植物生态学报 ›› 2017, Vol. 41 ›› Issue (10): 1060-1068.DOI: 10.17521/cjpe.2017.0021
所属专题: 青藏高原植物生态学:生理生态学
郑成岩1, 邓艾兴1, LATIFMANESHHojatollah1, 宋振伟1, 张俊1, 王利2, 张卫建1,*()
出版日期:
2017-10-10
发布日期:
2017-12-24
通讯作者:
张卫建
基金资助:
Cheng-Yan ZHENG1, Ai-Xing DENG1, Hojatollah LATIFMANESH1, Zhen-Wei SONG1, Jun ZHANG1, Li WANG2, Wei-Jian ZHANG1,*()
Online:
2017-10-10
Published:
2017-12-24
Contact:
Wei-Jian ZHANG
摘要:
青藏高原是气候变化的敏感区, 该区域作物生产受气候变暖的影响较大, 但至今仍缺乏相关的田间实证研究。探讨青藏高原作物生长发育对气候变暖的响应特征, 对该区域作物生产技术的创新具有重要意义。该研究以高产优质冬小麦(Triticum aestivum)品种‘山冬6号’为试验材料, 在拉萨市农业科学研究所科研基地进行田间远红外增温试验, 研究了日平均气温升高1.1 ℃对冬小麦物质分配和转运的影响。研究表明: 增温处理下, 播种至开花阶段群体水平的干物质积累速率、籽粒干物质分配比例和开花前贮藏同化物转运量对籽粒产量的贡献率分别比对照提高了27.5%、5.6%和68.6%, 但是开花至成熟期群体水平的干物质积累速率和籽粒干物质分配量无显著差异; 增温提高了冬小麦的氮积累能力, 成熟期氮向籽粒的分配比例及开花期营养器官中贮存的氮向籽粒的转运率均高于对照处理, 分别高6.0%和5.5%; 与对照相比, 增温处理的收获指数无显著差异, 但籽粒产量、氮吸收效率、氮肥偏生产力和氮收获指数均显著高于对照。该试验预期升温1.1 ℃将促进高海拔地区冬小麦干物质向籽粒分配和转运, 有利于冬小麦高产和氮高效利用。
郑成岩, 邓艾兴, LATIFMANESHHojatollah, 宋振伟, 张俊, 王利, 张卫建. 增温对青藏高原冬小麦干物质积累转运及氮吸收利用的影响. 植物生态学报, 2017, 41(10): 1060-1068. DOI: 10.17521/cjpe.2017.0021
Cheng-Yan ZHENG, Ai-Xing DENG, Hojatollah LATIFMANESH, Zhen-Wei SONG, Jun ZHANG, Li WANG, Wei-Jian ZHANG. Warming impacts on the dry matter accumulation, and translocation and nitrogen uptake and utilization of winter wheat on the Qinghai-Xizang Plateau. Chinese Journal of Plant Ecology, 2017, 41(10): 1060-1068. DOI: 10.17521/cjpe.2017.0021
图2 灌浆期冬小麦冠层温度日变化(A)和土壤5 cm深处温度日变化(B)。
Fig. 2 Diurnal variations of temperatures on winter wheat canopy (A) and in soil layer of 5 cm (B) at filling stage.
