植物生态学报 ›› 2012, Vol. 36 ›› Issue (5): 447-455.DOI: 10.3724/SP.J.1258.2012.00447
李义勇1,2,*(), 黄文娟1,2, 赵亮1,2, 方熊1,2, 刘菊秀1,**(
)
发布日期:
2012-05-04
通讯作者:
李义勇,刘菊秀
作者简介:
** E-mail: ljxiu@scbg.ac.cn
LI Yi-Yong1,2,*(), HUANG Wen-Juan1,2, ZHAO Liang1,2, FANG Xiong1,2, LIU Ju-Xiu1,**(
)
Published:
2012-05-04
Contact:
LI Yi-Yong,LIU Ju-Xiu
摘要:
大气CO2浓度升高和N沉降以及二者之间的耦合作用对陆地森林生态系统的影响是当前国际生态学界关注的热点之一。该实验运用大型开顶箱(open-top chamber, OTC)研究: 1)高CO2浓度(700 µmol×mol-1) +高N沉降(100 kg N×hm-2×a-1) (CN); 2)高CO2浓度(700 µmol×mol-1)和背景N沉降(CC); 3)高N沉降(100 kg N×hm-2×a-1)和背景CO2浓度(NN); 4)背景CO2和背景N沉降(CK) 4种处理对南亚热带主要乡土树种木荷(Schima superba)、红锥(Castanopsis hystrix)、肖蒲桃(Acmena acuminatissima)、红鳞蒲桃(Syzygium hancei)、海南红豆(Ormosia pinnata)叶片元素含量的影响。研究结果表明, 大气CO2浓度升高对5种乡土树种叶片元素含量有较大的影响, 除海南红豆叶片的Ca含量外, 其他树种的叶片元素含量在高CO2浓度处理下都显著升高(p < 0.05); 而在N沉降处理下, 5个树种的叶片K和Ca含量都降低。大气CO2浓度升高与N沉降处理对5种乡土树种植物叶片元素含量影响的交互作用不是很明显, 仅仅木荷和红鳞蒲桃的叶片Ca和Mn以及海南红豆的叶片Mn含量在大气CO2浓度上升和N沉降交互处理下显著下降, 而肖蒲桃的叶片P含量在大气CO2浓度上升和N沉降交互处理下显著上升。
李义勇, 黄文娟, 赵亮, 方熊, 刘菊秀. 大气CO2浓度升高和N沉降对南亚热带主要乡土树种叶片元素含量的影响. 植物生态学报, 2012, 36(5): 447-455. DOI: 10.3724/SP.J.1258.2012.00447
LI Yi-Yong, HUANG Wen-Juan, ZHAO Liang, FANG Xiong, LIU Ju-Xiu. Effects of elevated CO2 concentration and N deposition on leaf element contents of major native tree species in southern subtropical China. Chinese Journal of Plant Ecology, 2012, 36(5): 447-455. DOI: 10.3724/SP.J.1258.2012.00447
土壤深度 Soil depth (cm) | pH | K (g·kg-1) | Na (g·kg-1) | Ca (g·kg-1) | Mg (g·kg-1) | Cu (mg·kg-1) | Mn (mg·kg-1) | Zn (mg·kg-1) | Al (mg·kg-1) | Pb (mg·kg-1) | P (g·kg-1) |
---|---|---|---|---|---|---|---|---|---|---|---|
0-20 | 4.15 | 6.30 | 0.64 | 1.03 | 1.03 | 4.69 | 78.70 | 35.91 | 1.77 | 37.48 | 0.30 |
(0.15) | (0.73) | (0.19) | (0.22) | (0.13) | (1.75) | (8.78) | (17.16) | (0.63) | (7.07) | (0.09) | |
20-40 | 4.27 | 5.03 | 0.63 | 0.57 | 0.84 | 4.68 | 73.68 | 30.15 | 1.55 | 23.04 | 0.18 |
(0.15) | (1.11) | (0.49) | (0.27) | (0.22) | (1.50) | (25.00) | (14.35) | (0.15) | (6.42) | (0.19) | |
40-60 | 4.25 | 5.49 | 1.35 | 0.51 | 0.83 | 5.91 | 65.15 | 48.02 | 1.32 | 19.76 | 0.14 |
(0.13) | (1.53) | (0.63) | (0.18) | (0.23) | (3.60) | (16.96) | (79.07) | (0.19) | (6.61) | (0.07) |
