植物生态学报 ›› 2014, Vol. 38 ›› Issue (10): 1053-1063.DOI: 10.3724/SP.J.1258.2014.00099
龙凤玲1,2, 李义勇1,2, 方熊1,2, 黄文娟1,2, 刘双娥1,2, 刘菊秀1,*()
收稿日期:
2014-03-04
接受日期:
2014-07-28
出版日期:
2014-03-04
发布日期:
2021-04-20
通讯作者:
刘菊秀
作者简介:
* E-mail: ljxiu@scbg.ac.cn基金资助:
LONG Feng-Ling1,2, LI Yi-Yong1,2, FANG Xiong1,2, HUANG Wen-Juan1,2, LIU Shuang-E1,2, LIU Ju-Xiu1,*()
Received:
2014-03-04
Accepted:
2014-07-28
Online:
2014-03-04
Published:
2021-04-20
Contact:
LIU Ju-Xiu
摘要:
大气CO2浓度升高和氮(N)添加对土壤碳库的影响是当前国际生态学界关注的一个热点。为阐述土壤不同形态有机碳的抗干扰能力, 运用大型开顶箱, 研究了4种处理((1)高CO2浓度(700 µmol·mol-1)和高氮添加(100 kg N·hm-2·a-1) (CN); (2)高CO2浓度和背景氮添加(CC); (3)高氮添加和背景CO2浓度(NN); (4)背景CO2和背景氮添加(CK))对南亚热带模拟森林生态系统土壤有机碳库稳定性的影响。近5年的试验研究表明: (1) CN处理能明显地促进各土层中土壤总有机碳含量的增加, 其中, 下层土壤(5-60 cm土层)中的响应达到统计学水平。(2)活性有机碳库各组分对处理的响应有所差异: 不同土层中微生物生物量碳(MBC)的含量对各处理的响应趋势基本一致, 各土层中的MBC含量均为CN > CC > NN > CK, 其中0-5 cm、5-10 cm、10-20 cm 3个土层的处理间差异都达到了显著水平; 10-20 cm与20-40 cm两个土层中的易氧化有机碳处理间有显著差异; 而对于各土层中水溶性有机碳, 处理间差异均不明显。(3)各团聚体组分中的有机碳含量的响应也有所差异: 20-40 cm与40-60 cm土层中250-2000 μm组分的有机碳含量存在处理间差异; 40-60 cm土层中53-250 μm组分的有机碳对各处理响应敏感, CC处理和NN处理都有利于该组分碳的深层积累, 尤其CN处理下的效果最为明显; 在各处理10-20 cm、20-40 cm及40-60 cm土壤中, < 53 μm组分中的碳含量间差异显著。大气CO2浓度上升和N添加促进了森林生态系统中土壤有机碳的增加, 尤其有利于深层土壤中微团聚体与粉粒、黏粒团聚体等较稳定组分中有机碳的积累, 增加了土壤有机碳库的稳定性。
龙凤玲, 李义勇, 方熊, 黄文娟, 刘双娥, 刘菊秀. 大气CO2浓度上升和氮添加对南亚热带模拟森林生态系统土壤碳稳定性的影响. 植物生态学报, 2014, 38(10): 1053-1063. DOI: 10.3724/SP.J.1258.2014.00099
LONG Feng-Ling, LI Yi-Yong, FANG Xiong, HUANG Wen-Juan, LIU Shuang-E, LIU Ju-Xiu. Effects of elevated CO2 concentration and nitrogen addition on soil carbon stability in southern subtropical experimental forest ecosystems. Chinese Journal of Plant Ecology, 2014, 38(10): 1053-1063. DOI: 10.3724/SP.J.1258.2014.00099
土壤深度 Soil depth (cm) | pH | K | Na | Ca | Mg | P | 有机碳 Organic C | N | 有效磷 Available P |
---|---|---|---|---|---|---|---|---|---|
0-20 | 4.15 (0.15) | 6.30 (0.73) | 0.64 (0.19) | 1.03 (0.22) | 1.03 (0.13) | 0.30 (0.09) | 16.33 (3.42) | 0.52 (0.15) | 2.13 (0.93) |
20-40 | 4.27 (0.15) | 5.03 (1.11) | 0.63 (0.49) | 0.57 (0.27) | 0.84 (0.22) | 0.18 (0.19) | 7.78 (0.91) | 0.36 (0.05) | 0.42 (0.21) |
表1 供试土壤理化参数分析
