植物生态学报 ›› 2011, Vol. 35 ›› Issue (9): 926-936.DOI: 10.3724/SP.J.1258.2011.00926
张丹1,2, 李传荣1,2,*(), 许景伟3, 刘立川4, 周振1,2, 王晓磊1,2, 黄超1,2
收稿日期:
2011-04-12
接受日期:
2011-07-28
出版日期:
2011-04-12
发布日期:
2011-09-01
通讯作者:
李传荣
作者简介:
*(E-mail:chrli@sdau.edu.cn)
ZHANG Dan1,2, LI Chuan-Rong1,2,*(), XU Jing-Wei3, LIU Li-Chuan4, ZHOU Zhen1,2, WANG Xiao-Lei1,2, HUANG Chao1,2
Received:
2011-04-12
Accepted:
2011-07-28
Online:
2011-04-12
Published:
2011-09-01
Contact:
LI Chuan-Rong
摘要:
沙质海岸空间梯度上环境差异较大, 黑松(Pinus thunbergii)在长期的适应过程中树冠结构变化也很大。为揭示黑松树冠结构与环境间的适应机制, 在山东省胶南市灵山湾国家森林公园距海岸线0-50、200-250和400-450 m梯度内各设置1个样带, 记为带I、带II、带III, 采用枝构型的理论和方法, 对黑松的分枝格局进行了研究, 并采用模拟自然风法测定了黑松枝条的抗风折能力。结果表明: 1)在海岸梯度上黑松分枝格局差异较大, 随着距离海岸越来越远, 黑松各级枝的分枝长度、总体分枝率均逐渐增大, 而枝径比和逐步分枝率逐渐减小, 各级分枝角度表现为带I >带III >带II。2)带I树冠背风面与迎风面相比, 分枝长度、分枝角度、分枝数量、枝条干枯率分别是迎风面的1.62、1.38、2.65和0.59倍, 随着距离海岸越来越远, 这种不对称性逐渐减弱, 至带III树冠基本对称。3)海风是影响带I分枝角度偏转、枝条干枯和冠型不对称现象的主要原因。4)带III枝条的抗风折能力高于带I, 且两个样带模拟风速与枝条所承受的拉力之间的关系均符合逻辑斯蒂方程, 相关系数R2均达0.97以上。该研究揭示了不同海岸梯度上黑松分枝格局的形成机制及其抗风折能力, 可为沿海黑松防护林的合理经营提供科学依据。
张丹, 李传荣, 许景伟, 刘立川, 周振, 王晓磊, 黄超. 沙质海岸黑松分枝格局特征及其抗风折能力分析. 植物生态学报, 2011, 35(9): 926-936. DOI: 10.3724/SP.J.1258.2011.00926
ZHANG Dan, LI Chuan-Rong, XU Jing-Wei, LIU Li-Chuan, ZHOU Zhen, WANG Xiao-Lei, HUANG Chao. Branching pattern characteristics and anti-windbreakage ability of Pinus thunbergii in sandy coast. Chinese Journal of Plant Ecology, 2011, 35(9): 926-936. DOI: 10.3724/SP.J.1258.2011.00926
测定指标 Testing indices | 带I Transect I | 带II Transect II | 带III Transect III |
---|---|---|---|
平均年龄 Average age (a) | 13 | 13 | 13 |
平均胸径 Average diameter at breast height (cm) | 9.38 | 8.51 | 7.40 |
平均树高 Average height (cm) | 204.0 | 286.0 | 348.8 |
平均枝下高 Average under branch height (cm) | 122.0 | 110.0 | 85.6 |
平均上层冠幅 Average top layer crown (m2) | 11.42 | 8.45 | 6.64 |
平均中层冠幅 Average mid layer crown (m2) | 6.99 | 11.89 | 12.69 |
平均下层冠幅 Average bottom layer crown (m2) | 5.78 | 10.75 | 13.20 |
林内相对风速 Relative wind speed within the forest (m·s-1) | 3.31 | 1.51 | 0.98 |
表1 不同海岸梯度黑松样地概况
Table 1 General plot situation of Pinus thunbergii under different coastal gradients
测定指标 Testing indices | 带I Transect I | 带II Transect II | 带III Transect III |
---|---|---|---|
平均年龄 Average age (a) | 13 | 13 | 13 |
平均胸径 Average diameter at breast height (cm) | 9.38 | 8.51 | 7.40 |
平均树高 Average height (cm) | 204.0 | 286.0 | 348.8 |
平均枝下高 Average under branch height (cm) | 122.0 | 110.0 | 85.6 |