表1 供试土壤理化参数背景值(平均值(标准偏差), n = 10)
Table 1 Background values of physicochemical parameters in initial soil of experiment (mean (SD), n = 10)
土壤深度 Soil depth (cm) | pH | K (g·kg-1) | Na (g·kg-1) | Ca (g·kg-1) | Mg (g·kg-1) | Cu (mg·kg-1) | Mn (mg·kg-1) | Zn (mg·kg-1) | Al (mg·kg-1) | Pb (mg·kg-1) | P (g·kg-1) |
---|---|---|---|---|---|---|---|---|---|---|---|
0-20 | 4.15 | 6.30 | 0.64 | 1.03 | 1.03 | 4.69 | 78.70 | 35.91 | 1.77 | 37.48 | 0.30 |
(0.15) | (0.73) | (0.19) | (0.22) | (0.13) | (1.75) | (8.78) | (17.16) | (0.63) | (7.07) | (0.09) | |
20-40 | 4.27 | 5.03 | 0.63 | 0.57 | 0.84 | 4.68 | 73.68 | 30.15 | 1.55 | 23.04 | 0.18 |
(0.15) | (1.11) | (0.49) | (0.27) | (0.22) | (1.50) | (25.00) | (14.35) | (0.15) | (6.42) | (0.19) | |
40-60 | 4.25 | 5.49 | 1.35 | 0.51 | 0.83 | 5.91 | 65.15 | 48.02 | 1.32 | 19.76 | 0.14 |
(0.13) | (1.53) | (0.63) | (0.18) | (0.23) | (3.60) | (16.96) | (79.07) | (0.19) | (6.61) | (0.07) |
植物 Species | K (g·kg-1) | Na (g·kg-1) | Ca (g·kg-1) | Mg (g·kg-1) | Cu (mg·kg-1) | Mn (mg·kg-1) | Zn (mg·kg-1) | Al (mg·kg-1) | Pb (mg·kg-1) | P (g·kg-1) |
---|---|---|---|---|---|---|---|---|---|---|
木荷 | 5.46 | 1.98 | 6.81 | 0.96 | 4.04 | 1334.43 | 29.49 | 1.89 | 89.29 | 0.71 |
Schima superba | (0.15) | (0.06) | (0.36) | (0.03) | (0.78) | (27.93) | (3.14) | (0.01) | (0.87) | (0.02) |
红锥 | 5.43 | 2.09 | 6.55 | 1.23 | 4.34 | 621.86 | 41.95 | 1.50 | 101.12 | 1.29 |
Castanopsis hystrix | (0.53) | (0.11) | (0.65) | (0.09) | (0.39) | (53.05) | (6.94) | (0.07) | (17.48) | (0.13) |
肖蒲桃 | 10.51 | 1.26 | 7.73 | 1.32 | 3.45 | 36.66 | 32.69 | 1.18 | 44.13 | 1.29 |
Acmena acuminatissima | (0.94) | (0.11) | (2.02) | (0.09) | (0.03) | (0.29) | (2.23) | (0.09) | (13.04) | (0.11) |
红鳞蒲桃 | 8.24 | 0.61 | 9.42 | 1.42 | 5.68 | 859.61 | 31.82 | 1.00 | 25.94 | 0.56 |
Syzygium hancei | (0.56) | (0.05) | (5.83) | (0.14) | (0.63) | (95.30) | (7.99) | (0.00) | (19.03) | (0.02) |
海南红豆 | 7.58 | 0.56 | 4.29 | 0.81 | 4.56 | 256.29 | 28.60 | 0.96 | 45.75 | 1.02 |
Ormosia pinnata | (0.60) | (0.05) | (0.34) | (0.09) | (0.52) | (19.18) | (3.02) | (0.06) | (12.45) | (0.10) |
表2 供试苗木叶片元素含量(平均值(标准偏差))
Table 2 Leaf element contents of initial seedlings (mean (SD))
