植物生态学报 ›› 2014, Vol. 38 ›› Issue (10): 1064-1073.DOI: 10.3724/SP.J.1258.2014.00100
收稿日期:
2014-04-11
接受日期:
2014-06-20
出版日期:
2014-04-11
发布日期:
2021-04-20
通讯作者:
张佳华
作者简介:
* E-mail: jhzhang@ceode.ac.cn基金资助:
MENG Fan-Chao1,2, ZHANG Jia-Hua2,*(), YAO Feng-Mei3
Received:
2014-04-11
Accepted:
2014-06-20
Online:
2014-04-11
Published:
2021-04-20
Contact:
ZHANG Jia-Hua
摘要:
关于[CO2]升高和降水变化等多因子共同作用对植物的影响报道较少, 制约着人们对植物对全球气候变化响应的认识和预测。玉米(Zea mays)作为重要的C4植物, 受[CO2]和降水影响显著, 但鲜有[CO2]升高和降水增加协同作用对其产量及生长发育影响的报道。该研究利用开顶式生长箱模拟[CO2]升高(390 (环境)、450和550 μmol·mol-1), 降水增加量设置为增加自然降水量的15% (以试验地锦州1981-2010年6至8月月平均降水量为基准), 从而形成6个处理: C550W+15%、C550W0、C450W+15%、C450W0、C390W+15%和C390W0。试验材料选用玉米品种‘丹玉39’。结果表明: [CO2]升高和降水增加的协同作用在玉米的籽粒产量和生物产量上均达到了显著水平(p< 0.05), 二因子均起正作用, 使籽粒产量和生物产量均升高。籽粒产量在[CO2] 390、450和550 μmol·mol-1水平下的降水增加处理较自然降水处理分别增加15.94%、9.95%和9.45%, 而生物产量分别增加13.06%、8.13%和6.49%。因为籽粒产量的增幅略大于生物产量的增幅, 所以促进了经济系数的升高。穗部性状变化显著, 其中, 穗粒数、穗粒重、穗长和穗粗等性状值均随[CO2]升高而升高, 且各[CO2]水平下均表现为降水增加处理>自然降水处理, 而瘪粒数相反。但是, [CO2]升高和降水增加的协同作用也促进了轴粗的升高, 对玉米产量的增加起着限制作用。二因子协同作用在净光合速率(Pn)和叶面积上达到了极显著水平(p< 0.01), 而在株高和干物质积累量上达到了显著水平(p< 0.05)。二因子协同作用使玉米叶片的Pn升高, 植株高度升高, 穗位高升高, 茎粗增加, 叶面积变大, 从而促进了干物质积累量的升高, 为玉米增产打下了良好的基础。这表明: 在未来[CO2]升高条件下, 一定程度的降水增加对玉米的产量具有正向促进作用。
孟凡超, 张佳华, 姚凤梅. CO2浓度升高和降水增加协同作用对玉米产量及生长发育的影响. 植物生态学报, 2014, 38(10): 1064-1073. DOI: 10.3724/SP.J.1258.2014.00100
MENG Fan-Chao, ZHANG Jia-Hua, YAO Feng-Mei. Interactive effects of elevated CO2 concentration and increasing precipitation on yield and growth development in maize. Chinese Journal of Plant Ecology, 2014, 38(10): 1064-1073. DOI: 10.3724/SP.J.1258.2014.00100
图2 CO2浓度升高和降水增加协同作用下各处理土壤相对含水量的变化(平均值±标准偏差, n = 3)。 C550W+15%, CO2浓度550 μmol·mol-1和降水量增加15%; C550W0, CO2浓度550 μmol·mol-1和自然降水量; C450W+15%, CO2浓度450 μmol·mol-1和降水量增加15%; C450W0, CO2浓度450 μmol·mol-1和自然降水量; C390W+15%, CO2浓度390 μmol·mol-1和降水量增加15%; C390W0, CO2浓度390 μmol·mol-1和自然降水量。
Fig. 2 Relative soil moisture under treatments with three CO2 concentration levels and two precipitation levels (means ± SD, n = 3). C550W+15%, CO2 concentration 550 μmol·mol-1 and precipitation +15%; C550W0, CO2 concentration 550 μmol·mol-1 and natural precipitation; C450W+15%, CO2 concentration 450 μmol·mol-1 and precipitation +15%; C450W0, CO2 concentration 450 μmol·mol-1 and natural precipitation; C390W+15%, CO2 concentration 390 μmol·mol-1 and precipitation +15%; C390W0, CO2 concentration 390 μmol·mol-1 and natural precipitation.