平均上层冠幅 Average top layer crown (m2) | 11.42 | 8.45 | 6.64 |
平均中层冠幅 Average mid layer crown (m2) | 6.99 | 11.89 | 12.69 |
平均下层冠幅 Average bottom layer crown (m2) | 5.78 | 10.75 | 13.20 |
林内相对风速 Relative wind speed within the forest (m·s-1) | 3.31 | 1.51 | 0.98 |
测定指标 Testing indices | 带I Transect I | 带II Transect II | 带III Transect III |
---|---|---|---|
1级平均分枝长度 Average length of 1st bifurcation (cm) | 45.12 ± 8.54a | 56.01 ± 5.34b | 65.30 ± 3.74c |
2级平均分枝长度 Average length of 2nd bifurcation (cm) | 22.43 ± 4.94a | 33.08 ± 4.89b | 41.04 ± 4.16c |
3级平均分枝长度 Average length of 3rd bifurcation (cm) | 11.29 ± 3.64a | 15.49 ± 3.47b | 18.40 ± 3.08c |
1级平均分枝角度 Average angle of 1st bifurcation (°) | 74.26 ± 21.20a | 69.76 ± 8.39a | 74.41 ± 2.32a |
2级平均分枝角度 Average angle of 2nd bifurcation (°) | 57.03 ± 12.60a | 52.27 ± 5.74a | 52.41 ± 2.87a |
3级平均分枝角度 Average angle of 3rd bifurcation (°) | 42.59 ± 10.81a | 38.75 ± 5.09a | 36.86 ± 1.79a |
3级和2级平均枝直径比 Average ratio of branch diameter 3:2 | 0.79 ± 0.22a | 0.63 ± 0.18a | 0.62 ± 0.09a |
2级和1级平均枝直径比 Average ratio of branch diameter 2:1 | 0.74 ± 0.19a | 0.68 ± 0.06a | 0.65 ± 0.13a |
总体分枝率 Over all bifurcation ratio | 0.33 ± 0.04a | 0.35 ± 0.06a | 0.38 ± 0.01a |
逐步分枝率 Stepwise bifurcation ratio 2:1 | 2.77 ± 0.30b | 2.70 ± 0.22ab | 2.51 ± 0.11a |
逐步分枝率 Stepwise bifurcation ratio 3:2 | 3.03 ± 0.21b | 2.92 ± 0.28ab | 2.67 ± 0.04a |
表2 不同海岸梯度的黑松分枝构型指标(平均值±标准偏差)
Table 2 Branching pattern indices of Pinus thunbergii under different coastal gradients (mean ± SD)
测定指标 Testing indices | 带I Transect I | 带II Transect II | 带III Transect III |
---|---|---|---|
1级平均分枝长度 Average length of 1st bifurcation (cm) | 45.12 ± 8.54a | 56.01 ± 5.34b | 65.30 ± 3.74c |
2级平均分枝长度 Average length of 2nd bifurcation (cm) | 22.43 ± 4.94a | 33.08 ± 4.89b | 41.04 ± 4.16c |
3级平均分枝长度 Average length of 3rd bifurcation (cm) | 11.29 ± 3.64a | 15.49 ± 3.47b | 18.40 ± 3.08c |
1级平均分枝角度 Average angle of 1st bifurcation (°) | 74.26 ± 21.20a | 69.76 ± 8.39a | 74.41 ± 2.32a |
2级平均分枝角度 Average angle of 2nd bifurcation (°) | 57.03 ± 12.60a | 52.27 ± 5.74a | 52.41 ± 2.87a |
3级平均分枝角度 Average angle of 3rd bifurcation (°) | 42.59 ± 10.81a | 38.75 ± 5.09a | 36.86 ± 1.79a |
3级和2级平均枝直径比 Average ratio of branch diameter 3:2 | 0.79 ± 0.22a | 0.63 ± 0.18a | 0.62 ± 0.09a |
2级和1级平均枝直径比 Average ratio of branch diameter 2:1 | 0.74 ± 0.19a | 0.68 ± 0.06a | 0.65 ± 0.13a |