植物 Species | K (g·kg-1) | Na (g·kg-1) | Ca (g·kg-1) | Mg (g·kg-1) | Cu (mg·kg-1) | Mn (mg·kg-1) | Zn (mg·kg-1) | Al (mg·kg-1) | Pb (mg·kg-1) | P (g·kg-1) |
---|---|---|---|---|---|---|---|---|---|---|
木荷 | 5.46 | 1.98 | 6.81 | 0.96 | 4.04 | 1334.43 | 29.49 | 1.89 | 89.29 | 0.71 |
Schima superba | (0.15) | (0.06) | (0.36) | (0.03) | (0.78) | (27.93) | (3.14) | (0.01) | (0.87) | (0.02) |
红锥 | 5.43 | 2.09 | 6.55 | 1.23 | 4.34 | 621.86 | 41.95 | 1.50 | 101.12 | 1.29 |
Castanopsis hystrix | (0.53) | (0.11) | (0.65) | (0.09) | (0.39) | (53.05) | (6.94) | (0.07) | (17.48) | (0.13) |
肖蒲桃 | 10.51 | 1.26 | 7.73 | 1.32 | 3.45 | 36.66 | 32.69 | 1.18 | 44.13 | 1.29 |
Acmena acuminatissima | (0.94) | (0.11) | (2.02) | (0.09) | (0.03) | (0.29) | (2.23) | (0.09) | (13.04) | (0.11) |
红鳞蒲桃 | 8.24 | 0.61 | 9.42 | 1.42 | 5.68 | 859.61 | 31.82 | 1.00 | 25.94 | 0.56 |
Syzygium hancei | (0.56) | (0.05) | (5.83) | (0.14) | (0.63) | (95.30) | (7.99) | (0.00) | (19.03) | (0.02) |
海南红豆 | 7.58 | 0.56 | 4.29 | 0.81 | 4.56 | 256.29 | 28.60 | 0.96 | 45.75 | 1.02 |
Ormosia pinnata | (0.60) | (0.05) | (0.34) | (0.09) | (0.52) | (19.18) | (3.02) | (0.06) | (12.45) | (0.10) |
图1 不同处理下5个乡土树种叶片K、Na、Ca、Mg、P元素含量的变化(平均值±标准偏差)。不同字母表示每个树种不同处理间差异显著(LSD多重比较; p < 0.05)。AA, 肖蒲桃; CH, 红锥; OP, 海南红豆; SH, 红鳞蒲桃; SS, 木荷。
Fig. 1 Variation of leaf element contents of K, Na, Ca, Mg and P in five native tree species under different treatments (mean ± SD). Different letters above the error bars indicate significant differences among treatments in each species (LSD’s multiple range test; p < 0.05). AA, Acmena acuminatissima; CH, Castanopsis hystrix; OP, Ormosia pinnata; SH, Syzygium hancei; SS, Schima superba.
图2 5个乡土树种在不同实验处理下叶片Cu、Mn、Zn、Al、Pb元素含量的变化(平均值±标准偏差)。不同字母表示每个树种不同处理间差异显著(LSD多重比较; p < 0.05)。AA, 肖蒲桃; CH, 红锥; OP, 海南红豆; SH, 红鳞蒲桃; SS, 木荷。
Fig. 2 Effects of different treatments on leaf element contents of Cu, Mn, Zn, Al, Pb in five native tree species (mean ± SD). Different letters above the error bars indicate significant differences among treatments in each species (LSD’s multiple range test; p < 0.05). AA, Acmena acuminatissima; CH, Castanopsis hystrix; OP, Ormosia pinnata; SH, Syzygium hancei; SS, Schima superba.