处理 Treatment | 平均籽粒产量 Average grain yield (g·plant-1) | 较对照增产 Increase over the CK (%) | 平均生物产量 Average biological yield (g·plant-1) | 较对照增产 Increase over the CK (%) | 经济系数 Economical coefficient |
---|---|---|---|---|---|
C550W+15% | 337.73a | 9.45 | 618.31a | 6.49 | 0.546 2a |
C550W0 | 308.58b | 580.61b | 0.531 5abc | ||
C450W+15% | 313.02b | 9.95 | 585.49b | 8.13 | 0.534 6ab |
C450W0 | 284.70c | 541.46c | 0.525 9bc | ||
C390W+15% | 277.96d | 15.94 | 525.95d | 13.06 | 0.528 5bc |
C390W0(CK) | 239.74e | 465.20e | 0.515 5c |
表1 CO2浓度升高和降水增加协同作用对玉米产量的影响
Table 1 Effects of elevated CO2 concentration and increased precipitation on maize yield
处理 Treatment | 平均籽粒产量 Average grain yield (g·plant-1) | 较对照增产 Increase over the CK (%) | 平均生物产量 Average biological yield (g·plant-1) | 较对照增产 Increase over the CK (%) | 经济系数 Economical coefficient |
---|---|---|---|---|---|
C550W+15% | 337.73a | 9.45 | 618.31a | 6.49 | 0.546 2a |
C550W0 | 308.58b | 580.61b | 0.531 5abc | ||
C450W+15% | 313.02b | 9.95 | 585.49b | 8.13 | 0.534 6ab |
C450W0 | 284.70c | 541.46c | 0.525 9bc | ||
C390W+15% | 277.96d | 15.94 | 525.95d | 13.06 | 0.528 5bc |
C390W0(CK) | 239.74e | 465.20e | 0.515 5c |
变量 Variable | CO2浓度 CO2 concentration | 降水量 Precipitation | 交互作用 Interaction | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
df | F | p | df | F | p | df | F | p | |||
籽粒产量 Grain yield | 2 | 629.76 | 0.000 | 1 | 455.71 | 0.000 | 2 | 4.50 | 0.035* | ||
生物产量 Biological yield | 2 | 413.79 | 0.000 | 1 | 251.51 | 0.000 | 2 | 5.27 | 0.023* | ||
净光合速率 Net photosynthetic rate | 2 | 133.12 | 0.000 | 1 | 166.57 | 0.000 | 2 | 12.87 | 0.000** | ||
株高 Plant height | 2 | 159.37 | 0.000 | 1 | 125.07 | 0.000 | 2 | 4.23 | 0.041* | ||
穗位高 Ear height | 2 | 3.12 | 0.081 | 1 | 2.10 | 0.173 | 2 | 0.07 | 0.937 | ||
茎粗 Stem diameter | 2 | 9.21 | 0.004 | 1 | 4.08 | 0.066 | 2 | 0.19 | 0.833 | ||
叶面积 Leaf area | 2 | 726.76 | 0.000 | 1 | 639.41 | 0.000 | 2 | 30.89 | 0.000** | ||
干物质积累量 Dry matter accumulation | 2 | 582.72 | 0.000 | 1 | 316.37 | 0.000 | 2 | 5.48 | 0.020* |
表2 CO2浓度升高和降水增加协同作用对玉米影响的双因子方差分析
Table 2 Two-way ANOVA on the interactive effects between elevated CO2 concentration and increased precipitation on maize
变量 Variable | CO2浓度 CO2 concentration | 降水量 Precipitation | 交互作用 Interaction | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
df | F | p | df | F | p | df | F | p | |||
籽粒产量 Grain yield | 2 | 629.76 | 0.000 | 1 | 455.71 | 0.000 | 2 | 4.50 | 0.035* | ||
生物产量 Biological yield | 2 | 413.79 | 0.000 | 1 | 251.51 | 0.000 | 2 | 5.27 | 0.023* | ||
净光合速率 Net photosynthetic rate | 2 | 133.12 | 0.000 | 1 | 166.57 | 0.000 | 2 | 12.87 | 0.000** | ||
株高 Plant height | 2 | 159.37 | 0.000 | 1 | 125.07 | 0.000 | 2 | 4.23 | 0.041* | ||
穗位高 Ear height | 2 | 3.12 | 0.081 | 1 | 2.10 | 0.173 | 2 | 0.07 | 0.937 | ||
茎粗 Stem diameter | 2 | 9.21 | 0.004 | 1 | 4.08 | 0.066 | 2 | 0.19 | 0.833 | ||
叶面积 Leaf area | 2 | 726.76 | 0.000 | 1 | 639.41 | 0.000 | 2 | 30.89 | 0.000** | ||
干物质积累量 Dry matter accumulation | 2 | 582.72 | 0.000 | 1 | 316.37 | 0.000 | 2 | 5.48 | 0.020* |
