植物生态学报 ›› 2009, Vol. 33 ›› Issue (3): 570-579.DOI: 10.3773/j.issn.1005-264x.2009.03.016
段洪浪1,2(), 刘菊秀1, 邓琦1,2, 陈小梅1,2, 张德强1,*(
)
收稿日期:
2008-08-06
接受日期:
2009-02-09
出版日期:
2009-08-06
发布日期:
2009-05-31
通讯作者:
张德强
作者简介:
*E-mail: zhangdeq@scib.ac.cnE-mail: hlduan@scbg.ac.cn
基金资助:
DUAN Hong-Lang1,2(), LIU Ju-Xiu1, DENG Qi1,2, CHEN Xiao-Mei1,2, ZHANG De-Qiang1,*(
)
Received:
2008-08-06
Accepted:
2009-02-09
Online:
2009-08-06
Published:
2009-05-31
Contact:
ZHANG De-Qiang
摘要:
CO2浓度升高与氮沉降增加对陆地生态系统的耦合作用已成为全球变化的研究热点。应用大型开顶箱 (OTC) 人工控制手段研究了人工生态系统在1) 高CO2 (700±20μmol·mol-1) +高氮沉降 (100kg N·hm-2·a-1) (CN) ;2) 高CO2 (700±20μmol·mol-1) +背景氮沉降 (C+) ;3) 高氮沉降 (100kg N·hm-2·a-1) +背景CO2 (N+) ;4) 背景CO2+背景氮沉降处理 (CK) 4种处理条件下荷木 (Schima superba) 、红锥 (Castanopsis hystrix) 、海南红豆 (Ormosia pinnata) 、肖蒲桃 (Acmena acuminatissima) 、红鳞蒲桃 (Syzygium hancei) 等主要南亚热带森林植物的生物量积累模式及其分配格局。连续近3年的实验结果表明:不同处理条件下, 各参试植物生物量积累具有不同的响应特征, N+处理显著促进荷木、肖蒲桃及红鳞蒲桃生物量的积累;C+处理显著促进肖蒲桃、海南红豆生物量的积累;CN处理显著促进除红锥外其他物种生物量的积累, 并且具有两者单独处理的叠加效应。不同处理改变物种生物量的分配模式, N+处理降低植物的根冠比, 促进地上部分生物量的积累;C+处理增加红锥和红鳞蒲桃地下部分生物量的分配, 却促进荷木和海南红豆地上部分的积累;CN处理仅促进红磷蒲桃地下部分的积累。群落生物量的积累与分配格局取决于优势物种的生物量及其分配格局在群落中所 占的权重。
段洪浪, 刘菊秀, 邓琦, 陈小梅, 张德强. CO2浓度升高与氮沉降对南亚热带森林生态系统植物生物量积累及分配格局的影响. 植物生态学报, 2009, 33(3): 570-579. DOI: 10.3773/j.issn.1005-264x.2009.03.016
DUAN Hong-Lang, LIU Ju-Xiu, DENG Qi, CHEN Xiao-Mei, ZHANG De-Qiang. EFFECTS OF ELEVATED CO2 AND N DEPOSITION ON PLANT BIOMASS ACCUMULATION AND ALLOCATION IN SUBTROPICAL FOREST ECOSYSTEMS: A MESOCOSM STUDY. Chinese Journal of Plant Ecology, 2009, 33(3): 570-579. DOI: 10.3773/j.issn.1005-264x.2009.03.016
图1 各物种不同实验处理条件下平均生物量变化 图示生物量均为平均值, 误差线表示标准差 (SD) 。Bars represent average biomass and standard deviation HN:高氮沉降High N deposition (100 kg N?hm-2?a-1) LN:背景氮沉降Ambient N deposition相同字母表示在0.05水平下差异不显著Same letters indicate no significant differences at 5%level among treatments
Fig.1 Biomass accumulation under different treatments
[1] |
Ackerly DD, Bazzaz FA (1995). Plant growth and reproduc-tion along CO2gradients:non-linear responses and implications for community change. Global Change Biology, 1,199-207.
DOI URL |
[2] |
Ainsworh EA, Davey PA, Hymus GJ, Osborne CP, Rogers A, Blum H, Nosberger J, Long SP (2003). Is stimula-tion of leaf photosynthesis by elevated carbon dioxide concentration maintained in the long term?A test with Loium perenne grown for10years at two nitrogen fer-tilization levels under Free Air CO2Enrichment (FACE). Plant, Cell and Environment, 26,705-714.