处理 Treatment | K | Na | Ca | Mg | Cu | Mn | Zn | Al | Pb | P | |
---|---|---|---|---|---|---|---|---|---|---|---|
木荷 | C | NS | NS | NS | NS | NS | 0.005 | NS | NS | NS | NS |
Schima superba | N | 0.008 | 0.014 | NS | 0.038 | NS | 0.000 | NS | NS | NS | NS |
C × N | NS | NS | 0.016 | NS | NS | 0.008 | NS | NS | NS | NS | |
红锥 | C | 0.001 | NS | 0.010 | 0.006 | 0.044 | 0.000 | 0.015 | NS | 0.003 | NS |
Castanopsis hystrix | N | 0.001 | 0.019 | NS | NS | NS | NS | NS | NS | NS | NS |
C × N | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | |
肖蒲桃 | C | NS | 0.007 | NS | NS | NS | 0.010 | NS | 0.030 | NS | 0.000 |
Acmena acuminatissima | N | NS | 0.003 | NS | NS | NS | 0.008 | NS | 0.049 | NS | 0.000 |
C × N | NS | NS | NS | NS | NS | NS | NS | NS | NS | 0.004 | |
红鳞蒲桃 | C | 0.004 | 0.000 | NS | 0.000 | 0.016 | 0.001 | 0.046 | 0.003 | 0.001 | 0.008 |
Syzygium hancei | N | NS | 0.054 | 0.005 | 0.003 | NS | NS | NS | NS | NS | NS |
C × N | NS | NS | 0.020 | 0.031 | NS | 0.002 | NS | NS | NS | NS | |
海南红豆 | C | 0.009 | NS | 0.005 | NS | NS | 0.023 | NS | NS | 0.060 | 0.011 |
Ormosia pinnata | N | 0.002 | NS | NS | NS | NS | NS | NS | NS | 0.008 | NS |
C × N | NS | NS | NS | NS | NS | 0.029 | NS | NS | NS | NS |
表3 大气CO2浓度升高(C)与氮沉降(N)对南亚热带5种乡土树种叶片元素含量的影响
Table 3 Effects of elevated atmospheric CO2 concentration (C) and nitrogen deposition (N) on leaf element contents of five native species in southern subtropical China
处理 Treatment | K | Na | Ca | Mg | Cu | Mn | Zn | Al | Pb | P | |
---|---|---|---|---|---|---|---|---|---|---|---|
木荷 | C | NS | NS | NS | NS | NS | 0.005 | NS | NS | NS | NS |
Schima superba | N | 0.008 | 0.014 | NS | 0.038 | NS | 0.000 | NS | NS | NS | NS |
C × N | NS | NS | 0.016 | NS | NS | 0.008 | NS | NS | NS | NS | |
红锥 | C | 0.001 | NS | 0.010 | 0.006 | 0.044 | 0.000 | 0.015 | NS | 0.003 | NS |
Castanopsis hystrix | N | 0.001 | 0.019 | NS | NS | NS | NS | NS | NS | NS | NS |
C × N | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | |
肖蒲桃 | C | NS | 0.007 | NS | NS | NS | 0.010 | NS | 0.030 | NS | 0.000 |
Acmena acuminatissima | N | NS | 0.003 | NS | NS | NS | 0.008 | NS | 0.049 | NS | 0.000 |
C × N | NS | NS | NS | NS | NS | NS | NS | NS | NS | 0.004 | |
红鳞蒲桃 | C | 0.004 | 0.000 | NS | 0.000 | 0.016 | 0.001 | 0.046 | 0.003 | 0.001 | 0.008 |
Syzygium hancei | N | NS | 0.054 | 0.005 | 0.003 | NS | NS | NS | NS | NS | NS |
C × N | NS | NS | 0.020 | 0.031 | NS | 0.002 | NS | NS | NS | NS | |
海南红豆 | C | 0.009 | NS | 0.005 | NS | NS | 0.023 | NS | NS | 0.060 | 0.011 |
Ormosia pinnata | N | 0.002 | NS | NS | NS | NS | NS | NS | NS | 0.008 | NS |
C × N | NS | NS | NS | NS | NS | 0.029 | NS | NS | NS | NS |
[1] |
Aber J, McDowell W, Nadelhoffer K, Magill A, Berntson G, Kamakea M, McNulty S, Currie W, Rustad L, Fernandez I (1998). Nitrogen saturation in temperate forest ecosystems. BioScience, 48, 921-934.
DOI URL |
[2] | Ainsworth EA, Davey PA, Hymus GJ, Osborne CP, Rogers A, Blum H, Nösberger J, Long SP (2003). Is stimulation of leaf photosynthesis by elevated carbon dioxide concentration maintained in the long term? A test with Lolium perenne grown for 10 years at two nitrogen fertilization levels under Free Air CO2 Enrichment (FACE). Plant, Cell & Environment, 26, 705-714. |
[3] |
Benjamin DD, Joseph CB, Paul D, Bruce AH (2011). CO2 effects on plant nutrient concentration depend on plant functional group and available nitrogen: a meta-analysis. Plant Ecology, 213, 505-521.
DOI URL |
[4] |
Deng Q (邓琦), Zhou GY (周国逸), Liu JX (刘菊秀), Liu SZ (刘世忠), Duan HL (段洪浪), Chen XM (陈小梅), Zhang DQ (张德强) (2009). Effects of CO2 enrichment, high nitrogen deposition and high precipitation on a model forest ecosystem in southern China. Chinese Journal of Plant Ecology (植物生态学报), 33, 1023-1033. (in Chinese with English abstract).