处理 Treatment | 穗粒重 Ear kernels weight (g·ear-1) | 百粒重 100-kernel weight (g) | 穗粒数 Kernels per ear | 穗行数 Rows per ear | 行粒数 Kernels per row | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C550W+15% | 346.58a | 45.80a | 750.00a | 18.00a | 42.00a | ||||||||||
C550W0 | 316.34b | 44.13b | 723.67ab | 17.33a | 41.33ab | ||||||||||
C450W+15% | 319.29b | 43.93b | 726.00ab | 18.00a | 40.33ab | ||||||||||
C450W0 | 293.50bc | 43.03b | 685.00abc | 17.33a | 39.33ab | ||||||||||
C390W+15% | 275.41c | 40.67c | 680.00bc | 17.33a | 39.00ab | ||||||||||
C390W0(CK) | 246.55d | 39.20d | 629.33c | 16.67a | 37.67b | ||||||||||
处理 Treatment | 穗长 Ear length (cm) | 穗直径 Ear diameter (cm) | 穗质量 Ear mass (g) | 穗轴直径 diameter (cm) | 穗轴质量 Ear axle mass (g) | 秃尖长 Barren tip (cm) | 穗瘪粒数 Shriveled kernels per ear | ||||||||
C550W+15% | 21.83a | 6.32a | 383.78a | 3.11a | 37.20ab | 3.70ab | 2.67b | ||||||||
C550W0 | 20.48b | 6.05b | 352.27b | 3.02ab | 35.93c | 3.93a | 17.00ab | ||||||||
C450W+15% | 21.11ab | 6.04b | 356.69bc | 2.93bc | 37.40a | 3.53bc | 2.00b | ||||||||
C450W0 | 19.38c | 5.81c | 329.56cd | 2.88bc | 36.07bc | 3.92a | 27.67a | ||||||||
C390W+15% | 18.58c | 5.59d | 310.35d | 2.86c | 34.93cd | 3.31c | 3.67b | ||||||||
C390W0 | 17.34d | 5.17e | 280.92e | 2.85c | 34.37d | 3.61abc | 31.00a |
表3 CO2浓度升高和降水增加协同作用对玉米穗部性状的影响
Table 3 Interactive effects between elevated CO2 concentration and increased precipitation on ear characteristics of maize
处理 Treatment | 穗粒重 Ear kernels weight (g·ear-1) | 百粒重 100-kernel weight (g) | 穗粒数 Kernels per ear | 穗行数 Rows per ear | 行粒数 Kernels per row | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C550W+15% | 346.58a | 45.80a | 750.00a | 18.00a | 42.00a | ||||||||||
C550W0 | 316.34b | 44.13b | 723.67ab | 17.33a | 41.33ab | ||||||||||
C450W+15% | 319.29b | 43.93b | 726.00ab | 18.00a | 40.33ab | ||||||||||
C450W0 | 293.50bc | 43.03b | 685.00abc | 17.33a | 39.33ab | ||||||||||
C390W+15% | 275.41c | 40.67c | 680.00bc | 17.33a | 39.00ab | ||||||||||
C390W0(CK) | 246.55d | 39.20d | 629.33c | 16.67a | 37.67b | ||||||||||
处理 Treatment | 穗长 Ear length (cm) | 穗直径 Ear diameter (cm) | 穗质量 Ear mass (g) | 穗轴直径 diameter (cm) | 穗轴质量 Ear axle mass (g) | 秃尖长 Barren tip (cm) | 穗瘪粒数 Shriveled kernels per ear | ||||||||
C550W+15% | 21.83a | 6.32a | 383.78a | 3.11a | 37.20ab | 3.70ab | 2.67b | ||||||||
C550W0 | 20.48b | 6.05b | 352.27b | 3.02ab | 35.93c | 3.93a | 17.00ab | ||||||||
C450W+15% | 21.11ab | 6.04b | 356.69bc | 2.93bc | 37.40a | 3.53bc | 2.00b | ||||||||
C450W0 | 19.38c | 5.81c | 329.56cd | 2.88bc | 36.07bc | 3.92a | 27.67a | ||||||||
C390W+15% | 18.58c | 5.59d | 310.35d | 2.86c | 34.93cd | 3.31c | 3.67b | ||||||||
C390W0 | 17.34d | 5.17e | 280.92e | 2.85c | 34.37d | 3.61abc | 31.00a |
图3 CO2浓度升高和降水增加协同作用对玉米净光合速率(Pn)的影响(平均值±标准偏差, n = 3)。 不同小写字母表示差异显著(p < 0.05)。
Fig. 3 Effects on leaf net photosynthetic rate (Pn) of maize by interactive effects between elevated CO2 concentration and increased precipitation (mean ± SD, n = 3). Different small letters indicated significant difference (p < 0.05).
