植物生态学报 ›› 2012, Vol. 36 ›› Issue (7): 597-606.DOI: 10.3724/SP.J.1258.2012.00597
• 研究论文 • 下一篇
王慧1,2, 周广胜1,3,*(), 蒋延玲1,*(
), 石耀辉1,2, 许振柱1
发布日期:
2012-07-10
通讯作者:
周广胜,蒋延玲
作者简介:
E-mail: gszhou@ibcas.ac.cn; yljiang@ibcas.ac.cn
WANG Hui1,2, ZHOU Guang-Sheng1,3,*(), JIANG Yan-Ling1,*(
), SHI Yao-Hui1,2, XU Zhen-Zhu1
Published:
2012-07-10
Contact:
ZHOU Guang-Sheng,JIANG Yan-Ling
摘要:
降水变化与CO2浓度升高将严重影响陆地生态系统尤其是草地生态系统, 阐明干旱半干旱区草原优势植物对降水与CO2浓度变化的联合响应有助于理解和准确评估未来气候变化对草地生态系统的影响。基于开顶式生长箱(OTC), 模拟研究了降水变化(-30%、-15%、0、+15%、+30% (以1978-2007年月降水平均值为基准))、CO2浓度变化(对照、450 μmol·mol-1、550 μmol·mol -1)及其协同作用对荒漠草原优势物种短花针茅(Stipa breviflora)光合特性的影响。结果表明: 降水变化和CO2浓度升高对短花针茅光合参数影响显著, 表现出显著的交互作用。随着CO2浓度升高, 短花针茅叶片净光合速率(Pn)呈增加趋势, 但随着时间延长(8月份)显示出光合适应现象; 气孔导度(Gs)和蒸腾速率(Tr)则呈下降趋势, 水分利用效率(WUE)显著增加。随着降水增加, 短花针茅的Pn、Gs和Tr均呈增加趋势, Pn增加速率小于Tr, 使得WUE降低。高浓度CO2和降水增加15%的协同作用可以显著提高短花针茅的Pn、Gs和Tr, 但Pn增加速率接近于Tr, 导致WUE变化不显著。这表明, 在干旱半干旱地区, CO2浓度升高可在一定程度上提高短花针茅的抗旱能力, 增强短花针茅对暖干化气候情景的适应性。
王慧, 周广胜, 蒋延玲, 石耀辉, 许振柱. 降水与CO2浓度协同作用对短花针茅光合特性的 影响. 植物生态学报, 2012, 36(7): 597-606. DOI: 10.3724/SP.J.1258.2012.00597
WANG Hui, ZHOU Guang-Sheng, JIANG Yan-Ling, SHI Yao-Hui, XU Zhen-Zhu. Interactive effects of changing precipitation and elevated CO2 concentration on photosynthetic parameters of Stipa breviflora. Chinese Journal of Plant Ecology, 2012, 36(7): 597-606. DOI: 10.3724/SP.J.1258.2012.00597
月份 Month | 降水量 Precipitation (mm) | 灌水量 Irrigation amount (mL) | ||||
---|---|---|---|---|---|---|
-30% | -15% | 对照 Control | +15% | +30% | ||
6月 June | 55.50 | 36 | 44 | 52 | 60 | 67 |
7月 July | 92.73 | 55 | 67 | 79 | 90 | 102 |
8月 August | 67.58 | 44 | 54 | 63 | 72 | 82 |
表1 1978-2007年(30年)月平均降水量及每次灌水量
Table 1 Average monthly precipitation during 1978-2007 (30 years) and the irrigation amount every time
月份 Month | 降水量 Precipitation (mm) | 灌水量 Irrigation amount (mL) | ||||
---|---|---|---|---|---|---|
-30% | -15% | 对照 Control | +15% | +30% | ||
6月 June | 55.50 | 36 | 44 | 52 | 60 | 67 |
7月 July | 92.73 | 55 | 67 | 79 | 90 | 102 |
8月 August | 67.58 | 44 | 54 | 63 | 72 | 82 |
图1 CO2浓度和降水交互作用下短花针茅叶片净光合速率(Pn)的变化(平均值±标准误差, n = 3)。不同小写字母表示同一CO2浓度下不同降水处理与对照相比有显著差异(p < 0.05); *表示同一降水处理下CO2浓度升高与对照相比有显著差异(p < 0.05)。
Fig. 1 Changes in leaf net photosynthetic rate (Pn) of Stipa breviflora under interactive CO2 concentration and precipitation (mean ± SE, n = 3). Different lowercases indicate significant difference between different precipitation treatments within the same CO2 concentration compared with control (p < 0.05); * indicates significant difference between higher CO2 concentration and ambient CO2 level within the same precipitation (p < 0.05).
