion paternity analysis. Heredity, 94, 13-22.
URL PMID |
[19] |
Shaw DV, Brown AHD (1982). Optimum number of marker loci for estimating outcrossing in plant populations. Theoretical and Applied Genetics, 61, 321-325.
URL PMID |
[20] | Shen XH ( 沈熙环) (1994). Seed Orchard Techniques for High Genetic Quality and Ample Production of Seeds (种子园优质高产技术). China Forestry Publishing House, Beijing. 15. (in Chinese) |
[21] | Snow AA, Lewis PO (1993). Reproductive traits and male fertility in plants: empirical approaches. Annual Review of Ecology and Systematics, 24, 331-351. |
[22] | Sun YG ( 孙亚光), Li HG ( 李火根) (2008). Variations of male reproductive success and sexual selection among individuals of the experimental population of Liriodendron revealed by SSR Markers. Molecular Plant Breeding (分子植物育种), 6(1), 79-84. (in Chinese with English abstract) |
[23] | Tan XM ( 谭小梅), Jin GQ ( 金国庆), Zhang Y ( 张一), Qin GF ( 秦国峰), Chu DY ( 储德裕), Zhou ZC ( 周志春) (2011). Genetic variation of flowering and fruiting in the dwarfed second-generation clonal seed orchard of Pinus massoniana. Journal of Northeast Forestry University (东北林业大学学报), 39(4), 39-42. (in Chinese with English abstract) |
[24] |
Vanden Broeck A, Cottrell J, Quataert P, Breyne P, Storme V, Boerjan W, van Slycken J (2006). Paternity analysis of Populus nigra L. offspring in a Belgian plantation of native and exotic poplars. Annals of Forest Science, 63, 783-790.
DOI URL |
[25] | Whitehead DR (1983). Wind pollination: some ecological and evolutionary perspectives. In: Real L ed. Pollination Biology. Academic Press, Orlando. 97-108. |
[26] | Zhang DM ( 张冬梅), Shen XH ( 沈熙环), He TH ( 何田华) (2001). A paternity analysis of seeds from different clones in a Pinus tabulaeformis Carr. seed orchard. Acta Phytoecologica Sinica (植物生态学报), 25, 166-175. (in Chinese with English abstract) |
[27] | Zhang DM ( 张冬梅), Sun PG ( 孙佩光), Shen XH ( 沈熙环), Ru GX ( 茹广欣) (2009). Paternity analysis of open- and control-pollinated seeds collected from a seed orchard of Pinus tabulaeformis. Journal of Plant Ecology (Chinese Version) (植物生态学报), 33, 302-310. (in Chinese with English abstract) |
[28] | Zhang DM ( 张冬梅), Yang Y ( 杨娅), Shen XH ( 沈熙环), Ru GX ( 茹广欣) (2007). Selection of primers and establish- ment of SSR PCR reaction system on Pinus tabulaeformis Carr. Journal of Beijing Forestry University (北京林业大学学报), 29(2), 13-17. (in Chinese with English abstract) |
[29] | Zhang W ( 张薇), Gong J ( 龚佳), Ji KS ( 季孔庶) (2009). Analyses on the mating system in seedling seed orchard of Pinus massoniana. Scientia Silvae Sinicae (林业科学), 45(6), 22-26. (in Chinese with English abstract) |
[30] | Zhang ZW, Sui JJ, Mei L, Su CQ (2008). Pollen dispersal and its spatial distribution in a seed orchard of Larix kaempferi(Lamb.) Carr. Silvae Genetica, 57, 256-261. |
[31] |
Zhou Y, Bui T, Auckland LD, Williams CG (2002). Undermethylated DNA as a source of microsatellites from a conifer genome. Genome, 45, 91-99.
URL PMID |
[1] | 郑炀, 孙学广, 熊洋阳, 袁贵云, 丁贵杰. 叶际微生物对马尾松凋落针叶分解的影响[J]. 植物生态学报, 2023, 47(5): 687-698. |
[2] | 罗斯生, 罗碧珍, 魏书精, 胡海清, 李小川, 吴泽鹏, 王振师, 周宇飞, 钟映霞. 中度强度森林火灾对马尾松次生林土壤有机碳密度的影响[J]. 植物生态学报, 2020, 44(10): 1073-1086. |
[3] | 宋平, 张蕊, 周志春, 童建设, 王晖. 局部供氮对低磷胁迫下马尾松不同家系生长及根系参数的影响[J]. 植物生态学报, 2017, 41(6): 622-631. |
[4] | 宋思梦, 张丹桔, 张健, 杨万勤, 张艳, 周扬, 李勋. 马尾松人工林林窗边缘效应对油樟化学计量特征的影响[J]. 植物生态学报, 2017, 41(10): 1081-1090. |
[5] | 汪沁, 杨万勤, 吴福忠, 张健, 谭波, 张玺涛. 马尾松人工林伐桩储量与分解特征[J]. 植物生态学报, 2016, 40(5): 458-468. |
[6] | 宋平, 张蕊, 张一, 周志春, 丰忠平. 模拟氮沉降对低磷胁迫下马尾松无性系细根形态和氮磷效率的影响[J]. 植物生态学报, 2016, 40(11): 1136-1144. |
[7] | 张艳, 张丹桔, 张健, 杨万勤, 邓长春, 李建平, 李勋, 唐仕姗, 张明锦. 马尾松人工林林窗大小对两种凋落叶难降解物质含量的影响[J]. 植物生态学报, 2015, 39(8): 785-796. |
[8] | 陈云玉, 熊德成, 黄锦学, 王韦韦, 胡双成, 邓飞, 许辰森, 冯建新, 史顺增, 钟波元, 陈光水. 中亚热带不同演替阶段的马尾松和米槠人工林的细根生产量研究[J]. 植物生态学报, 2015, 39(11): 1071-1081. |
[9] | 崔宁洁,张丹桔,刘洋,张健,杨万勤,欧江,张捷,宋小艳,殷睿. 马尾松人工林不同大小林窗植物多样性及其季节动态[J]. 植物生态学报, 2014, 38(5): 477-490. |
[10] | 庞丽, 张一, 周志春, 丰忠平, 储德裕. 模拟氮沉降对低磷胁迫下马尾松不同家系根系分泌和磷效率的影响[J]. 植物生态学报, 2014, 38(1): 27-35. |
[11] | 张利锐, 彭艳玲, 任广朋, 周永锋, 李忠虎, 刘建全. 马尾松和黄山松两个核基因位点的群体遗传多样性和种间分化[J]. 植物生态学报, 2011, 35(5): 531-538. |
[12] | 杨青, 张一, 周志春, 马雪红, 刘伟宏, 丰忠平. 异质低磷胁迫下马尾松家系根构型和磷效率的遗传变异[J]. 植物生态学报, 2011, 35(12): 1226-1235. |
[13] | 张雷, 刘世荣, 孙鹏森, 王同立. 气候变化对马尾松潜在分布影响预估的多模型比较[J]. 植物生态学报, 2011, 35(11): 1091-1105. |
[14] | 刘佳, 项文化, 徐晓, 陈瑞, 田大伦, 彭长辉, 方晰. 湖南会同5个亚热带树种的细根构型及功能特征分析[J]. 植物生态学报, 2010, 34(8): 938-945. |
[15] | 李志勇, 王彦辉, 于澎涛, 张治军, 杜士才, 何萍, 王祥, 段健, 李振华. 重庆酸雨区马尾松香樟混交林的土壤化学性质和林木生长特征[J]. 植物生态学报, 2010, 34(4): 387-395. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19