DOI URL |
[3] | Beedlow PA, Tingey DT (2004). Rising atmospheric CO2and carbon sequestration in forests. Frontiers in Ecol-ogy and the Environment, 2,315-322. |
[4] |
Bowden RD, Davidson E, Savage K, Arabia C, Steudler P (2004). Chronic nitrogen additions reduce total soil respiration and microbial respiration in temperate for-est soils at the Harvard Forest. Forest Ecology and Management, 196,43-56.
DOI URL |
[5] |
Ceulemans R, Mousseau M (1994). Effects of elevated at-mospheric CO2on woody plants. New Phytologist, 127,425-446.
DOI URL |
[6] |
de Graaff MA, van Groenigen KJ, Six J, Hungate B, van Kessel C (2006). Interactions between plant growth and soil nutrient cycling under elevated CO2:a meta-analysis. Global Change Biology, 12,2077-2091.
DOI URL |
[7] |
Dixon RK, Solomon AM, Brown S, Houghton RA, Trexier MC, Wisniewski J (1994). Carbon pools and flux of global forest ecosystems. Science, 263,185-190.
DOI URL |
[8] |
Finzi AC, DeLucia EH, Hamilton JG, Richter DD, Schlesinger WH (2002). The nitrogen budget of a pine forest under Free Air CO2Enrichment. Oecologia, 132,567-578.
DOI URL |
[9] | Galloway JN, Levy H II, Kasibhatla PS (1994). Year2020:consequences of population growth and development on deposition of oxidized nitrogen. Ambio, 23,120-123. |
[10] |
Gielen B, Ceulemans R (2001). The likely impact of rising atmospheric CO2on natural and managed populus:a literature review. Environmental Pollution, 115,335-358.
DOI URL |
[11] | Gundersen P, Schmidt IK, Raulund-Rasmussen K (2006). Leaching of nitrate from temperate forests effects of air pollution and forest management. Enviromental Reviews, 14,1-57. |
[12] |
Gunderson CA, Wullschleger CA (1994). Photosynthetic acclimation in trees to rising atmospheric CO2. Photosynthesis Research, 39,369-388.
DOI URL |
[13] | Haile-Mariam S, Cheng SW, Johnson DW, Ball JT, Paul EA (2000). Use of carbon-13and carbon-14to measure the effects of carbon dioxide and nitrogen fertilization on carbon dynamics in ponderosa pine. Soil Science Soci-ety of America Journal, 64,1984-1993. |
[14] |
Hall SJ, Matson PA (2003). Nutrient status of tropical rain forests influences soil N dynamics after N additions. Ecological Monographs, 73,107-129.
DOI URL |
[15] |
Hungate BA, Dukes JS, Shaw MR, Luo YQ, Field CB (2003). Nitrogen and climate change. Science, 302,1512-1513.
DOI URL |
[16] |
Hyvonen R, Agren GI, Linder S, Persson T, Cotrufo MF, Ekblad A, Freeman M, Grelle A, Janssens IA, Jarvis PG, Kellomaki S, Lindroth A, Loustau D, Lundmark T, Norby RJ, Oren R, Pilegaard K, Ryan MG, Sigurdsson BD, Stromgren M, van Oijen M, Wallin G (2007). The likely impact of elevated CO2, nitrogen deposition, in-creased temperature and management on carbon se-questration in temperate and boreal forest ecosystems:a literature review. New Phytologist, 173,463-480.
DOI URL |
[17] | Jiang GM (蒋高明), Han XG (韩兴国), Lin GH (林光辉) (1997). Response of plant growth to elevated[CO2]:a review on the chief methods and basic conclusions based on experiments in the external countries in past decade. Acta Phytoecologica Sinica (植物生态学报), 21,489-502. (in Chinese with English abstract) |
[18] |
Joel G, Chapin FS, Chiariello NR, Thayer SS, Field CB (2001). Species-specific responses of plant communi-ties to altered carbon and nutrient availability. Global Change Biology, 7,435-450.
DOI URL |
[19] |
Jongen M, Jones MB (1998). Effects of elevated carbon dioxide on plant biomass production and competition in a simulated neutral grassland community. Annals of Botany, 82,111-123.