Table 1 Physical and chemical parameter analysis of the tested soils
土壤深度 Soil depth (cm) | pH | K | Na | Ca | Mg | P | 有机碳 Organic C | N | 有效磷 Available P |
---|---|---|---|---|---|---|---|---|---|
0-20 | 4.15 (0.15) | 6.30 (0.73) | 0.64 (0.19) | 1.03 (0.22) | 1.03 (0.13) | 0.30 (0.09) | 16.33 (3.42) | 0.52 (0.15) | 2.13 (0.93) |
20-40 | 4.27 (0.15) | 5.03 (1.11) | 0.63 (0.49) | 0.57 (0.27) | 0.84 (0.22) | 0.18 (0.19) | 7.78 (0.91) | 0.36 (0.05) | 0.42 (0.21) |
图1 不同处理下各土层中土壤总有机碳含量的变化(平均值±标准偏差)。 不同字母表示每个土层不同处理间差异显著(LSD多重比较; p < 0.05)。CC, 高CO2浓度和背景氮添加; CK, 背景CO2和背景氮添加; CN, 高CO2浓度和高氮添加; NN, 高氮添加和背景CO2浓度。
Fig. 1 Changes of soil total organic carbon content in different soil layers under different treatments (mean ± SD). Different letters indicate significant differences among treatments in each soil layer (LSD’s multiple range test; p < 0.05). CC, elevated CO2 and ambient N deposition; CK, ambient CO2 and ambient N deposition; CN, elevated CO2 and high N addition; NN, high N addition and ambient CO2.
图2 不同处理下各土层中微生物生物量碳含量的变化(平均值±标准偏差)。 不同字母表示每个土层不同处理间差异显著(LSD多重比较; p < 0.05)。CC, 高CO2浓度和背景氮添加; CK, 背景CO2和背景氮添加; CN, 高CO2浓度和高氮添加; NN, 高氮添加和背景CO2浓度。
Fig. 2 Changes of microbial biomass carbon content in different soil layers under different treatments (mean ± SD). Different letters indicate significant differences among treatments in each soil layer (LSD’s multiple range test; p < 0.05). CC, elevated CO2 and ambient N deposition; CK, ambient CO2 and ambient N deposition; CN, elevated CO2 and high N addition; NN, high N addition and ambient CO2.
图3 不同处理下各土层中易氧化有机碳含量的变化(平均值±标准偏差)。 不同字母表示每个土层不同处理间差异显著(LSD多重比较; p < 0.05)。CC, 高CO2浓度和背景氮添加; CK, 背景CO2和背景氮添加; CN, 高CO2浓度和高氮添加; NN, 高氮添加和背景CO2浓度。
Fig. 3 Changes of readily oxidized organic carbon content in different soil layers under different treatments (mean ± SD). Different letters indicate significant differences among treatments in each soil layer (LSD’s multiple range test; p < 0.05). CC, elevated CO2 and ambient N deposition; CK, ambient CO2 and ambient N deposition; CN, elevated CO2 and high N addition; NN, high N addition and ambient CO2.