处理 Treatment | 籽粒 Grain | 穗轴+颖壳 Spike axis + glume | 叶片 Leaf | 茎秆+叶鞘 Stem + sheath | ||||
---|---|---|---|---|---|---|---|---|
分配量 Distribution amount (g·stem-1) | 分配比例 Distribution ratio (%) | 分配量 Distribution amount (g·stem-1) | 分配比例 Distribution ratio (%) | 分配量 Distribution amount (g·stem-1) | 分配比例 Distribution ratio (%) | 分配量 Distribution amount (g·stem-1) | 分配比例 Distribution ratio (%) | |
不增温 Non-warmed | 2.59 ± 0.04a | 42.88 ± 0.45b | 0.64 ± 0.02a | 10.53 ± 0.40a | 0.27 ± 0.01a | 4.49 ± 0.08a | 2.54 ± 0.05a | 42.09 ± 0.27a |
增温 Warmed | 2.33 ± 0.05a | 45.28 ± 0.08a | 0.56 ± 0.02a | 10.98 ± 0.36a | 0.21 ± 0.01a | 4.09 ± 0.30a | 2.04 ± 0.04b | 39.65 ± 0.10b |
表1 冬小麦成熟期干物质在不同器官中的分配对全天增温的响应(平均值±标准误差)
Table 1 Responses of dry matter partition among different winter wheat organs at maturity to all-day warming (mean ± SE)
处理 Treatment | 籽粒 Grain | 穗轴+颖壳 Spike axis + glume | 叶片 Leaf | 茎秆+叶鞘 Stem + sheath | ||||
---|---|---|---|---|---|---|---|---|
分配量 Distribution amount (g·stem-1) | 分配比例 Distribution ratio (%) | 分配量 Distribution amount (g·stem-1) | 分配比例 Distribution ratio (%) | 分配量 Distribution amount (g·stem-1) | 分配比例 Distribution ratio (%) | 分配量 Distribution amount (g·stem-1) | 分配比例 Distribution ratio (%) | |
不增温 Non-warmed | 2.59 ± 0.04a | 42.88 ± 0.45b | 0.64 ± 0.02a | 10.53 ± 0.40a | 0.27 ± 0.01a | 4.49 ± 0.08a | 2.54 ± 0.05a | 42.09 ± 0.27a |
增温 Warmed | 2.33 ± 0.05a | 45.28 ± 0.08a | 0.56 ± 0.02a | 10.98 ± 0.36a | 0.21 ± 0.01a | 4.09 ± 0.30a | 2.04 ± 0.04b | 39.65 ± 0.10b |
处理 Treatment | 籽粒 Grain | 穗轴+颖壳 Spike axis + glume | 叶片 Leaf | 茎秆+叶鞘 Stem + sheath | ||||
---|---|---|---|---|---|---|---|---|
分配量 Distribution amount (g·stem-1) | 分配比例 Distribution ratio (%) | 分配量 Distribution amount (g·stem-1) | 分配比例 Distribution ratio (%) | 分配量 Distribution amount (g·stem-1) | 分配比例 Distribution ratio (%) | 分配量 Distribution amount (g·stem-1) | 分配比例 Distribution ratio (%) | |
不增温 Non-warmed | 56.34 ± 0.76a | 73.26 ± 0.63b | 4.62 ± 0.25a | 6.01 ± 0.35a | 2.88 ± 0.11a | 3.75 ± 0.12a | 13.05 ± 0.26a | 16.98 ± 0.40a |
增温 Warmed | 55.18 ± 0.55a | 77.68 ± 0.27a | 4.31 ± 0.18a | 6.07 ± 0.29a | 1.88 ± 0.14a | 2.65 ± 0.19a | 9.66 ± 0.13b | 13.60 ± 0.20b |
表2 冬小麦成熟期氮在不同器官中的分配对全天增温的响应(平均值±标准误差)
Table 2 Responses of plant nitrogen partition among winter wheat organs at maturity to all-day warming (mean ± SE)
处理 Treatment | 籽粒 Grain | 穗轴+颖壳 Spike axis + glume | 叶片 Leaf | 茎秆+叶鞘 Stem + sheath | ||||
---|---|---|---|---|---|---|---|---|
分配量 Distribution amount (g·stem-1) | 分配比例 Distribution ratio (%) | 分配量 Distribution amount (g·stem-1) | 分配比例 Distribution ratio (%) | 分配量 Distribution amount (g·stem-1) | 分配比例 Distribution ratio (%) | 分配量 Distribution amount (g·stem-1) | 分配比例 Distribution ratio (%) | |
不增温 Non-warmed | 56.34 ± 0.76a | 73.26 ± 0.63b | 4.62 ± 0.25a | 6.01 ± 0.35a | 2.88 ± 0.11a | 3.75 ± 0.12a | 13.05 ± 0.26a | 16.98 ± 0.40a |
增温 Warmed | 55.18 ± 0.55a | 77.68 ± 0.27a | 4.31 ± 0.18a | 6.07 ± 0.29a | 1.88 ± 0.14a | 2.65 ± 0.19a | 9.66 ± 0.13b | 13.60 ± 0.20b |
处理 Treatment | 不增温 Non-warmed | 增温 Warmed |
---|---|---|