总体分枝率 Over all bifurcation ratio | 0.33 ± 0.04a | 0.35 ± 0.06a | 0.38 ± 0.01a |
逐步分枝率 Stepwise bifurcation ratio 2:1 | 2.77 ± 0.30b | 2.70 ± 0.22ab | 2.51 ± 0.11a |
逐步分枝率 Stepwise bifurcation ratio 3:2 | 3.03 ± 0.21b | 2.92 ± 0.28ab | 2.67 ± 0.04a |
图1 不同海岸梯度黑松个体不同象限枝条数量。 以东向为起点定为0°, 逆时针方向依次为i、ii、iii、iv象限。图中从左至右依次为带I、带II、带III。带I、带II、带III分别距海岸线0-50、200-250、400-450 m。
Fig. 1 Branching numbers of individual Pinus thunbergii in different quadrants under different coastal gradient. The east is 0° and 1st, 2nd, 3rd and 4th quadrant in turn, antidockwise. From left to right on x-axis, that is transect I, II, III in turn. Transect I, Transect II, Transect III is apart from coastline 0-50, 200-250, 400-450 m, respectively.
图2 不同海岸梯度黑松个体不同象限枯枝率(平均值±标准偏差)。 以东向为起点定为0°, 逆时针方向依次为i、ii、iii、iv象限。带I、带II、带III分别距海岸线0-50、200-250、400-450 m。同一线上不同字母表示差异显著(p < 0.05)。
Fig. 2 Percentage of branch dryrot of individual Pinus thunbergii in different quadrants under different coastal gradient (mean ± SD). The east is 0° and 1st, 2nd, 3rd and 4th quadrant in turn, antidockwise. Transect I, Transect II, Transect III are apart from coastline 0-50, 200-250, 400-450 m, respectively. Different letters in the same line indicate significant difference at p < 0.05 level.
图3 不同海岸梯度每株黑松不同象限分枝长度(平均值±标准偏差)。 以东向为起点定为0°, 逆时针方向依次为i、ii、iii、iv象限。图中从左至右依次为带I、带II、带III。带I、带Ⅱ、带III分别距海岸线0-50、200-250、400-450 m。不同字母表示差异显著(p < 0.05)。
Fig. 3 Branching length of Pinus thunbergii in different quadrant under different coastal gradient (mean ± SD). The east is 0° and 1st, 2nd, 3rd and 4th quadrant in turn, antidockwise. From left to right on x-axis, that is transect I, II, III in turn. Transect I, Transect II, Transect III are apart from coastline 0-50, 200-250, 400-450 m, respectively. Different letters indicate significant difference at p < 0.05 level.
图4 不同海岸梯度每株黑松不同象限分枝角度(平均值±标准偏差)。 以东向为起点定为0°, 逆时针方向依次为i、ii、iii、iv象限。图中从左至右依次为带I、带II、带III。带I、带Ⅱ、带III分别距海岸线0-50、200-250、400-450 m。不同字母表示差异显著(p < 0.05)。
Fig. 4 Branching angle of Pinus thunbergii in different quadrants under different coastal gradient gradient (mean ± SD). The east is 0° and 1st, 2nd, 3rd and 4th quadrant in turn, antidockwise. From left to right on x-axis, that is transect I, II, III in turn. Transect I, Transect II, Transect III is apart from coastline 0-50, 200-250, 400-450 m, respectively. Different letters indicate significant difference at p < 0.05 level.