图4 不同处理下各土层中水溶性有机碳含量的变化(平均值±标准偏差)。 不同字母表示每个土层不同处理间差异显著(LSD多重比较; p < 0.05)。CC, 高CO2浓度和背景氮添加; CK, 背景CO2和背景氮添加; CN, 高CO2浓度和高氮添加; NN, 高氮添加和背景CO2浓度。
Fig. 4 Changes of dissolved organic carbon content in different soil layers under different treatments (mean ± SD). Different letters indicate significant differences among treatments in each soil layer (LSD’s multiple range test; p < 0.05). CC, elevated CO2 and ambient N deposition; CK, ambient CO2 and ambient N deposition; CN, elevated CO2 and high N addition; NN, high N addition and ambient CO2.
图5 不同处理下各土层中250-2000 μm团聚体组分中有机碳含量的变化(平均值±标准偏差)。 不同字母表示每个土层不同处理间差异显著(LSD多重比较; p < 0.05)。CC, 高CO2浓度和背景氮添加; CK, 背景CO2和背景氮添加; CN, 高CO2浓度和高氮添加; NN, 高氮添加和背景CO2浓度。
Fig. 5 Changes of the organic carbon content in the 250- 2000 μm aggregates in different soil layers under different treatments (mean ± SD). Different letters indicate significant differences among treatments in each soil layer (LSD’s multiple range test; p < 0.05). CC, elevated CO2 and ambient N deposition; CK, ambient CO2 and ambient N deposition; CN, elevated CO2 and high N addition; NN, high N addition and ambient CO2.
图6 不同处理下各土层中53-250 μm团聚体组分中有机碳含量的变化(平均值±标准偏差)。 不同字母表示每个土层不同处理间差异显著(LSD多重比较; p < 0.05)。CC, 高CO2浓度和背景氮添加; CK, 背景CO2和背景氮添加; CN, 高CO2浓度和高氮添加; NN, 高氮添加和背景CO2浓度。
Fig. 6 Changes of the organic carbon content involved in the 53-250 μm aggregates in different soil layers under different treatments (mean ± SD). Different letters indicate significant differences among treatments in each soil layer (LSD’s multiple range test; p < 0.05). CC, elevated CO2 and ambient N deposition; CK, ambient CO2 and ambient N deposition; CN, elevated CO2 and high N addition; NN, high N addition and ambient CO2.
图7 不同处理下各土层中<53 μm团聚体组分中有机碳含量的变化(平均值±标准偏差)。 不同字母表示每个土层不同处理间差异显著(LSD多重比较; p < 0.05)。CC, 高CO2浓度和背景氮添加; CK, 背景CO2和背景氮添加; CN, 高CO2浓度和高氮添加; NN, 高氮添加和背景CO2浓度。
Fig. 7 Changes of the organic carbon involved in the <53 μm aggregates in different soil layers under different treatments (mean ± SD). Different letters indicate significant differences among treatments in each soil layer (LSD’s multiple range test; p < 0.05). CC, elevated CO2 and ambient N deposition; CK, ambient CO2 and ambient N deposition; CN, elevated CO2 and high N addition; NN, high N addition and ambient CO2.