变量 Variable | CO2浓度 CO2 concentration | 降水量 Precipitation | 交互作用 Interaction | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
df | F | p | df | F | p | df | F | p | |||
Pn | 2 | 132.930 | 0.000 | 4 | 839.619 | 0.000 | 8 | 12.612 | 0.000 | ||
Gs | 2 | 317.042 | 0.000 | 4 | 1 019.000 | 0.000 | 8 | 21.581 | 0.000 | ||
Tr | 2 | 114.211 | 0.000 | 4 | 2 197.000 | 0.000 | 8 | 10.999 | 0.000 | ||
WUE | 2 | 287.879 | 0.000 | 4 | 45.431 | 0.000 | 8 | 5.361 | 0.000 |
表2 2011年6月不同CO2浓度和降水处理下短花针茅叶片光合参数的方差分析
Table 2 Variance analysis of photosynthetic parameters of Stipa breviflora between different CO2 concentration and precipitation treatment in June, 2011
变量 Variable | CO2浓度 CO2 concentration | 降水量 Precipitation | 交互作用 Interaction | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
df | F | p | df | F | p | df | F | p | |||
Pn | 2 | 132.930 | 0.000 | 4 | 839.619 | 0.000 | 8 | 12.612 | 0.000 | ||
Gs | 2 | 317.042 | 0.000 | 4 | 1 019.000 | 0.000 | 8 | 21.581 | 0.000 | ||
Tr | 2 | 114.211 | 0.000 | 4 | 2 197.000 | 0.000 | 8 | 10.999 | 0.000 | ||
WUE | 2 | 287.879 | 0.000 | 4 | 45.431 | 0.000 | 8 | 5.361 | 0.000 |
变量 Variable | CO2浓度 CO2 concentration | 降水量 Precipitation | 交互作用 Interaction | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
df | F | p | df | F | p | df | F | p | |||
Pn | 2 | 129.269 | 0.000 | 4 | 1 004.000 | 0.000 | 8 | 23.829 | 0.000 | ||
Gs | 2 | 123.647 | 0.000 | 4 | 692.882 | 0.000 | 8 | 10.718 | 0.000 | ||
Tr | 2 | 24.938 | 0.000 | 4 | 219.511 | 0.000 | 8 | 2.495 | 0.033 | ||
WUE | 2 | 6.809 | 0.004 | 4 | 39.515 | 0.000 | 8 | 8.595 | 0.000 |
表3 2011年8月不同CO2浓度和降水处理下短花针茅叶片光合参数的方差分析
Table 3 Variance analysis of photosynthetic parameters of Stipa breviflora between different CO2 concentration and precipitation treatment in August, 2011
变量 Variable | CO2浓度 CO2 concentration | 降水量 Precipitation | 交互作用 Interaction | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
df | F | p | df | F | p | df | F | p | |||
Pn | 2 | 129.269 | 0.000 | 4 | 1 004.000 | 0.000 | 8 | 23.829 | 0.000 | ||
Gs | 2 | 123.647 | 0.000 | 4 | 692.882 | 0.000 | 8 | 10.718 | 0.000 | ||
Tr | 2 | 24.938 | 0.000 | 4 | 219.511 | 0.000 | 8 | 2.495 | 0.033 | ||
WUE | 2 | 6.809 | 0.004 | 4 | 39.515 | 0.000 | 8 | 8.595 | 0.000 |
图2 大气CO2浓度和降水交互作用下短花针茅叶片气孔导度(Gs)的变化(平均值±标准误差, n = 3)。图注同图1。
Fig. 2 Changes in leaf stomatal conductance (Gs) of Stipa breviflora under interactive atmospheric CO2 concentration and precipitation (mean ± SE, n = 3). Notes see Fig. 1.
图3 CO2浓度和降水交互作用下短花针茅叶片蒸腾速率(Tr)的变化(平均值±标准误差, n = 3)。图注同图1。
Fig. 3 Changes in leaf transpiration rate (Tr) of Stipa breviflora under interactive atmospheric CO2 concentration and precipitation (mean ± SE, n = 3). Notes see Fig. 1.
图4 大空CO2浓度和降水交互作用下短花针茅叶片水分利用效率(WUE)的变化(平均值±标准差, n = 3)。+, 增加; -, 减少。图注同图1。
Fig. 4 Change in leaf water use efficiency (WUE) of Stipa breviflora under interactive atmospheric CO2 concentration and precipitation (mean ± SE, n = 3). +, increase; -, decrease. Notes see Fig.1.