图5 模拟风速与偏转角度的关系(平均值±标准偏差)。 带I、带III分别距海岸线0-50、400-450 m。
Fig. 5 Relationship between imitated wind speed and branch rotated angle (mean ± SD). Transect I, Transect III is apart from coastline 0-50 and 400-450 m, respectively.
图6 所需拉力与偏转角度的关系(平均值±标准偏差)。 带I、带III分别距海岸线0-50、400-450 m。
Fig. 6 Relationship between the force needed and branch rotated angle (mean ± SD). Transect I, Transect III is apart from coastline 0-50 and 400-450 m, respectively.
模型 Model | 参数 Parameter | R2 | ||||
---|---|---|---|---|---|---|
带I Transect I | $y=\frac{a}{1+b\cdot e^{-cx}}$ | a = 12.756 1 | b = 6.676 3 | c = 0.109 6 | 0.977 4 | |
带III Transect III | $y=\frac{a}{1+b\cdot e^{-cx}}$ | a = 17.806 9 | b = 21.110 7 | c = 0.164 4 | 0.990 3 |
表3 模拟风速与所需拉力之间的拟合模型
Table 3 Relationship between imitated wind speed and the force needed
模型 Model | 参数 Parameter | R2 | ||||
---|---|---|---|---|---|---|
带I Transect I | $y=\frac{a}{1+b\cdot e^{-cx}}$ | a = 12.756 1 | b = 6.676 3 | c = 0.109 6 | 0.977 4 | |
带III Transect III | $y=\frac{a}{1+b\cdot e^{-cx}}$ | a = 17.806 9 | b = 21.110 7 | c = 0.164 4 | 0.990 3 |
[1] |
Chiba Y (2000). Modelling stem breakage caused by typhoons in plantation Cryptomeria japonica forests. Forest Ecology and Management, 135, 123-131.
DOI URL |
[2] |
Cluzeau C, Le Goff N, Ottorini JM (1994). Development of primary branches and crown profile of Fraxinus excelsior. Canadian Journal of Forest Research, 24, 2315-2323.
DOI URL |
[3] |
Collin A, Lamorlette A, Bernardin D, Séro-Guillaume O (2011). Modelling of tree crowns with realistic morphological features: new reconstruction methodology based on Iterated Function System tool. Ecological Modelling, 222, 503-513.
DOI URL |
[4] | Hallé F, Oldeman RAA, Tomlinson PB (1978). Tropical Trees and Forests: an Architectural Analysis. Springer-Verlag, New York. |
[5] |
Han GX ( 韩广轩), Wang GM ( 王光美), Mao PL ( 毛培利), Zhang ZD ( 张志东), Yu JB ( 于君宝), Xu JW ( 许景伟) (2010). Regeneration dynamics of young Pinus thunbergii and its influencing factors in the coastal protection forests in northern Shandong Peninsula. Scientia Silvae Sinicae (林业科学), 46(12), 158-163. (in Chinese with English abstract).
DOI URL |
[6] |
Han GX ( 韩广轩), Wang GM ( 王光美), Zhang ZD ( 张志东), Li QY ( 李秋艳), Xue QZ ( 薛钦昭) (2008). Population structure of the Pinus thunbergii coastal protection forest and its spatial variation at different distances to coastline in Yantai. Scientia Silvae Sinicae (林业科学), 44(10), 8-13. (in Chinese with English abstract)
DOI URL |
[7] | He J ( 何军), Zhao CJ ( 赵聪蛟), Qing H ( 清华), Gan L ( 甘琳), An SQ ( 安树青) (2009). Effect of soil-water condition on morphological plasticity of clonal plant Spartina alterniflora. Acta Ecologica Sinica (生态学报), 29, 3518-3524. (in Chinese with English abstract) |
[8] | He MZ ( 何明珠), Wang H ( 王辉), Zhang JG ( 张景光) (2005). Classification of the branching architectures of the desert plants in Minqin County. Acta Botanica Boreali- Occidentalia Sinica (西北植物学报), 25, 1827-1832. (in Chinese with English abstract) |
[9] | He MZ ( 何明珠), Zhang JG ( 张景光), Wang H ( 王辉) (2006). Analysis of branching architecture factors of desert plants. Journal of Desert Research (中国沙漠), 26, 625-630. (in Chinese with English abstract) |
[10] | He YP ( 何亚平), Fei SM ( 费世民), Xu J ( 徐嘉), Chen XM ( 陈秀明), Jiang JM ( 蒋俊明), Tu DL ( 涂代伦) (2007). Crown inclination of Pinus yunnanensis gap border trees and the influencing factors in the mountain area of southwest of Sichuan, Southwestern China. Journal of Beijing Forestry University (北京林业大学学报), 29(6), 66-71. (in Chinese with English abstract) |
[11] |
Ishii H, Asano S (2009). The role of crown architecture, leaf phenology and photosynthetic activity in promoting complementary use of light among coexisting species in temperate forests. Ecological Research, 25, 715-722.