[1] | Beedlow PA, Tingey DT, Phillips DT, Hogsett WE, Olszyk DM (2004). Rising atmospheric CO2 and carbon sequestration in forests. Frontiers in Ecology and the Environment, 2,315-322. |
[2] | Chantigny MH, Angers DA, Prévost D, Simard RR, Chalifour FP (1999). Dynamics of soluble organic C and C mineralization in cultivated soils with varying N fertilization. Soil Biology & Biochemistry, 31,543-550. |
[3] | Deng Q, Zhou GY, Liu JX, Liu SZ, Duan HL, Chen XM, Zhang DQ (2009). Effects of CO2 enrichment, high nitrogen deposition and high precipitation on a model forest ecosystem in southern China. Chinese Journal of Plant Ecology. Chinese Journal of Plant Ecology, 33,1023-1033. (in Chinese with English abstract) |
[ 邓琦, 周国逸, 刘菊秀, 刘世忠, 段洪浪, 陈小梅, 张德强 (2009). CO2浓度倍增、高氮沉降和高降雨对南亚热带人工模拟森林生态系统土壤呼吸的影响. 植物生态学报, 33,1023-1033.] | |
[4] | Ding YR (2012). Linking Soil Aggregation to Intraaggregate Particulate Organic Matter in Various Vegetated Wetlands of Liaohe Delta: The Implication to Its Stability of Soil Organic Carbon Pool. Master degree dissertation, Qingdao University, Qingdao. 7-9. |
[ 丁玉蓉 (2012). 辽河三角洲不同湿地类型土壤团聚体与颗粒有机质组成及其对土壤碳库的稳定性指示意义. 硕士学位论文, 青岛大学, 青岛. 7-9.] | |
[5] | Duan HL, Liu JX, Deng Q, Chen XM, Zhang DQ (2009). Effects of elevated CO2 and N deposition on plant biomass accumulation and allocation in subtropical forest ecosystems: a mesocosm study. Chinese Journal of Plant Ecology, 33,570-579. (in Chinese with English abstract) |
[ 段洪浪, 刘菊秀, 邓琦, 陈小梅, 张德强 (2009). CO2浓度升高与氮沉降对南亚热带森林生态系统植物生物量积累及分配格局的影响. 植物生态学报, 33,570-579.] | |
[6] | Fang HJ, Cheng SL, Yu GR (2007). Research on process and mechanism of carbon and nitrogen leaching for forest soils. Progress in Geography, 26,29-37. (in Chinese with English abstract) |
[ 方华军, 程淑兰, 于贵瑞 (2007). 森林土壤碳、氮淋失过程及其形成机制研究进展. 地理科学进展, 26,29-37.] | |
[7] | Fontaine S, Bardoux G, Abbadie L, Mariotti M (2004). Carbon input to soil may decrease soil carbon content. Ecology Letters, 7,314-320. |
[8] | Fu BJ, Niu D, Zhao SD (2005). Study on global change and terrestrial ecosystems history and prospect. Advances in Earth Science, 20,556-560. (in Chinese with English abstract) |
[ 傅伯杰, 牛栋, 赵士洞 (2005). 全球变化与陆地生态系统研究: 回顾与展望. 地球科学进展, 20,556-560.] | |
[9] | Guggenberger G (1994). Acidification effects on dissolved organic matter mobility in spruce forest ecosystems. Environment International, 20,31-41. |
[10] | Guggenberger G, Kaiser K (2003). Dissolved organic matter in soil: challenging the paradigm of sorptive preservation. Geoderma, 113,293-310. |
[11] | Gundersen P, Schmidt IK, Raulund-Rasmussen K (2006). Leaching of nitrate from temperate forests effects of air pollution and forest management. Environmental Reviews, 14,1-57. |
[12] | Hall SJ, Matson PA (2003). Nutrient status of tropical rain forests influences soil N dynamics after N additions. Ecological Monographs, 73,107-129. |
[13] |
Hungate BA, Dukes JS, Shaw MR, Luo YQ, Field CB (2003). Nitrogen and climate change. Science, 302,1512-1513.