营养器官花前贮藏同化物转运量 DMTA (kg·hm-2) | 1 164.95 ± 48.69b | 2 126.69 ± 129.66a |
开花前贮藏同化物转运率 DMTR (%) | 8.51 ± 0.52b | 12.96 ± 0.91a |
开花前贮藏同化物转运量对籽粒 贡献率 CDMTAAG (%) | 13.29 ± 0.93b | 22.40 ± 1.67a |
开花后同化物积累输入籽粒量 DMAAA (kg·hm-2) | 7 635.10 ± 293.44a | 7 390.02 ± 309.59a |
开花后同化量对籽粒贡献率 CDMAAAG (%) | 86.71 ± 0.93a | 77.60 ± 1.67b |
表3 开花后营养器官干物质向籽粒的转运量和开花后积累量对全天增温的响应(平均值±标准误差)
Table 3 Responses of dry matter translocation amount from vegetative organs to grain and dry matter accumulation amount after anthesis to all-day warming (mean ± SE)
处理 Treatment | 不增温 Non-warmed | 增温 Warmed |
---|---|---|
营养器官花前贮藏同化物转运量 DMTA (kg·hm-2) | 1 164.95 ± 48.69b | 2 126.69 ± 129.66a |
开花前贮藏同化物转运率 DMTR (%) | 8.51 ± 0.52b | 12.96 ± 0.91a |
开花前贮藏同化物转运量对籽粒 贡献率 CDMTAAG (%) | 13.29 ± 0.93b | 22.40 ± 1.67a |
开花后同化物积累输入籽粒量 DMAAA (kg·hm-2) | 7 635.10 ± 293.44a | 7 390.02 ± 309.59a |
开花后同化量对籽粒贡献率 CDMAAAG (%) | 86.71 ± 0.93a | 77.60 ± 1.67b |
处理 Treatment | 不增温 Non-warmed | 增温 Warmed |
---|---|---|
营养器官氮转运量 NTA (kg·hm-2) | 149.92 ± 3.37b | 180.79 ± 2.24a |
营养器官氮转运率 TE (%) | 67.34 ± 0.77b | 71.07 ± 0.31a |
开花前转运量对籽粒贡献率 CP (%) | 75.24 ± 0.69a | 70.61 ± 0.26b |
开花后氮积累量 NAA (kg·hm-2) | 49.37 ± 2.08b | 75.24 ± 0.94a |
开花后积累量对籽粒贡献率 CPNAA (%) | 24.76 ± 0.69b | 29.39 ± 0.26a |
表4 开花后营养器官氮向籽粒的转运量和开花后积累量对全天增温的响应(平均值±标准误差)
Table 4 Responses of plant nitrogen translocation amount from vegetative organs to grain and plant nitrogen accumulation amount after anthesis to all-day warming (mean ± SE)
处理 Treatment | 不增温 Non-warmed | 增温 Warmed |
---|---|---|
营养器官氮转运量 NTA (kg·hm-2) | 149.92 ± 3.37b | 180.79 ± 2.24a |
营养器官氮转运率 TE (%) | 67.34 ± 0.77b | 71.07 ± 0.31a |
开花前转运量对籽粒贡献率 CP (%) | 75.24 ± 0.69a | 70.61 ± 0.26b |
开花后氮积累量 NAA (kg·hm-2) | 49.37 ± 2.08b | 75.24 ± 0.94a |
开花后积累量对籽粒贡献率 CPNAA (%) | 24.76 ± 0.69b | 29.39 ± 0.26a |
处理 Treatment | 籽粒产量 Grain yield (kg·hm-2) | 收获指数 Harvest index (%) | 氮吸收效率 NUE (kg·kg-1) | 氮肥偏生产力 NPFP (kg·kg-1) | 氮收获指数 NHI (%) |
---|---|---|---|---|---|
不增温 Non-warmed | 8 800.04 ± 246.65b | 41.22 ± 0.54a | 1.30 ± 0.02b | 41.91 ± 1.17b | 73.26 ± 0.63b |
增温 Warmed | 9 516.71 ± 220.48a | 39.94 ± 0.67a | 1.57 ± 0.01a | 45.32 ± 1.05a | 77.68 ± 0.27a |
表5 冬小麦籽粒产量和氮素利用效率对全天增温的响应(平均值±标准误差)
Table 5 Responses of grain yield and nitrogen use efficiency of winter wheat to all-day warming (mean ± SE)
处理 Treatment | 籽粒产量 Grain yield (kg·hm-2) | 收获指数 Harvest index (%) | 氮吸收效率 NUE (kg·kg-1) | 氮肥偏生产力 NPFP (kg·kg-1) | 氮收获指数 NHI (%) |
---|---|---|---|---|---|
不增温 Non-warmed | 8 800.04 ± 246.65b | 41.22 ± 0.54a | 1.30 ± 0.02b | 41.91 ± 1.17b | 73.26 ± 0.63b |
增温 Warmed | 9 516.71 ± 220.48a | 39.94 ± 0.67a | 1.57 ± 0.01a | 45.32 ± 1.05a | 77.68 ± 0.27a |
图3 冬小麦不同发育阶段地上部干物质积累速率(A和B)和氮积累速率(C和D)对全天增温的响应(平均值±标准误差)。 DMA, 干物质积累; NA, 氮积累。不同小写字母表示差异达5%显著水平。
Fig. 3 Responses of dry matter accumulation rate (A and B) and nitrogen accumulation rate (C and D) during different developmental stage to all-day warming in winter wheat (mean ± SE). DMA, dry matter accumulation; NA, nitrogen accumulation. Different lowercase letters in the figure are significant at 5% level.