DOI URL |
[12] | Jiang YX ( 蒋有绪), Zang RG ( 臧润国) (1999). A preliminary analysis on elementary architecture of tropical trees in the Tropical Arboretum of Jianfengling, Hainan Island. Resources Science (资源科学), 21(4), 80-84. (in Chinese with English abstract) |
[13] | Jin YH ( 金永焕), Dai LM ( 代力民), Li FR ( 李凤日) (2003). Architectural analysis of Pinus densiflora saplings in canopy gap in Mt. Changbai area. Journal of Northeast Forestry University (东北林业大学学报), 31(4), 4-6. (in Chinese with English abstract) |
[14] | Kamimura K, Shiraishi N (2007). A review of strategies for wind damage assessment in Japanese forests. Journal of Forestr Research, 12, 162-176. |
[15] |
Kataoka R, Siddiqui ZA, Taniguchi T, Futai K (2009). Quantification of Wautersia [Ralstonia] basilensis in the mycorrhizosphere of Pinus thunbergii Parl. and its effect on mycorrhizal formation. Soil Biology & Biochemistry, 41, 2147-2152.
DOI URL |
[16] | Lei NY ( 雷妮娅), Mi XC ( 米湘成), Chen Y ( 陈勇), Wang XH ( 王旭航), Li JQ ( 李俊清) (2008). Effects of the ecological factors and their interactions on the phenotypic plasticity of Arabidopsis thaliana. Acta Ecologica Sinica (生态学报), 28, 1949-1958. (in Chinese with English abstract) |
[17] | Li CL ( 李昌龙), Zhao M ( 赵明), Wang YK ( 王玉魁) (2007). An analysis on branching pattern plasticity of Atyiplex canescen populations in different densities. Journal of Northwest Forestry University (西北林学院学报), 22(2), 5-8. (in Chinese with English abstract) |
[18] | Li DL ( 李得禄), Liao KT ( 廖空太), Yan ZZ ( 严子柱), Man DQ ( 满多清), Zhang JC ( 张景春) (2008). Analysis on branching architectures characteristics of Pinus sylvestris var. mongolica in different shelterbelts. Journal of Desert Research (中国沙漠), 28, 113-118. (in Chinese with English abstract) |
[19] | Li JQ ( 李俊清), Zang RG ( 臧润国), Jiang YX ( 蒋有绪) (2001). Review on studies of architecture and morphological diversity for Fagus sylvatica L. Acta Ecologica Sinica (生态学报), 21, 151-155. (in Chinese with English abstract) |
[20] | Liu ZG ( 刘兆刚), Shu Y ( 舒扬), Li FR ( 李凤日) (2008). Modeling for primary branch length and branch diameter of Mongolian Scots pine trees. Bulletin of Botanical Research (植物研究), 28, 235-241. (in Chinese with English abstract) |
[21] | Lu KN ( 卢康宁), Zhang HQ ( 张怀清) (2010). A review of plant architecture. World Forestry Research (世界林业研究), 23(1), 17-20. (in Chinese with English abstract) |
[22] | Ma KM ( 马克明), Zu YG ( 祖元刚) (2000). Fractal characteristic of the branching pattern of Larix gmelini. Bulletin of Botanical Research (植物研究), 20, 235-241. (in Chinese with English abstract) |
[23] |
Mori AS, Mizumachi E (2009). Within-crown structural variability of dwarfed mature Abies mariesii in snowy subalpine parkland in central Japan. Journal of Forest Research, 14, 155-166.