URL PMID |
[14] | Hyvönen R, Ågren GI, Linder S, Persson T, Cotrufo MF, Ekblad A, Freeman M, Grelle A, Janssens IA, Jarvis PG, Kellomäki S, Lindroth A, Loustau D, Lundmark T, Norby RJ, Oren R, Pilegaard K, Ryan MG, Sigurdsson BD, Strömgren M, Oijen M, Wallin G (2007). The likely impact of elevated [CO2], nitrogen deposition, increased temperature and management on carbon sequestration in temperate and boreal forest ecosystems: a literature review. New Phytologist, 173,463-480. |
[15] | Jastrow JD, Miller RM, Owensby CE (2000). Long-term effects of elevated atmospheric CO2 on below-ground biomass and transformations to soil organic matter in grassland. Plant and Soil, 224,85-97. |
[16] | Kou TJ, Zhu JG, Xie ZB, Liu G, Zeng Q (2009). Effects of elevated atmospheric CO2 and nitrogen level on replacement rate of soil organic carbon in winter wheat field. Acta Pedologica Sinica, 46,459-465. (in Chinese with English abstract) |
[ 寇太记, 朱建国, 谢祖彬, 刘刚, 曾青 (2009). 大气CO2浓度升高和氮肥水平对麦田土壤有机碳更新的影响. 土壤学报, 46,459-465.] | |
[17] | Liu JX, Zhang DQ, Zhou GY, Faivre-Vuillin B, Deng Q, Wang CL (2008). CO2 enrichment increases nutrient leaching from model forest ecosystems in subtropical China. Biogeosciences, 5,1783-1795. |
[18] | Li YY, Huang WJ, Zhao L, Fang X, Liu JX (2012). Effects of elevated CO2 concentration and N deposition on leaf element contents of major native tree species in southern subtropical China. Chinese Journal of Plant Ecology, 36,447-455. (in Chinese with English abstract) |
[ 李义勇, 黄文娟, 赵亮, 方熊, 刘菊秀 (2012). 大气CO2浓度升高和N沉降对南亚热带主要乡土树种叶片元素含量的影响. 植物生态学报, 36,447-455.] | |
[19] | Lu X, Sun L, Hu HQ (2013). Factors affecting the forest soil active organic carbon. Forest Engineering, 29,9-14. (in Chinese with English abstract) |
[ 陆昕, 孙龙, 胡海清 (2013). 森林土壤活性有机碳影响因素. 森林工程, 29,9-14.] | |
[20] |
Luo YQ, Hui DF, Zhang DQ (2006). Elevated CO2 stimulates net accumulations of carbon and nitrogen in land ecosystems: a meta-analysis. Ecology, 87,53-63.
DOI URL PMID |
[21] | Luo YQ, Su B, Currie WS, Dukes JS, Finzi A, Hartwig U, Hungate B, Mc Murtrie RE, Oren R, Parton WJ, Pataki DE, Shaw MR, Zak DR, Field CB (2004). Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. Bioscience, 54,731-739. |
[22] | McDowell WH, Magill AH, Aitkenhead-Peterson JA, Aber JD, Merriam JL, Kaushal SS (2004). Effects of chronic nitrogen amendment on dissolved organic matter and inorganic nitrogen in soil solution. Forest Ecology and Management, 196,29-41. |
[23] | Pan GX, Zhou P, Li LQ, Zhang XH (2007). Core issues and research progresses of soil science of C sequestration. Acta Pedologica Sinica, 44,327-337. (in Chinese with English abstract) |
[ 潘根兴, 周萍, 李恋卿, 张旭辉 (2007). 固碳土壤学的核心科学问题与研究进展. 土壤学报, 44,327-337.] | |
[24] | Pan HL, Xie ZB, Zhu JG, Liu G, Zhang YL, Cai ZC (2007). Effects of free air CO2 enrichment (FACE) on soil particle composition and C dynamics. Ecology and Environment, 16,269-274. (in Chinese with English abstract) |
[ 潘红丽, 谢祖彬, 朱建国, 刘钢, 张雅丽, 蔡祖聪 (2007). 大气 CO2浓度升高对农田土壤颗粒组成及其碳周转的影响. 生态环境, 16,269-274.] | |
[25] | Qiu QY, Liang GH, Huang DW, Chen XM (2013). Advances in studies on soluble organic carbon in forest soils. Journal of Souhtwest Forestry University, 33,86-96. (in Chinese with English abstract) |
[ 丘清燕, 梁国华, 黄德卫, 陈小梅 (2013). 森林土壤可溶性有机碳研究进展. 西南林业大学学报, 33,86-96.] | |
[26] | Ren R, Mi FJ, Bai NB (2000). A chemometrics analysis on the data of precipitation chemistry of China. Journal of Beijing Polytechnic University, 26,90-95. (in Chinese with English abstract) |
[ 任仁, 米丰杰, 白乃彬 (2000). 中国降水化学数据的化学计量学分析. 北京工业大学学报, 26,90-95.] | |
[27] |
Schlesinger WH, Lichter J (2001). Limited carbon storage in soil and litter of experimental forest plots under increased atmospheric CO2. Nature, 411,466-469.