DOI URL |
[5] |
Duan HL (段洪浪), Liu JX (刘菊秀), Deng Q (邓琦), Chen XM (陈小梅), Zhang DQ (张德强) (2009). Effects of elevated CO2 and N deposition on plant biomass accumulation and allocation in subtropical forest ecosystems: a mesocosm study. Chinese Journal of Plant Ecology (植物生态学报), 33, 570-579. (in Chinese with English abstract).
DOI URL |
[6] |
Dyhrman ST, Chappell PD, Haley ST, Moffett JW, Orchard ED, Waterbury JB, Webb EA (2006). Phosphonate utilization by the globally important marine diazotroph Trichodesmium. Nature, 439, 68-71.
DOI URL PMID |
[7] |
Flückiger W, Braun S (1998). Nitrogen deposition in Swiss forests and its possible relevance for leaf nutrient status, parasite attacks and soil acidification. Environmental Pollution, 102, 69-76.
DOI URL |
[8] |
George E, Seith B (1998). Long-term effects of a high nitrogen supply to soil on the growth and nutritional status of young Norway spruce trees. Environmental Pollution, 102, 301-306.
DOI URL |
[9] |
Gunderson CA, Wullschleger SD (1994). Photosynthetic acclimation in trees to rising atmospheric CO2: a broader perspective. Photosynthesis Research, 39, 369-388.
DOI URL PMID |
[10] | Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (2001). Climate Change 2001: the Scientific Basis. Cambridge University Press, Cambridge, UK. |
[11] |
Houlton BZ, Wang YP, Vitousek PM, Field CB (2008). A unifying framework for dinitrogen fixation in the terrestrial biosphere. Nature, 454, 327-330.
DOI URL PMID |
[12] | IPCC(Intergovernmental Panel on Climate Change) (2001). Land-Use Change and Forestry. Cambridge University Press, Cambridge, UK. |
[13] | Li DJ (李德军), Mo JM (莫江明), Peng SL (彭少麟), Fang YT (方运霆) (2005). Effects of simulated nitrogen deposition on elemental concentrations of Schima superba and Cryptocarya concinna seedlings in subtropical China. Acta Ecologica Sinica (生态学报), 25, 2165-2172. (in Chinese with English abstract) |
[14] |
Likens GE, Driscoll CT, Buso DC (1996). Long-term effects of acid rain: response and recovery of a forest ecosystem. Science, 272, 244-246.
DOI URL |
[15] |
Liu JX, Xu ZH, Zhang DQ, Zhou GY, Deng Q, Duan HL, Zhao L, Wang CL (2011a). Effects of carbon dioxide enrichment and nitrogen addition on inorganic carbon leaching in subtropical model forest ecosystems. Ecosystems, 14, 683-697.
DOI URL |
[16] |
Liu JX, Zhang DQ, Zhou GY, Faivre-Vuillin B, Deng Q, Wang CL (2008). CO2 enrichment increases nutrient leaching from model forest ecosystems in subtropical China. Biogeosciences, 5, 1783-1795.
DOI URL |
[17] |
Liu JX, Zhou GY, Xu ZH, Duan HL, Li YL, Zhang DQ (2011b). Photosynthesis acclimation, leaf nitrogen concentration, and growth of four tree species over 3 years in response to elevated carbon dioxide and nitrogen treatment in subtropical China. Journal of Soils and Sediments, 11, 1155-1164.
DOI URL |
[18] | Loladze I (2002). Rising atmospheric CO2 and human nutrition: toward globally imbalanced plant stoichiometry? Trends in Ecology and Evolution, 17, 457-461 |
[19] | Magill AH, Aber JD, Currie WS, Nadelhoffer KJ, Martin ME, McDowell WH, Melillo JM, Steudler P (2004). Ecosystem response to 15 years of chronic nitrogen additions at the Harvard Forest LTER, Massachusetts, USA. Forest Ecology and Management, 196, 7-28. |
[20] |
Matson P, Lohse KA, Hall SJ (2002). The globalization of nitrogen deposition: consequences for terrestrial ecosystems. Ambio, 31, 113-119.