处理 Treatment | 株高 Plant height (cm) | 穗位高 Ear height (cm) | 茎直径 Stem diameter (cm) | 叶面积 Leaf area (cm2·plant-1) | 干物质积累量 Dry matter accumulation (g·plant-1) |
---|---|---|---|---|---|
C550W+15% | 310.28a | 149.93a | 3.18a | 10 482.65a | 459.28a |
C550W0 | 302.54b | 144.86ab | 3.08ab | 9 279.68c | 441.52b |
C450W+15% | 306.92a | 146.52ab | 2.98ab | 9 709.42b | 446.07b |
C450W0 | 293.04c | 143.79ab | 2.88bc | 8 809.41d | 421.54c |
C380W+15% | 290.79c | 141.24ab | 2.87bc | 8 538.79e | 410.55d |
C380W0(CK) | 275.88d | 136.42b | 2.69c | 8 004.22f | 382.19e |
表4 CO2浓度升高和降水增加共同作用对玉米生长发育指标的影响
Table 4 Effects on maize growth characteristics by elevated CO2 concentration and increased precipitation
处理 Treatment | 株高 Plant height (cm) | 穗位高 Ear height (cm) | 茎直径 Stem diameter (cm) | 叶面积 Leaf area (cm2·plant-1) | 干物质积累量 Dry matter accumulation (g·plant-1) |
---|---|---|---|---|---|
C550W+15% | 310.28a | 149.93a | 3.18a | 10 482.65a | 459.28a |
C550W0 | 302.54b | 144.86ab | 3.08ab | 9 279.68c | 441.52b |
C450W+15% | 306.92a | 146.52ab | 2.98ab | 9 709.42b | 446.07b |
C450W0 | 293.04c | 143.79ab | 2.88bc | 8 809.41d | 421.54c |
C380W+15% | 290.79c | 141.24ab | 2.87bc | 8 538.79e | 410.55d |
C380W0(CK) | 275.88d | 136.42b | 2.69c | 8 004.22f | 382.19e |
[1] |
Allen Jr LH, Kakani VG, Vu JCV, Boote KJ (2011). Elevated CO2 increases water use efficiency by sustaining photosynthesis of water-limited maize and sorghum. Journal of Plant Physiology, 168,1909-1918.
DOI URL |
[2] |
Cure JD, Acock B (1986). Crop responses to carbon dioxide doubling: a literature survey. Agricultural and Forest Meteorology, 38,127-145.
DOI URL |
[3] |
Dong LJ, Sang WG (2012). Effects of simulated warming and precipitation change on seedling emergence and growth of Quercus mongolica in Dongling Mountain, Beijing, China. Chinese Journal of Plant Ecology, 36,819-830. (in Chinese with English abstract)
DOI URL |
[ 董丽佳, 桑卫国 (2012). 模拟增温和降水变化对北京东灵山辽东栎种子出苗和幼苗生长的影响. 植物生态学报, 36,819-820.]
DOI URL |
|
[4] |
Donnelly A, Craigon J, Black CR, Colls JJ, Landon G (2001). Does elevated CO2 ameliorate the impact of O3 on chlorophyll content and photosynthesis in potato (Solanum tuberosum)? Physiologia Plantarum, 111,501-511.
DOI URL PMID |
[5] |
Easterling DR, Evans JL, Groisman PY, Karl TR, Kunkel KE, Ambenje P (2000). Observed variability and trends in extreme climate events: a brief review. Bulletin of the American Meteorological Society, 81,417-425.