[1] |
Aronson EL, McNulty SG (2009). Appropriate experimental ecosystem warming methods by ecosystem, objective, and practicality.Agricultural and Forest Meteorology, 149, 1791-1799.
DOI URL |
[2] |
Badeck FW, Bondeau A, B?ttcher K, Doktor D, Lucht W, Schaber J, Sitch S (2004). Responses of spring phenology to climate change.New Phytologist, 162, 295-309.
DOI URL |
[3] |
Chen DD (2012). Effects of Different Day and Night Temperature Enhancement After Anthesis on Quality and Physiological Mechanism of Wheat Under Free Air Controlled Condition. Master degree dissertation, Nanjing Agricultural University, Nanjing.(in Chinese with English abstract)[陈丹丹 (2012). 花后开放式增温对小麦品质的影响及其生理机制. 硕士研究论文, 南京农业大学, 南京.]
DOI URL |
[4] |
Chen J, Tian YL, Zhang X, Zheng CY, Song ZW, Deng AX, Zhang WJ (2014). Nighttime warming will increase winter wheat yield through improving plant development and grain growth in North China.Journal of Plant Growth Regulation, 33, 397-407.
DOI URL |
[5] |
Chen XY, Luo YP (2001). Study on the compensatory effect of rewatering during the flowering stage after previous water stress in winter wheat.Acta Agronomica Sinica, 27, 513-516. (in Chinese with English abstract)[陈晓远, 罗远培 (2001). 开花期复水对受旱冬小麦的补偿效应研究. 作物学报, 27, 513-516.]
DOI URL |
[6] |
Ding YH, Ren GY, Shi GY, Gong P, Zheng XH, Zhai PM, Zhang DE, Zhao ZC, Wang SW, Wang HJ, Luo Y, Chen DL, Gao XJ, Dai XS (2006). National assessment report of climate change (I). Climate change in China and its future trend.Advances in Climate Change Research, 2(1), 3-8. (in Chinese with English abstract)[丁一汇, 任国玉, 石广玉, 宫鹏, 郑循华, 翟盘茂, 张德二, 赵宗慈, 王绍武, 王会军, 罗勇, 陈德亮, 高学杰, 戴晓苏 (2006). 气候变化国家评估报告(I): 中国气候变化的历史和未来趋势. 气候变化研究进展, 2(1), 3-8.]
DOI URL |
[7] |
Ercoli L, Lulli L, Mariotti M, Masoni A, Arduini I (2008). Post-anthesis dry matter and nitrogen dynamics in durum wheat as affected by nitrogen supply and soil water availability.European Journal of Agronomy, 28, 138-147.
DOI URL |
[8] | Fang SB, Tan KY, Ren SX, Zhang XS, Zhao JF (2012).Field experiments in North China show no decrease in winter wheat yields with night temperature increased by 2.0-2.5 °C.Science China Earth Sciences, 55, 1021-1027. |
[9] |
Gebbing T, Schnyder H, Kühbauch W (1998). Carbon mobilization in shoot parts and roots of wheat during grain filling: Assessment by 13C/12C steady-state labelling, growth analysis and balance sheets of reserves.Plant, Cell & Environment, 21, 301-313.