DOI URL PMID |
[28] | Six J, Elliott E, Paustian K, Doran J (1998). Aggregation and soil organic matter accumulation in cultivated and native grassland soils. Soil Science Society of America Journal, 62,1367-1377. |
[29] | Six J, Conant RT, Paul EA, Paustian K (2002a). Stabilization mechanisms of soil organic matter: implications for C-saturation of soils. Plant and Soil, 241,155-176. |
[30] | Six J, Callewaert P, Lenders S, de Gryze S, Morris SJ, Gregorich EG, Paul EA, Paustian K (2002b). Measuring and understanding carbon storage in afforested soils by physical fractionation. Soil Science Society of America Journal, 66,1981-1987. |
[31] | Tipping E (1998). Modelling the properties and behaviour of dissolved organic matter in soils. Mitteilungen der Deutschen Bodenkundlichen Gesellschaft, 87,237-252. |
[32] | Tu LH, Hu TX, Zhang J, Li RH, Dai HZ, Luo SH (2011). Response of soil organic carbon and nutrients to simulated nitrogen deposition in Pleioblastus amarus plantation, Rainy Area of West China. Chinese Journal of Plant Ecology, 35,125-136. (in Chinese with English abstract) |
[ 涂利华, 胡庭兴, 张健, 李仁洪, 戴洪忠, 雒守华 (2011). 模拟氮沉降对华西雨屏区苦竹林土壤有机碳和养分的影响. 植物生态学报, 35,125-136.] | |
[33] | von Lützow M, Kögel-Knabner I, Ekschmitt K, Matzner E, Guggenberger G, Marschner B, Flessa H (2006). Stabiliza- tion of organic matter in temperate soils: mechanisms and their relevance under different soil conditions—a review. European Journal of Soil Science, 57,426-445. |
[34] | Wang W, Yang YS, Chen GS, Guo JF, Qian W (2008). Profile distribution and seasonal variation of soil dissolved organic carbon in natural Castanopsis fabric forest in subtropical China. Chinese Journal of Ecology, 27,924-928. (in Chinese with English abstract) |
[ 汪伟, 杨玉盛, 陈光水, 郭剑芬, 钱伟 (2008). 罗浮栲天然林土壤可溶性有机碳的剖面分布及季节变化. 生态学杂志, 27,924-928.] | |
[35] | Wang SP, Zhou GS, Gao SH, Guo JP (2003). Distribution of soil labile carbon along the northeast China transect (NECT) and its response to climatic change. Acta Phytoecologica Sinica, 27,780-786. (in Chinese with English abstract) |
[ 王淑平, 周广胜, 高素华, 郭建平 (2003). 中国东北样带土壤活性有机碳的分布及其对气候变化的响应. 植物生态学报, 27,780-786.] | |
[36] | Wu QB, Wang XK, Guo R (2005). Soil organic carbon stability and influencing factors. Chinese Journal of Soil Science, 36,743-747. (in Chinese with English abstract) |