URL PMID |
[21] | Mo JM, Brown S, Xue JH, Fang YT, Li ZA (2006). Response of litter decomposition to simulated N deposition in disturbed, rehabilitated and mature forests in subtropical China. Plant and Soil, 282, 135-151. |
[22] |
Morgan JA, Pataki DE, Körner C, Clark H, Del Grosso SJ, Grünzweig JM, Knapp AK, Mosier AR, Newton PCD, Niklaus PA, Nippert JB, Nowak RS, Parton WJ, Polley HW, Shaw MR (2004). Water relations in grassland and desert ecosystems exposed to elevated atmospheric CO2. Oecologia, 140, 11-25.
URL PMID |
[23] | Nakaji T, Fukami M, Dokiya Y, Izuta T (2001). Effects of high nitrogen load on growth, photosynthesis and nutrient status of Cryptomeria japonica and Pinus densiflora seedlings. Trees, 15, 453-461. |
[24] | Nakaji T, Takenaga S, Kuroha M, Izuta T (2002). Photosynthetic response of Pinus densiflora seedlings to high nitrogen load. Environmental Science, 9, 269-282. |
[25] |
Niklaus PA, Spinnler D, Kornerb C (1998). Soil moisture dynamics of calcareous grassland under elevated CO2. Oecologia, 117, 201-208.
DOI URL PMID |
[26] | Nohrstedt HÖ (2001). Response of coniferous forest ecosystems on mineral soils to nutrient additions: a review of Swedish experiences. Scandinavian Journal of Forest Research, 16, 555-573. |
[27] |
Norby RJ, Ledford J, Reilly CD, Miller NE, O’Neill EG (2004). Fine-root production dominates response of a deciduous forest to atmospheric CO2 enrichment. Proceedings of the National Academy of Sciences of the United States of America, 101, 9689-9693.
URL PMID |
[28] | Peñuelas J, Filella I, Tognetti R (2001). Leaf mineral concentrations of Erica arborea, Juniperus communis and Myrtus communis growing in the proximity of a natural CO2 spring. Global Change Biology, 7, 291-301. |
[29] | Peñuelas J, Idso SB, Ribas A, Kimball BA (1997). Effects of long-term atmospheric CO2 enrichment on the mineral concentration of Citrus aurantium leaves. New Phytologist, 135, 439-444. |
[30] | Reich PB, Hobbie SE, Lee T, Ellsworth DS, West JB, Tilman D, Knops JMH, Naeem S, Trost J (2006). Nitrogen limitation constrains sustainability of ecosystem response to CO2. Nature, 440, 922-925. |
[31] | Ren R (任仁), Mi FJ (米丰杰), Bai NB (白乃宾) (2000). A chemometrics analysis on the data of precipitation chemistry of China. Journal of Beijing Polytechnic University (北京工业大学学报), 26(2), 90-95. (in Chinese with English abstract) |
[32] | Seith B, George E, Marschner H, Wallenda T, Schaeffer C, Einig W, Wingler A, Hampp R (1996). Effects of varied soil nitrogen supply on Norway spruce (Picea abies(L.) Karst.). I. Shoot and root growth and nutrient uptake. Plant and Soil, 184, 291-298. |
[33] | Sierra LP, Donald RZ, Andrew JB, Alan FT, Kurt SP (2012). Simulated N deposition negatively impacts sugar maple regeneration in a northern hardwood ecosystem. Journal of Applied Ecology, 49, 155-163. |
[34] | Sogn TA, Abrahamsen G (1998). Effects of N and S deposition on leaching from an acid forest soil and growth of Scots pine (Pinus sylvestris L.) after 5 years of treatment. Forest Ecology and Management, 103, 177-190. |
[35] |
Wilson EJ, Skeffington RA (1994). The effects of excess nitrogen deposition on young Norway spruce trees. II. The vegetation. Environmental Pollution, 86, 153-160.
URL PMID |
[36] | Yamakawa Y, Saigusa M, Okada M, Kobayashi K (2004). Nutrient uptake by rice and soil solution composition under atmospheric CO2 enrichment. Plant and Soil, 259, 367-372. |
[37] |
Zhang SR, Dang QL, Yü XG (2006). Nutrient and [CO2] elevation had synergistic effects on biomass production but not on biomass allocation of white birch seedlings. Forest Ecology and Management, 234, 238-244.