DOI URL |
[10] | IPCC (Intergovernmental Panel on Climate Change) (2014). Working group I contribution to the fifth assessment report of the intergovernmental panel on climate change. In: Stocker TF, Qin DH, Plattner G, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM eds. Climate Change in 2013: The Physical Science Basis. Cambridge University Press,Cambridge, UK. |
[11] |
Jiang D, Xie ZJ, Cao WX, Dai TB, Jing Q (2004).Effects of post-anthesis drought and water-logging on photosynthetic characteristics, assimilates transportation in winter wheat.Acta Agronomica Sinica, 30, 175-182. (in Chinese with English abstract)[姜东, 谢祝捷, 曹卫星, 戴廷波, 荆奇 (2004). 花后干旱和渍水对冬小麦光合特性和物质运转的影响. 作物学报, 30, 175-182.]
DOI URL |
[12] | Jiang LG, Dai TB, Jiang D, Cao WX, Gan XQ, Wei SQ (2004). Charactering physiological N-use efficiency as influenced by nitrogen management in three rice cultivars.Field Crops Research, 88, 239-250. |
[13] |
Liao JX, Wang GX (2000). The effects of increasing CO2, temperature and drought on the chemical composition of wheat leaves.Acta Phytoecologica Sinica, 24, 744-747. (in Chinese with English abstract)[廖建雄, 王根轩 (2000). CO2和温度升高及干旱对小麦叶片化学成分的影响. 植物生态学报, 24, 744-747.]
DOI URL |
[14] |
Lobell DB, Schlenker W, Costa-Roberts J (2011). Climate trends and global crop production since 1980.Science, 333, 616-620.
DOI URL PMID |
[15] |
Mu HR, Jiang D, Dai TB, Jing Q, Cao WX (2008). Effect of shading on photosynthesis and chlorophyll fluorescence characters in wheat flag leaves. Scientia Agricultura Sinica, 41, 599-606. ( in Chinese with English abstract)[牟会荣, 姜东, 戴廷波, 荆奇, 曹卫星 (2008). 遮荫对小麦旗叶光合及叶绿素荧光特性的影响. 中国农业科学, 41, 599-606.]
DOI URL |
[16] |
Nijs I, Kockelbergh F, Teughels H, Blum H, Hendrey G, Impens I (1996). Free air temperature increase (FATI): A new tool to study global warming effects on plants in the field.Plant, Cell & Environment, 19, 495-502.
DOI URL |
[17] | Ntanos DA, Koutroubas SD (2002). Dry matter and N accumulation and translocation for indica and japonica rice under Mediterranean conditions. Field Crops Research, 74, 93-101. |
[18] |
Pepin NR, Bradley S, Diaz HF, Baraer M, Caceres EB, Forsythe N, Fowler H, Greenwood G, Hashmi MZ, Liu XD, Miller JR, Ning L, Ohmura A, Palazzi E, Rangwala I, Sch?ner W, Severskiy I, Shahgedanova M, Wang MB, Williamson SN, Yang DQ (2015). Elevation-dependent warming in mountain regions of the world.Nature Climate Change, 5, 424-430.
DOI URL |
[19] |
Sadras VO, Monzon JP (2006). Modelled wheat phenology captures rising temperature trends: Shortened time to flowering and maturity in Australia and Argentina.Field Crops Research, 99, 136-146.
DOI URL |
[20] |
Shen KY, Xu MF (2012). On the rapid development of Tibet’s characteristic agriculture under climate change.Journal of Tibet University, 27(2), 32-39. (in Chinese with English abstract)[沈开艳, 徐美芳 (2012). 气候变化条件下的西藏特色农业跨越式发展研究. 西藏大学学报, 27(2), 32-39.]
DOI URL |
[21] |
Shi JJ, Jiang XD, Shi HB, Chen YJ, Yuan JK, Jiang M (2015). Effects of winter warming treatments on photosynthesis and yield of wheat.Journal of Triticeae Crops, 35, 352-356. (in Chinese with English abstract)[石姣姣, 江晓东, 史宏斌, 陈元珺, 袁久坤, 姜鸣 (2015). 冬季增温对田间小麦光合作用及产量的影响. 麦类作物学报, 35, 352-356.]