DOI URL |
[24] |
Nicoll BC, Gardiner BA, Rayner B, Peace AJ (2006). Anchorage of coniferous trees in relation to species, soil type, and rooting depth. Canadian Journal of Forest Research, 36, 1871-1883.
DOI URL |
[25] |
Nishimura TB (2005). Tree characteristics related to stem breakage of Picea glehnii and Abies sachalinensis. Forest Ecology and Management, 215, 295-306.
DOI URL |
[26] | Qi Q ( 齐清), Li CR ( 李传荣), Xu JW ( 许景伟), Wang GX ( 王贵霞), Wang WD ( 王卫东), Wang YH ( 王月海) (2005). Study on water conservation capacity of different vegetation types in sandy sea coastal area. Journal of Soil and Water Conservation (水土保持学报), 19(6), 102-105. (in Chinese with English abstract) |
[27] |
Sellier D, Fourcaud T (2009). Crown structure and wood properties: influence on tree sway and response to high winds. American Journal of Botany, 96, 885-896.
URL PMID |
[28] | Steingraeber DA, Waller DM (1986). Non-stationarity of tree branching patterns and bifurcation ratios. Proceedings of the Royal Society B: Biological Sciences, 228, 187-194. |
[29] |
Sun HG ( 孙洪刚), Lin XF ( 林雪峰), Chen YT ( 陈益泰), Zhang XL ( 张晓磊) (2010). A review of forest wind damage in the coastal areas. Journal of Tropical and Subtropical Botany (热带亚热带植物学报), 18, 577-585. (in Chinese with English abstract)
DOI URL |
[30] | Sun SC ( 孙书存), Chen LZ ( 陈灵芝) (1999a). The architectural variation of Quercus liaotungensis in different habitats. Acta Ecologica Sinica (生态学报), 19, 359-364. (in Chinese with English abstract) |
[31] | Sun SC ( 孙书存), Chen LZ ( 陈灵芝) (1999b). Architectural analysis of crown geometry in Quercus liaotungensis. Acta Phytoecologica Sinica (植物生态学报), 23, 433-440. (in Chinese with English abstract) |
[32] |
Tarara JM, Ferguson JC, Hoheisel GA, Perez Peña JE (2005). Asymmetrical canopy architecture due to prevailing wind direction and row orientation creates an imbalance in irradiance at the fruiting zone of grapevines. Agricultural and Forest Meteorology, 135, 144-155.
DOI URL |
[33] | Vose JM, Dougherty PM, Long JN, Smith FW, Gholz HL, Curran PJ (1994). Factors influencing the amount and distribution of leaf area of pine stands. Ecological Bulletins, 43, 102-114. |
[34] |
Watt MS, Moore JR, Mckinlay B (2005). The influence of wind on branch characteristics of Pinus radiata. Trees, 19, 58-65.
DOI URL |
[35] |
Weiskittel AR, Maguire DA, Monserud RA (2007). Response of branch growth and mortality to silvicultural treatments in coastal Douglas-fir plantations: implications for predicting tree growth. Forest Ecology and Management, 251, 182-194.
DOI URL |
[36] |
Whitney GG (1976). The bifurcation ratio as an indicator of adaptive strategy in woody plant species. Bulletin of the Torrey Botanical Club, 103, 67-72.