DOI URL |
[20] |
Körner C, Arnone JA III (1992). Responses to elevated carbon dioxide in artificial tropical ecosystems. Science, 257,1672-1675.
DOI URL |
[21] |
Larios B, Aguera E, de la Haba P, Perez-Vicente R, Maldonado JM (2001). A short-term exposure of cu-cumber plants to rising atmospheric CO2increases leaf carbohydrate content and enhances nitrate reductase expression and activity. Planta, 212,305-312.
PMID |
[22] | Li DJ (李德军), Mo JM (莫江明), Fang YT (方云霆), Li ZA (李志安) (2005). Effects of simulated nitrogen deposition on biomass production and allocation in Schima superba and Cryptocarya concinna seedlings in subtropical china. Acta Phytoecologica Sinica (植物生态学报), 29,543-549. (in Chinese with English ab-stract). |
[23] | Liao Y (廖轶), Chen GY (陈根云), Zhang DY (张道允), Xiao YZ (肖元珍), Zhu JG (朱建国), Xu DQ (许大全) (2003). Non-stomatal acclimation of leaf photosynthe-sis to Free-Air CO2. Enrichment (FACE) in winterwheat.Journal of Plant Physiology and Molecular Bi-ology (植物生理与分子生物学学报), 29,494-500. (inChinese with English abstract). |
[24] | Lin WH (林伟宏) (1998). Response of photosynthesis to elevated atmospheric CO2. Acta Ecologica Sinica (生态学报), 18,529-538. (in Chinese with English ab-stract). |
[25] |
Luo YQ, Hui DF, Zhang DQ (2006a). Elevated CO2stimu-lates net accumulations of carbon and nitrogen in land ecosystems:a meta-analysis. Ecology, 87,53-63.
DOI URL |
[26] |
Luo YQ, Su BO, Currie WS, Dukes JS, Finzi A, Hartwig U, Hungate B, McMurtrie RE, Oren RAM, Parton WJ (2004). Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. Bioscience, 54,731-739.
DOI URL |
[27] | Luo ZB, Calfapietra C, Liberloo M, Scarascia-Mugnozza G, Polle A (2006b). Carbon partitioning to mobile and structural fractions in poplar wood under elevated CO2 (EUROFACE) and N fertilization. Global Change Bi-ology, 12,272-283. |
[28] |
Magill AH, Aber JD, Berntson GM, McDowell WH, Nadelhoffer KJ, Melillo JM, Steudler PA (2000). Long-term nitrogen additions and nitrogen saturation in two temperate forests. Ecosystems, 3,238-253.
DOI URL |
[29] |
Morgan JA, Pataki DE, Körner C, Clark H, Grosso SJ, Grünzweig JM, Knapp AK, Mosier AR, Newton PCD, Niklaus PA, Nippert JB, Nowak RS, Parton WJ, Polley HW, Shaw MR (2004). Water relations in grasslandand desert ecosystems exposed to elevated atmospheric CO2. Oecologia, 140,11-25.
PMID |
[30] |
Neff JC, Townsend AR, Gleixner G, Lehman SJ, Turnbull J, Bowman WD (2002). Variable effects of nitrogen additions on the stability and turnover of organic car-bon. Nature, 419,915-917.
DOI URL |
[31] | Norby RJ, Wullschleger SD, Gunderson CA, Johnson DW, Ceulemans R (1999). Tree responses to rising CO2in field experiments:implications for the future forest. Plant, Cell and Enviorment, 22,683-714. |
[32] |
Nordin A, Strengbom J, Witzell J, Nösholm T, Ericson L (2005). Nitrogen deposition and the biodiversity of boreal forests:implications for the nitrogen critical load. Ambio, 34,20-24.
DOI URL |
[33] |
Oberbauer SF, Strain BR, Fetcher N (1985). Effect of CO2-enrichnient on seedling physiology and growth of two tropical tree species. Physiologia Plantarum, 65,352-356.
DOI URL |
[34] |
Reich PB, Hungate BA, Luo YQ (2006). Carbon-nitrogen interactions in terrestrial ecosystems in response to rising atmospheric carbon dioxide. Annual Review of Ecology, Evolution, and Systematics, 37,611-636.