DOI URL |
[22] |
Sommer R, Glazirina M, Yuldashev T, Otarov A, Ibraeva M, Martynova L, Bekenov M, Kholov B, Ibragimov N, Kobilov R, Karaev S, Sultonov M, Khasanova F, Esanbekov M, Mavlyanov D, Isaev S, Abdurahimov S, Ikramov R, Shezdyukova L, de Pauw E (2013). Impact of climate change on wheat productivity in Central Asia.Agriculture Ecosystems Environment, 178, 78-99.
DOI URL |
[23] | Stevens WB, Hoeft RG, Mulvaney RL (2005). Fate of nitrogen-15 in a long-term nitrogen rate study II. Nitrogen uptake efficiency.Agronomy Journal, 97, 1046-1053. |
[24] |
Tahir ISA, Nakata N (2005). Remobilization of nitrogen and carbohydrate from stems of bread wheat in response to heat stress during grain filling.Journal of Agronomy and Crop Science, 191, 106-115.
DOI URL |
[25] | Tian YL, Chen J, Chen CQ, Deng AX, Song ZW, Zheng CY, Hoogmoed W, Zhang WJ (2012). Warming impacts on winter wheat phenophase and grain yield under ?eld conditions in Yangtze Delta Plain, China.Field Crops Research, 134, 193-199. |
[26] |
Tian YL, Zheng CY, Chen J, Chen CQ, Deng AX, Song ZW, Zhang BM, Zhang WJ (2014). Climatic warming increases winter wheat yield but reduces grain nitrogen concentration in East China.PLOS ONE, 9, e95108. doi: 10.1371/journal.pone.0095108.
DOI URL PMID |
[27] | Wang YF, Yu ZW, Li SX, Yu SL (2003). Effects of soil fertility and nitrogen application rate on nitrogen absorption and translocation, grain yield, and grain protein content of wheat.Chinese Journal of Applied Ecology, 14, 1868-1872. (in Chinese with English abstract)[王月福, 于振文, 李尚霞, 余松烈 (2003). 土壤肥力和施氮量对小麦氮吸收运转及籽粒产量和蛋白质含量的影响. 应用生态学报, 14, 1868-1872.] |
[28] | Xiao GJ, Zhang Q, Zhang FJ, Luo CK, Wang RY (2011). The impact of rising temperature on spring wheat production in the Yellow River irrigation region of Ningxia.Acta Ecologica Sinica, 31, 6588-6593. (in Chinese with English abstract)[肖国举, 张强, 张峰举, 罗成科, 王润元 (2011). 增温对宁夏引黄灌区春小麦生产的影响. 生态学报, 31, 6588-6593.] |
[29] |
Xu FX, Xiong H, Xie R, Zhang L, Zhu YC, Guo XY, Yang DJ, Zhou XB, Liu M (2009). Advance of rice fertilizer- nitrogen use efficiency.Plant Nutrition and Fertilizer Science, 15, 1215-1225. (in Chinese with English abstract)[徐富贤, 熊洪, 谢戎, 张林, 朱永川, 郭晓艺, 杨大金, 周兴兵, 刘茂 (2009). 水稻氮利用效率的研究进展及其动向. 植物营养与肥料学报, 15, 1215-1225.]
DOI URL |
[30] | Yang JC, Zhang JH, Huang ZL, Zhu Q, Wang L (2000). Remobilization of carbon reserves is improved by controlled soil-drying during grain filling of wheat.Crop Science, 40, 1645-1655. |
[31] |
You LZ, Rosegrant MW, Wood S, Sun DS (2009). Impact of growing season temperature on wheat productivity in China.Agricultural and Forest Meteorology, 149, 1009-1014.
DOI URL |
[32] |
Zhang K, Wang RY, Feng Q, Wang HL, Zhao H, Zhao FN, Yang FL, Lei J (2015). Effects of simulated warming and precipitation change on growth characteristics and grain yield of spring wheat in semi-arid area.Transactions of the CSAE, 31(Supp.1), 161-170. (in Chinese with English abstract)[张凯, 王润元, 冯起, 王鹤龄, 赵鸿, 赵福年, 阳伏林, 雷俊 (2015). 模拟增温和降水变化对半干旱区春小麦生长及产量的影响. 农业工程学报, 31(增刊1), 161-170.]