DOI URL |
[6] |
Ellis RH, Craufurd PQ, Summerfield RJ, Roberts EH (1995). Linear relations between carbon dioxide concentration and rate of development towards flowering in sorghum, cowpea and soybean. Annals of Botany, 75,193-198.
DOI URL |
[7] | Ge TD, Sui FG, Bai LP, Lü YY, Zhou GS (2005). Effects of different soil Water content on the photosynthetic character and pod yields of summer maize. Journal of Shanghai Jiaotong University (Agricultural Science), 23,143-147. (in Chinese with English abstract) |
[ 葛体达, 隋方功, 白莉萍, 吕银燕, 周广胜 (2005). 不同土壤水分对玉米光合特性和产量的影响. 上海交通大学学报(农业科学版), 23,143-147.] | |
[8] |
Geissler N, Hussin S, Koyro HW (2009). Interactive effects of NaCl salinity and elevated atmospheric CO2 concentration on growth, photosynthesis, water relations and chemical composition of the potential cash crop halophyte Aster tripolium L. Environmental and Experimental Botany, 65,220-231.
DOI URL |
[9] |
Gillon J, Yakir D (2001). Influence of carbonic anhydrase activity in terrestrial vegetation on the 18O content of atmospheric CO2. Science, 291,2584-2587.
DOI URL PMID |
[10] |
Han GX, Zhou GS, Xu ZZ, Yang Y, Liu JL, Shi KQ (2007). Soil temperature and biotic factors drive the seasonal variation of soil respiration in a maize (Zea mays L.) agricultural ecosystem. Plant and Soil, 291,15-26.
DOI URL |
[11] | He DY, Wu GC, Liu Q, Zhang PL (2003). Correlation and path analysis of major agronomic character of maize. Journal of Maize Sciences, 11,58-60. (in Chinese with English abstract) |
[ 何代元, 吴广成, 刘强, 张沛力 (2003). 玉米主要农艺性状的相关通径分析. 玉米科学, 11,58-60.] | |
[12] |
Houghton RA (2001). Counting terrestrial sources and sinks of carbon. Climatic Change, 48,525-534.
DOI URL |
[13] |
Hulme M, Osborn TJ, Johns TC (1998). Precipitation sensitivity to global warming: comparison of observations with HadCM2 Simulations. Geophysical Research Letters, 25,3379-3382.
DOI URL |
[14] |
Idso KE, Idso SB (1994). Plant responses to atmospheric CO2 enrichment in the face of environmental constraints: a review of the past 10 years’ research. Agricultural and Forest Meteorology, 69,153-203.
DOI URL |
[15] | IPCC (2001). Climate Change 2001: the carbon cycle and atmospheric carbon dioxide. In: Prentice IC, Farquhar GD eds. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK. 183-237. |
[16] |
Jones PD, Hulme M (1996). Calculating regional climatic time series for temperature and precipitation: methods and illustrations. International Journal of Climatology, 16,361-377.
DOI URL |
[17] |
Kang SZ, Zhang FC, Hu XT, Zhang JH (2002). Benefits of CO2 enrichment on crop plants are modified by soil water status. Plant and Soil, 238,69-77.
DOI URL |
[18] |
Karl TR, Trenberth KE (2003). Modern global climate change. Science, 302,1719-1723.
DOI URL PMID |
[19] | Lan JH, Song XY, Xie CX, Li MS, Zhang SH, Li XH (2012). QTL analysis of 7 main ear traits in 3 environments in an elite cross of maize (Zea mays L.). Journal of Agricultural Biotechnology, 20,756-765. (in Chinese with English abstract) |
[ 兰进好, 宋希云, 谢传晓, 李明顺, 张世煌, 李新海. 玉米强优势组合7个主要穗部性状在3种环境下的QTL分析. 农业生物技术学报, 20,756-765.] | |
[20] | Leadley PW, Drake BG (1993). Open top chambers for exposing plant canopies to elevated CO2 concentration and for measuring net gas exchange. Vegetatio, 104-105. |
[21] |
Leakey ADB, Ainsworth EA, Bernacchi CJ, Rogers A, Long SP, Ort DR (2009). Elevated CO2effects on plant carbon, nitrogen, and water relations: six important lessons from FACE. Journal of Experimental Botany, 60,2859-2876.