DOI URL |
[38] | Zhao L (赵亮), Zhou GY (周国逸), Zhang DQ (张德强), Duan HL (段洪浪), Liu JX (刘菊秀) (2011). Effects of elevated CO2 concentration and nitrogen deposition on the biomass accumulation and allocation in south subtropical main native tree species and their mixed communities. Chinese Journal of Applied Ecology (应用生态学报), 22, 1949-1954. (in Chinese with English abstract) |
[39] |
Zheng XH, Fu CB, Xu XK, Yan XD, Huang Y, Han SH, Hu F, Chen GX (2002). The Asian nitrogen cycle case study. Ambio, 31, 79-87.
DOI URL PMID |
[1] | 张文瑾 佘维维 秦树高 乔艳桂 张宇清. 氮和水分添加对黑沙蒿群落优势植物叶片氮磷化学计量特征的影响[J]. 植物生态学报, 2024, 48(5): 590-600. |
[2] | 张效境, 梁潇洒, 马望, 王正文. 呼伦贝尔草地植物茎秆和叶片中养分的时间动态与回收[J]. 植物生态学报, 2021, 45(7): 738-748. |
[3] | 冯兆忠, 李品, 张国友, 李征珍, 平琴, 彭金龙, 刘硕. 二氧化碳浓度升高对陆地生态系统的影响: 问题与展望[J]. 植物生态学报, 2020, 44(5): 461-474. |
[4] | 黄菊莹, 余海龙. 四种荒漠草原植物的生长对不同氮添加水平的响应[J]. 植物生态学报, 2016, 40(2): 165-. |
[5] | 石贤萌, 杞金华, 宋亮, 刘文耀, 黄俊彪, 李苏, 卢华正, 陈曦. 哀牢山中山湿性常绿阔叶林两种优势幼苗C、N、P化学计量特征及其对N沉降增加的响应[J]. 植物生态学报, 2015, 39(10): 962-970. |
[6] | 杨春, 谭太龙, 余佳玲, 廖琼, 张晓龙, 张振华, 宋海星, 官春云. 大气CO2浓度倍增对油菜韧皮部汁液成分及根部氮素积累的影响[J]. 植物生态学报, 2014, 38(7): 776-784. |
[7] | 龙凤玲, 李义勇, 方熊, 黄文娟, 刘双娥, 刘菊秀. 大气CO2浓度上升和氮添加对南亚热带模拟森林生态系统土壤碳稳定性的影响[J]. 植物生态学报, 2014, 38(10): 1053-1063. |
[8] | 孟凡超, 张佳华, 姚凤梅. CO2浓度升高和降水增加协同作用对玉米产量及生长发育的影响[J]. 植物生态学报, 2014, 38(10): 1064-1073. |
[9] | 庞丽, 张一, 周志春, 丰忠平, 储德裕. 模拟氮沉降对低磷胁迫下马尾松不同家系根系分泌和磷效率的影响[J]. 植物生态学报, 2014, 38(1): 27-35. |
[10] | 王慧, 周广胜, 蒋延玲, 石耀辉, 许振柱. 降水与CO2浓度协同作用对短花针茅光合特性的 影响[J]. 植物生态学报, 2012, 36(7): 597-606. |
[11] | 李善家, 张有福, 陈拓. 西北油松叶片δ13C特征与环境因子和叶片矿质元素的关系[J]. 植物生态学报, 2011, 35(6): 596-604. |
[12] | 涂利华, 胡庭兴, 张健, 李仁洪, 戴洪忠, 雒守华. 模拟氮沉降对华西雨屏区苦竹林土壤有机碳和养分的影响[J]. 植物生态学报, 2011, 35(2): 125-136. |
[13] | 朱万泽, 王三根, 郝云庆. 川滇高山栎灌丛萌生过程中的营养元素供应动态[J]. 植物生态学报, 2010, 34(10): 1185-1195. |
[14] | 段洪浪, 刘菊秀, 邓琦, 陈小梅, 张德强. CO2浓度升高与氮沉降对南亚热带森林生态系统植物生物量积累及分配格局的影响[J]. 植物生态学报, 2009, 33(3): 570-579. |
[15] | 刘滨扬, 刘蔚秋, 雷纯义, 张以顺. 三种苔藓植物对模拟N沉降的生理响应[J]. 植物生态学报, 2009, 33(1): 141-149. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19