DOI URL |
[33] | Zhang K, Wang RY, Wang HL, Zhao H, Qi Y, Zhao FN, Lei J (2016). Effects of simulated warming on dry matter production and distribution of rainfed spring wheat in semi-arid area.Transactions of the CSAE, 32, 223-232. (in Chinese with English abstract)[张凯, 王润元, 王鹤龄, 赵鸿, 齐月, 赵福年, 雷俊 (2016). 模拟增温对半干旱雨养区春小麦物质生产与分配的影响. 农业工程学报, 32, 223-232.] |
[34] | Zheng CY, Chen CQ, Zhang X, Song ZW, Deng AX, Zhang BM, Wang L, Mao NW, Zhang WJ (2016). Actual impacts of global warming on winter wheat yield in Eastern Himalayas.International Journal of Plant Production, 10, 159-174. |
[1] | 陈以恒 玉素甫江·如素力 阿卜杜热合曼·吾斯曼. 2001-2020年天山新疆段草地植被覆盖度时空变化及驱动因素分析[J]. 植物生态学报, 2024, 48(5): 561-576. |
[2] | 张计深, 史新杰, 刘宇诺, 吴阳, 彭守璋. 气候变化下中国潜在自然植被生态系统碳储量动态[J]. 植物生态学报, 2024, 48(4): 428-444. |
[3] | 臧妙涵, 王传宽, 梁逸娴, 刘逸潇, 上官虹玉, 全先奎. 基于纬度移栽的落叶松叶、枝、根生态化学计量特征对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 469-482. |
[4] | 梁逸娴, 王传宽, 臧妙涵, 上官虹玉, 刘逸潇, 全先奎. 落叶松径向生长和生物量分配对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 459-468. |
[5] | 吴茹茹, 刘美珍, 谷仙, 常馨月, 郭立月, 蒋高明, 祁如意. 气候变化对巨柏适宜生境分布的潜在影响和预测[J]. 植物生态学报, 2024, 48(4): 445-458. |
[6] | 杨宇萌, 来全, 刘心怡. 气候变化和人类活动对内蒙古植被总初级生产力的定量影响[J]. 植物生态学报, 2024, 48(3): 306-316. |
[7] | 张启, 程雪寒, 王树芝. 北京西山老龄树记载的森林干扰历史[J]. 植物生态学报, 2024, 48(3): 341-348. |
[8] | 耿雪琪, 唐亚坤, 王丽娜, 邓旭, 张泽凌, 周莹. 氮添加增加中国陆生植物生物量并降低其氮利用效率[J]. 植物生态学报, 2024, 48(2): 147-157. |
[9] | 任培鑫, 李鹏, 彭长辉, 周晓路, 杨铭霞. 洞庭湖流域植被光合物候的时空变化及其对气候变化的响应[J]. 植物生态学报, 2023, 47(3): 319-330. |
[10] | 冯旭飞, 雷长英, 张玉洁, 向导, 杨明凤, 张旺锋, 张亚黎. 棉花花铃期叶片氮分配对光合氮利用效率的影响[J]. 植物生态学报, 2023, 47(11): 1600-1610. |
[11] | 李杰, 郝珉辉, 范春雨, 张春雨, 赵秀海. 东北温带森林树种和功能多样性对生态系统多功能性的影响[J]. 植物生态学报, 2023, 47(11): 1507-1522. |
[12] | 魏瑶, 马志远, 周佳颖, 张振华. 模拟增温改变青藏高原植物繁殖物候及植株高度[J]. 植物生态学报, 2022, 46(9): 995-1004. |
[13] | 党宏忠, 张学利, 韩辉, 石长春, 葛玉祥, 马全林, 陈帅, 刘春颖. 樟子松固沙林林水关系研究进展及对营林实践的指导[J]. 植物生态学报, 2022, 46(9): 971-983. |
[14] | 李肖, PIALUANG Bounthong, 康文辉, 冀晓东, 张海江, 薛治国, 张志强. 近几十年来冀西北山地白桦次生林径向生长对气候变化的响应[J]. 植物生态学报, 2022, 46(8): 919-931. |
[15] | 苏启陶, 杜志喧, 周兵, 廖永辉, 王呈呈, 肖宜安. 牯岭凤仙花及其传粉昆虫在中国的潜在分布区域分析[J]. 植物生态学报, 2022, 46(7): 785-796. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19