[ 吴庆标, 王效科, 郭然 (2005). 土壤有机碳稳定性及其影响因素. 土壤通报, 36,743-747.] | |
[37] | Xiang WH, Huang ZH, Yan WD, Tian DL, Lei PF (2006). Review on coupling of interactive functions between carbon and nitrogen cycles in forest ecosystems. Acta Ecologica Sinica, 26,2365-2372. (in Chinese with English abstract) |
[ 项文化, 黄志宏, 闫文德, 田大伦, 雷丕锋 (2006). 森林生态系统碳氮循环功能耦合研究综述. 生态学报, 26,2365-2372.] | |
[38] | Xiao SS, Dong YS, Qi YC, Peng Q, He YT, Yang ZJ (2009). Advance in responses of soil organic carbon pool of grassland ecosystem to human effects and global changes. Advances in Earth Science, 24,1138-1148. (in Chinese with English abstract) |
[ 肖胜生, 董云社, 齐玉春, 彭琴, 何亚婷, 杨智杰 (2009). 草地生态系统土壤有机碳库对人为干扰和全球变化的响应研究进展. 地球科学进展, 24,1138-1148.] | |
[39] | Xing JH, Ni HW, Wang JB (2011). Effects of elevated CO2 concentration and N deposition on plant biomass accumulation and allocation in the communities of Deyeuxia angustifolia in Sanjiang Plain. Chinese Agricultural Science Bulletin, 27,49-54. (in Chinese with English abstract) |
[ 邢军会, 倪红伟, 王建波 (2011). 二氧化碳浓度升高与氮沉降对三江平原小叶章群落生物量累积及其分配格局的影响. 中国农学通报, 27,49-54.] | |
[40] | Zhang JZ, Ni HW, Wang JB, Yuan L, Wang HT (2013). Effects of simulated nitrogen deposition and elevated CO2 concentration on soil organic carbon and nitrogen of Deyeuxia Angustifolia community on the Sanjiang Plain. Earth and Environment, 41,216-225. (in Chinese with English abstract) |
[ 张继周, 倪红伟, 王建波, 袁磊, 王宏韬 (2013). 模拟氮沉降和CO2浓度增加对三江平原小叶章群落土壤总有机碳和氮素含量的影响. 地球与环境, 41,216-225.] | |
[41] | Zhao GY, Liu JS, Wang Y, Zhou J (2011). Effects of elevated CO2 on the soil active carbon and microbe of freshwater marsh in Sanjiang Plain. Geography and Geo-Information Science, 27,96-100. (in Chinese with English abstract) |
[ 赵光影, 刘景双, 王洋, 周嘉 (2011). CO2浓度升高对三江平原湿地活性有机碳及土壤微生物的影响. 地理与地理信息科学, 27,96-100.] | |
[42] |
Zhao L, Zhou GY, Zhang DQ, Duan HL, Liu JX (2011). Effects of elevated CO2 concentration and nitrogen deposition on the biomass accumulation and allocation in south subtropical main native tree species and their mixed communities. Chinese Journal of Applied Ecology, 22,1949-1954. (in Chinese with English abstract)
URL PMID |
[ 赵亮, 周国逸, 张德强, 段洪浪, 刘菊秀 (2011). CO2浓度升高和氮沉降对南亚热带主要乡土树种及群落生物量的影响. 应用生态学报, 22,1949-1954.]
PMID |
|
[43] |
Zheng XH, Fu CB, Xu XK, Yan XD, Huang Y, Han SH, Hu F, Chen GX (2002). The Asian nitrogen cycle case study. AMBIO, 31,79-87.