DOI URL |
[37] | Xiao R ( 肖锐), Li FR ( 李凤日), Liu ZG ( 刘兆刚) (2006). Branching structure analysis of mongolian pine plantation. Bulletin of Botanical Research (植物研究), 26, 490-496. (in Chinese with English abstract) |
[38] |
Xu CY ( 徐程扬) (2001). Response of structural plasticity of Tilia amurensis sapling crowns to different light conditions. Chinese Journal of Applied Ecology (应用生态学报), 12, 339-343. (in Chinese with English abstract)
URL PMID |
[39] | Xu JW ( 许景伟), Li CR ( 李传荣), Wang WD ( 王卫东), Qiao YJ ( 乔勇进), Cheng HY ( 程鸿雁), Wang YH ( 王月海) (2005). Biomass and productivity of Pinus thumbergii protective forests in sandy coastal area. Journal of Northeast Forestry University (东北林业大学学报), 3(6), 29-32. (in Chinese with English abstract) |
[40] |
Yamanobe T (2009). Relationships between morphological traits and resistance to pine wood nematode in two Japanese pines. European Journal of Plant Pathology, 124, 543-552.
DOI URL |
[41] | Zang RG ( 臧润国), Dong DF ( 董大方), Li SL ( 李淑兰) (1995). Demography on the modules of Acanthopanax senticosus populations (I). Demography of the above- ground modules. Journal of Jilin Forestry University (吉林林学院学报), 11, 6-10. (in Chinese with English abstract) |
[42] | Zhang GC ( 张国财), Yuan Y ( 原瑶), Yang YL ( 阳艳岚) (2008). Summarize of tree branching structure. Forestry Science and Technology Information (林业科技情报), 40(1), 8-9. (in Chinese with English abstract) |
[43] | Zhang ZD ( 张志东), Mao PL ( 毛培利), Liu YH ( 刘玉虹), Li QY ( 李秋艳), Liu SJ ( 刘苏静), Xue QZ ( 薛钦昭) (2010). Effects of forest structure on natural regeneration of Pinus thunbergii coastal shelter forest in Yantai region. Acta Ecologica Sinica (生态学报), 30, 2205-2211. (in Chinese with English abstract) |
[44] | Zhao XJ ( 赵相健), Wang XA ( 王孝安) (2005). Study on branching pattern plasticity of Larix chinensis. Acta Botanica Boreali-Occidentalia Sinica (西北植物学报), 25, 113-117. (in Chinese with English abstract) |
[45] |
Zhu JJ ( 朱教君), Li FQ ( 李凤芹), Song QJ ( 松崎健), Que TW ( 榷田璺) (2002). Influence of thinning on regeneration in a coastal Pinus thunbergii forest. Chinese Journal of Applied Ecology (应用生态学报), 13, 1361-1367. (in Chinese with English abstract)
URL PMID |
[46] |
Zhu JJ, Matsuzaki T, Sakioka K (2000). Wind speeds within a single crown of Japanese black pine (Pinus thunbergii Parl.). Forest Ecology and Management, 135, 19-31.
DOI URL |
[1] | 林马震, 黄勇, 李洋, 孙建. 高寒草地植物生存策略地理分布特征及其影响因素[J]. 植物生态学报, 2023, 47(1): 41-50. |
[2] | 李家湘, 熊高明, 徐文婷, 李跃林, 卢志军, 赵常明, 谢宗强. 中国亚热带灌丛植物生活型组成及其与水热因子的相关性[J]. 植物生态学报, 2017, 41(1): 147-156. |
[3] | 郑玲, 吴小芹. 黑松菌根共生体中真菌液泡形态构架及其活力[J]. 植物生态学报, 2008, 32(4): 932-937. |
[4] | 肖春旺, 周广胜, 马风云. 施水量变化对毛乌素沙地优势植物形态与生长的影响[J]. 植物生态学报, 2002, 26(1): 69-76. |
[5] | 刘登义, Lars Ericson. 种间竞争梯度对白车轴草与其病原菌白车轴草单孢锈菌相互作用的影响(英文) 刘登义 Lars Ericson[J]. 植物生态学报, 2001, 25(3): 334-350. |
[6] | 刘昉勋, 黄致远, 蔡守坤. 江苏海岸沙生植被的研究[J]. 植物生态学报, 1986, 10(2): 115-123. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19