DOI URL PMID |
[22] |
Leakey ADB, Uribelarrea M, Ainsworth EA, Naidu SL, Rogers A, Ort DR, Long SP (2006). Photosynthesis, productivity, and yield of maize are not affected by open-air elevation of CO2 concentration in the absence of drought. Plant Physiology, 140,779-790.
DOI URL PMID |
[23] | Lee JS (2011). Combined effect of elevated CO2 and temperature on the growth and phenology of two annual C3and C4 weedy species. Agriculture, Ecosystems & Environment, 140,484-491. |
[24] |
Li FS, Kang SZ, Zhang FC (2003). Effects of CO2enrichment, nitrogen and water on photosynthesis, evapotranspiration and water use efficiency of spring wheat. Chinese Journal of Applied Ecology, 14,387-393. (in Chinese with English abstract)
URL PMID |
[ 李伏生, 康绍忠, 张富仓 (2003). [CO2]、氮和水分对春小麦光合、蒸散及水分利用效率的影响. 应用生态学报, 14,387-393.]
PMID |
|
[25] | Li KR, Chen YF, Huang M, Li XB, Ye ZJ (2000). Model studies of the impacts of climate change on land cover and its feedback. Acta Geographica Sinica, 55(Suppl. 1),57-63. (in Chinese with English abstract) |
[ 李克让, 陈育峰, 黄玫, 李晓兵, 叶卓佳 (2000). 气候变化对土地覆被变化的影响及其反馈模型. 地理学报, 55(增刊1),57-63.] | |
[26] | Long SP (1991). Modification of the response of photosynthetic productivity to rising temperature by atmospheric CO2 concentrations: Has its importance been underestimated? Plant, Cell & Environment, 14,729-739. |
[27] |
Long SP, Ainsworth EA, Leakey ADB, Nösberger J, Ort DR (2006). Food for thought: lower-than-expected crop yield stimulation with rising CO2 concentrations. Science, 312,1918-1921.
DOI URL PMID |
[28] |
Manderscheid R, Burkart S, Bramm A, Weigel HJ (2003). Effect of CO2 enrichment on growth and daily radiation use efficiency of wheat in relation to temperature and growth stage. European Journal of Agronomy, 19,411-425.
DOI URL |
[29] |
Marc J, Gifford RM (1984). Floral initiation in wheat, sunflower, and sorghum under carbon dioxide enrichment. Canadian Journal of Botany, 62,9-14.
DOI URL |
[30] |
Maroco JP, Edwards GE, Ku MSB (1999). Photosynthetic acclimation of maize to growth under elevated levels of carbon dioxide. Planta, 210,115-125.
DOI URL PMID |
[31] |
Mauney JR, Fry KE, Guinn G (1978). Relationship of photosynthetic rate to growth and fruiting of cotton, soybean, sorghum, and sunflower. Crop Science, 18,259-263.
DOI URL |
[32] |
Onoda Y, Hirose T, Hikosaka K (2007). Effect of elevated CO2 levels on leaf starch, nitrogen and photosynthesis of plants growing at three natural CO2 springs in Japan. Ecological Research, 22,475-484.
DOI URL |
[33] |
Poorter H, Navas ML (2003). Plant growth and competition at elevated CO2: on winners, losers and functional groups. New Phytologist, 157,175-198.
DOI URL |
[34] | Reddy AR, Rasineni GK, Raghavendra AS (2010). The impact of global elevated CO2 concentration on photosynthesis and plant productivity. Current Science, 99,46-57. |
[35] |
Rogers A, Ainsworth EA, Leakey ADB (2009). Will elevated carbon dioxide concentration amplify the benefits of nitrogen fixation in legumes? Plant Physiology, 151,1009-1016.
DOI URL PMID |
[36] |
Samarakoon AB, Gifford RM (1995). Soil water content under plants at high CO2 concentration and interactions with the direct CO2effects: a species comparison. Journal of Biogeography, 22,193-202.
DOI URL |
[37] |
Shaw MR, Zavaleta ES, Chiariello NR, Cleland EE, Mooney HA, Field CB (2002). Grassland responses to global environmental changes suppressed by elevated CO2. Science, 298,1987-1990.]
DOI URL PMID |
[38] |
Shi YH, Zhou GS, Jiang YL, Wang H, Xu ZZ (2013). Effects of interactive CO2 concentration and precipitation on growth characteristics of Stipa breviflora. Acta Ecologica Sinica, 33,4478-4485. (in Chinese with English abstract)
DOI URL |
[ 石耀辉, 周广胜, 蒋延玲, 王慧, 许振柱 (2013). CO2浓度和降水协同作用对短花针茅生长的影响. 生态学报, 33,4478-4485.]