DOI URL |
[35] | Ren R (任仁), Mi FJ (米丰杰), Bai NB (白乃彬) (2000). A chemometrics analysis on the data of precipitationchemistry of China. Journal of Beijing PolytechnicUniversity (北京工业大学学报), 26,90-95. |
[36] |
Rogers A, Allen DJ, Davey PA, Morgan PB, Ainsworth EA, Bernacchi CJ, Comic G, Dermody O, Dohleman FG, Heaton EA, Mahoney J, Zhu XG, Delucia EH, Ort DR, Long SP (2004). Leaf photosynthesis and carbohydrate dynamics of soybeans grown throughout their lifecycle under Free-Air Carbon Dioxide Enrichment. Plant, Cell and Environment, 27,449-458.
DOI URL |
[37] | Saxe H, Ellsworth DS, Heath J (1998). Tree and forest functioning in an enriched CO2atmosphere. New Phy-tologist, 139,395-436. |
[38] |
Sefcik LT, Zak DR, Ellsworth DS (2007). Seedling survival in a northern temperate forest understory is increased by elevated atmospheric carbon dioxide and atmos-pheric nitrogen deposition. Global Change Biology, 13,132-146.
DOI URL |
[39] |
Spinnler D, Egli P, Körner C (2002). Four-year growth dy-namics of beech-spruce model ecosystems under CO2enrichment on two different forest soils. Trees, 16,423-436.
DOI URL |
[40] | Xu DQ (许大全) (1994). Responses of photosynthesis and related processes to long-term high CO2. concentration. Plant Physiology Communications (植物生理学通讯), 30 (2),81-87. (in Chinese) |
[41] |
Zak DR, Pregitze KS, King JS, Holmes WE (2000). Ele-vated atmospheric CO2, fine roots and the response of soil microorganisms:a review and hypothesis. New Phytologist, 147,201-222.
DOI URL |
[1] | 朱湾湾, 王攀, 许艺馨, 李春环, 余海龙, 黄菊莹. 降水量变化与氮添加下荒漠草原土壤酶活性及其影响因素[J]. 植物生态学报, 2021, 45(3): 309-320. |
[2] | 冯兆忠, 李品, 张国友, 李征珍, 平琴, 彭金龙, 刘硕. 二氧化碳浓度升高对陆地生态系统的影响: 问题与展望[J]. 植物生态学报, 2020, 44(5): 461-474. |
[3] | 杨春, 谭太龙, 余佳玲, 廖琼, 张晓龙, 张振华, 宋海星, 官春云. 大气CO2浓度倍增对油菜韧皮部汁液成分及根部氮素积累的影响[J]. 植物生态学报, 2014, 38(7): 776-784. |
[4] | 孟凡超, 张佳华, 姚凤梅. CO2浓度升高和降水增加协同作用对玉米产量及生长发育的影响[J]. 植物生态学报, 2014, 38(10): 1064-1073. |
[5] | 龙凤玲, 李义勇, 方熊, 黄文娟, 刘双娥, 刘菊秀. 大气CO2浓度上升和氮添加对南亚热带模拟森林生态系统土壤碳稳定性的影响[J]. 植物生态学报, 2014, 38(10): 1053-1063. |
[6] | 王慧, 周广胜, 蒋延玲, 石耀辉, 许振柱. 降水与CO2浓度协同作用对短花针茅光合特性的 影响[J]. 植物生态学报, 2012, 36(7): 597-606. |
[7] | 李义勇, 黄文娟, 赵亮, 方熊, 刘菊秀. 大气CO2浓度升高和N沉降对南亚热带主要乡土树种叶片元素含量的影响[J]. 植物生态学报, 2012, 36(5): 447-455. |
[8] | 寇太记, 朱建国, 谢祖彬, 刘钢, 曾青. CO2浓度增加和不同氮肥水平对冬小麦根系呼吸及生物量的影响[J]. 植物生态学报, 2008, 32(4): 922-931. |
[9] | 张颖, 贾志斌, 杨持. 百里香无性系的克隆生长特征[J]. 植物生态学报, 2007, 31(4): 630-636. |
[10] | 滕年军, 陈彤, 林金星. 植物有性生殖对大气CO2浓度变化响应的研究进展[J]. 植物生态学报, 2006, 30(6): 1054-1063. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19