DOI URL PMID |
[44] | Zhou L, Li BG, Zhou GS (2005). Advances in controlling factors of soil organic carbon. Advances in Earth Science, 20,99-105. (in Chinese with English abstract) |
[ 周莉, 李保国, 周广胜 (2005). 土壤有机碳的主导影响因子及其研究进展. 地球科学进展, 20,99-105.] |
[1] | 黄玲, 王榛, 马泽, 杨发林, 李岚, SEREKPAYEV Nurlan, NOGAYEV Adilbek, 侯扶江. 长期放牧和氮添加对黄土高原典型草原长芒草种群生长的影响[J]. 植物生态学报, 2024, 48(3): 317-330. |
[2] | 颜辰亦, 龚吉蕊, 张斯琦, 张魏圆, 董学德, 胡宇霞, 杨贵森. 氮添加对内蒙古温带草原土壤活性有机碳的影响[J]. 植物生态学报, 2024, 48(2): 229-241. |
[3] | 耿雪琪, 唐亚坤, 王丽娜, 邓旭, 张泽凌, 周莹. 氮添加增加中国陆生植物生物量并降低其氮利用效率[J]. 植物生态学报, 2024, 48(2): 147-157. |
[4] | 舒韦维, 杨坤, 马俊旭, 闵惠琳, 陈琳, 刘士玲, 黄日逸, 明安刚, 明财道, 田祖为. 氮添加对红锥不同序级细根形态和化学性状的影响[J]. 植物生态学报, 2024, 48(1): 103-112. |
[5] | 赵艳超, 陈立同. 土壤养分对青藏高原高寒草地生物量响应增温的调节作用[J]. 植物生态学报, 2023, 47(8): 1071-1081. |
[6] | 苏炜, 陈平, 吴婷, 刘岳, 宋雨婷, 刘旭军, 刘菊秀. 氮添加与干季延长对降香黄檀幼苗非结构性碳水化合物、养分与生物量的影响[J]. 植物生态学报, 2023, 47(8): 1094-1104. |
[7] | 李红琴, 张法伟, 仪律北. 高寒草甸表层土壤和优势植物叶片的化学计量特征对降水改变和氮添加的响应[J]. 植物生态学报, 2023, 47(7): 922-931. |
[8] | 张雅琪, 庞丹波, 陈林, 曹萌豪, 何文强, 李学斌. 荒漠草原土壤氨氧化细菌群落结构对氮添加和枯落物输入的响应[J]. 植物生态学报, 2023, 47(5): 699-712. |
[9] | 罗来聪, 赖晓琴, 白健, 李爱新, 方海富, Nasir SHAD, 唐明, 胡冬南, 张令. 氮添加背景下土壤真菌和细菌对不同种源入侵植物乌桕生长特征的影响[J]. 植物生态学报, 2023, 47(2): 206-215. |
[10] | 安凡, 李宝银, 钟全林, 程栋梁, 徐朝斌, 邹宇星, 张雪, 邓兴宇, 林秋燕. 不同种源刨花楠苗木生长与主要功能性状对氮添加的响应[J]. 植物生态学报, 2023, 47(12): 1693-1707. |
[11] | 葛萍, 李昂, 王银柳, 姜良超, 牛国祥, 哈斯木其尔, 王彦兵, 薛建国, 赵威, 黄建辉. 草甸草原温室气体排放对氮添加量的非线性响应[J]. 植物生态学报, 2023, 47(11): 1483-1492. |
[12] | 董六文, 任正炜, 张蕊, 谢晨笛, 周小龙. 功能多样性比物种多样性更好解释氮添加对高寒草地生物量的影响[J]. 植物生态学报, 2022, 46(8): 871-881. |
[13] | 谢欢, 张秋芳, 陈廷廷, 曾泉鑫, 周嘉聪, 吴玥, 林惠瑛, 刘苑苑, 尹云锋, 陈岳民. 氮添加促进丛枝菌根真菌和根系协作维持土壤磷有效性[J]. 植物生态学报, 2022, 46(7): 811-822. |
[14] | 马炬峰, 辛敏, 徐陈超, 祝琬莹, 毛传澡, 陈欣, 程磊. 丛枝菌根真菌与氮添加对不同根形态基因型水稻氮吸收的影响[J]. 植物生态学报, 2021, 45(7): 728-737. |
[15] | 杨建强, 刁华杰, 胡姝娅, 王常慧. 不同水平氮添加对盐渍化草地土壤微生物特征的影响[J]. 植物生态学报, 2021, 45(7): 780-789. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19