DOI URL |
|
[39] | Sun GC, Zhao P, Peng SL, Zeng XP (2001). Response of photosynthesis to water stress in four saplings from subtropical forests under elevated atmospheric CO2 concentration. Acta Ecologica Sinica, 21,738-746. (in Chinese with English abstract) |
[ 孙谷畴, 赵平, 彭少麟, 曾小平 (2001). 在高CO2浓度下四种亚热带幼树光合作用对水分胁迫的响应. 生态学报, 21,738-746.] | |
[40] | Tang HT, Lin Y, Ye GC, Chen WQ, Zhang B (2007). Grey correlation degree analysis on yield and main agronomic characters of maize hybrid in Sichuan Province. Journal of Maize Sciences, 15,48-52. (in Chinese with English abstract) |
[ 唐海涛, 林勇, 叶国成, 陈宛秋, 张彪 (2007). 四川省玉米杂交种综合评价及主要农艺性状的关联度分析. 玉米科学, 15,48-52.] | |
[41] | Wall GW, Garcia RL, Wechsung F, Kimball BA (2011). Elevated atmospheric CO2 and drought effects on leaf gas exchange properties of barley. Agriculture, Ecosystems & Environment, 144,390-404. |
[42] |
Wallace JS (2000). Increasing agricultural water use efficiency to meet future food production. Agriculture, Ecosystems and Environment, 82,105-119.
DOI URL |
[43] |
Wang H, Zhou GS, Jiang YL, Shi YH, Xu ZZ (2012). Interactive effects of changing precipitation and elevated CO2 concentration on photosynthetic parameters of Stipa breviflora. Chinese Journal of Plant Ecology, 36,597-606. (in Chinese with English abstract)
DOI URL |
[ 王慧, 周广胜, 蒋延玲, 石耀辉, 许振柱 (2012). 降水与CO2浓度协同作用对短花针茅光合特性的影响. 植物生态学报, 36,597-606.]
DOI URL |
|
[44] |
Wang JL, Wen XF, Zhao FH, Fang QX, Yang XM (2012). Effects of doubled CO2 concentration on leaf photosynthesis, transpiration and water use efficiency of eight crop species. Chinese Journal of Plant Ecology, 36,438-446. (in Chinese with English abstract)
DOI URL |
[ 王建林, 温学发, 赵风华, 房全孝, 杨新民 (2012). CO2浓度倍增对8种作物叶片光合作用、蒸腾作用和水分利用效率的影响. 植物生态学报, 36,438-446.]
DOI URL |
|
[45] | Wang XL, Xu SH, Liang H (1998). The experimental study of the effects of CO2concentration enrichment on growth, development and yield of C3 and C4 crops. Scientia Agricultura Sinica, 31,55-61. (in Chinese with English abstract) |
[ 王修兰, 徐师华, 梁红 (1998). CO2浓度增加对C3、C4作物生育和产量影响的试验研究. 中国农业科学, 31,55-61.] | |
[46] | Wu JD, Wang SL, Zhang JM (2000). A numerical simulation of the impacts of climate change on water and thermal resources in northeast China. Resources Science, 22(6),36-42. (in Chinese with English abstract) |
[ 吴金栋, 王石立, 张建敏 (2000). 未来气候变化对中国东北地区水热条件影响的数值模拟研究. 资源科学, 22(6),36-42.] | |
[47] |
Xu ZZ, Shimizu H, Ito S, Yagasaki Y, Zou CJ, Zhou G, Zheng Y (2014). Effects of elevated CO2, warming and precipitation change on plant growth, photosynthesis and peroxidation in dominant species from North China grassland. Planta, 239,421-435.
DOI URL PMID |
[48] | Yang JH, Mao JC, Li FM, Ran LG, Liu J, Liu SY (2003). Correclation and path analysis on agronomic traits and kernal yield of maize hybrids. Chinese Agricultural Science Bulletin, 19(4),28-30. (in Chinese with English abstract) |
[ 杨金慧, 毛建昌, 李发民, 冉隆贵, 刘健, 刘淑云 (2003). 玉米杂交种农艺性状与籽粒产量的相关和通径分析. 中国农学通报, 19(4),28-30.] | |
[49] | Zhang Q, Zou XK, Xiao FJ, Lu HQ, Liu HB, Zhu CH, An SQ (2006) GB/T20481-2006, Classification of Meteorological Drought. Standardization Press of China, Beijing. (in Chinese) |
[ 张强, 邹旭凯, 肖风劲, 吕厚荃, 刘海波, 祝昌汉, 安顺清 (2006). GB/T20481-2006, 气象干旱等级. 中国标准出版社, 北京.] | |
[50] | Ziska L (2013). Observed changes in soyabean growth and seed yield from Abutilon theophrasti competition as a function of carbon dioxide concentration. Weed Research, 53,140-145. |
[51] | Ziska LH, Bunce JA (1997). Influence of increasing carbon dioxide concentration on the photosynthetic and growth stimulation of selected C4 crops and weeds. Photosynthesis Research, 54,199-208. |
[1] | 程可心, 杜尧, 李凯航, 王浩臣, 杨艳, 金一, 何晓青. 玉米与叶际微生物组的互作遗传机制[J]. 植物生态学报, 2024, 48(2): 215-228. |
[2] | 刘建新, 刘瑞瑞, 刘秀丽, 贾海燕, 卜婷, 李娜. 外源硫化氢对盐碱胁迫下裸燕麦光合碳代谢的调控[J]. 植物生态学报, 2023, 47(3): 374-388. |
[3] | 熊淑萍, 曹文博, 曹锐, 张志勇, 付新露, 徐赛俊, 潘虎强, 王小纯, 马新明. 水平结构配置对冬小麦冠层垂直结构、微环境及产量的影响[J]. 植物生态学报, 2022, 46(2): 188-196. |
[4] | 孙浩哲, 王襄平, 张树斌, 吴鹏, 杨蕾. 阔叶红松林不同演替阶段凋落物产量及其稳定性的影响因素[J]. 植物生态学报, 2021, 45(6): 594-605. |
[5] | 冯兆忠, 李品, 张国友, 李征珍, 平琴, 彭金龙, 刘硕. 二氧化碳浓度升高对陆地生态系统的影响: 问题与展望[J]. 植物生态学报, 2020, 44(5): 461-474. |
[6] | 刘雪飞, 吴林, 王涵, 洪柳, 熊莉军. 鄂西南亚高山湿地泥炭藓的生长与分解[J]. 植物生态学报, 2020, 44(3): 228-235. |
[7] | 温超,单玉梅,晔薷罕,张璞进,木兰,常虹,任婷婷,陈世苹,白永飞,黄建辉,孙海莲. 氮和水分添加对内蒙古荒漠草原放牧生态系统土壤呼吸的影响[J]. 植物生态学报, 2020, 44(1): 80-92. |
[8] | 刘璐, 赵常明, 徐文婷, 申国珍, 谢宗强. 神农架常绿落叶阔叶混交林凋落物动态及影响因素[J]. 植物生态学报, 2018, 42(6): 619-628. |
[9] | 张鑫, 邢亚娟, 闫国永, 王庆贵. 细根对降水变化响应的meta分析[J]. 植物生态学报, 2018, 42(2): 164-172. |
[10] | 李义博, 宋贺, 周莉, 许振柱, 周广胜. C4植物玉米的光合-光响应曲线模拟研究[J]. 植物生态学报, 2017, 41(12): 1289-1300. |
[11] | 郑成岩, 邓艾兴, LATIFMANESHHojatollah, 宋振伟, 张俊, 王利, 张卫建. 增温对青藏高原冬小麦干物质积累转运及氮吸收利用的影响[J]. 植物生态学报, 2017, 41(10): 1060-1068. |
[12] | 王丹, 乔匀周, 董宝娣, 葛静, 杨萍果, 刘孟雨. 昼夜不对称性与对称性升温对大豆产量和水分利用的影响[J]. 植物生态学报, 2016, 40(8): 827-833. |
[13] | 赵文赛, 孙永林, 刘西平. 干旱-复水-再干旱处理对玉米光合能力和生长的影响[J]. 植物生态学报, 2016, 40(6): 594-603. |
[14] | 邹长明, 王允青, 刘英, 张晓红, 唐杉. 四种豆科作物的光合生理和生长发育对弱光的响应[J]. 植物生态学报, 2015, 39(9): 909-916. |
[15] | 孟德云, 侯林琳, 杨莎, 孟静静, 郭峰, 李新国, 万书波. 外源多胺对盆栽花生盐胁迫的缓解作用[J]. 植物生态学报, 2015, 39(12): 1209-1215. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19