[1] | Ainsworth EA, Davey PA, Hymus GJ, Osborne CP, Rogers A, Blum H, Nösberger J, Long SP (2003). Is stimulation of leaf photosynthesis by elevated carbon dioxide concentration maintained in the long term? A test with Lolium perenne grown for 10 years at two nitrogen fertilization levels under Free Air CO2 Enrichment (FACE). Plant, Cell & Environment, 26, 705-714. |
[2] |
Ainsworth EA, Rogers A (2007). The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions. Plant, Cell & Environment, 30, 258-270.
URL PMID |
[3] |
Albert KR, Ro-Poulsen H, Mikkelsen TN, Michelsen A, van der Linden L, Beier C (2011). Interactive effects of elevated CO2, warming, and drought on photosynthesis of Deschampsia flexuosa in a temperate heath ecosystem. Journal of Experimental Botany, 62, 4253-4266.
URL PMID |
[4] | Berryman CA, Eamus D, Duff GA (1994). Stomatal responses to a range of variables in two tropical tree species grown with CO2 enrichment. Journal of Experimental Botany, 45, 539-546. |
[5] | Chen WL (陈威霖), Jiang ZH (江志红) (2012). Evaluation of the decadal prediction skill over China based on four global atmosphere-ocean coupled climate models. Climatic and Environmental Research (气候与环境研究), 17, 81-91. (in Chinese with English abstract) |
[6] | Cheng JF (程建峰), Shen YG (沈允钢) (2011). On the trends of photosynthesis research. Chinese Bulletin of Botany (植物学报), 46, 694-704. (in Chinese with English abstract) |
[7] | Fu YL (付玉玲), Yu GR (于贵瑞), Wang YF (王艳芬), Li ZQ (李正泉), Hao YB (郝彦斌) (2006). Effect of water stress on ecosystem photosynthesis and respiration of a Leymus chinensis steppe in Inner Mongolia. Science in China Series D: Earth Sciences (中国科学D辑: 地球科学), 49, 196-206. (in Chinese) |
[8] | Gao SH (高素华), Guo JP (郭建平) (2004). Initial study into the CO2 concentration and soil moisture effects on the photosynthesis impact mechanism of Leymus chinensis. Pratacultural Science (草业科学), 21, 23-27. (in Chinese with English abstract) |
[9] |
Ge ZM, Zhou X, Kellomäki S, Wang KY, Peltola H, Martikainen PJ (2011). Responses of leaf photosynthesis, pigments and chlorophyll fluorescence within canopy position in a boreal grass ( Phalaris arundinacea L.) to elevated temperature and CO2 under varying water regimes. Photosynthetica, 49, 172-184.
DOI URL |
[10] | Gunderson CA, Sholtis JD, Wullschleger SD, Tissue DT, Hanson PJ, Norby RJ (2002). Environmental and stomatal control of photosynthetic enhancement in the canopy of a sweetgum ( Liquidambar styraciflua L.) plantation during 3 years of CO2 enrichment. Plant, Cell & Environment, 25, 379-393. |
[11] | Guo YQ (郭亚奇), Borjigidai A (阿里穆斯), Gao QZ (高清竹), Duan MJ (段敏杰), Ganzhu Z (干珠扎布), Wan YF (万运帆), Li YE (李玉娥), Guo HB (郭红保) (2011). Photosynthetic characteristics of Stipa purpurea under irrigation in northern Tibet and its short-term response to temperature and CO2 concentration. Chinese Journal of Plant Ecology (植物生态学报), 35, 311-321. (in Chinese with English abstract) |
[12] | Hamerlynck EP, Huxman TE, Loik ME, Smith SD (2000). Effects of extreme high temperature, drought and elevated CO2 on photosynthesis of the Mojave Desert evergreen shrub, Larrea tridentata. Plant Ecology, 148, 183-193. |
[13] | Hao XY (郝兴宇), Han X (韩雪), Li P (李萍), Yang HB (杨宏斌), Lin ED (林而达) (2011). Effects of elevated atmospheric CO2 concentration on mung bean leaf photosynthesis and chlorophyll fluorescence parameters. Chinese Journal of Applied Ecology (应用生态学报), 22, 2776-2780. (in Chinese with English abstract) |
[14] | Herrick JD, Thomas RB (2003). Leaf senescence and late- season net photosynthesis of sun and shade leaves of overstory sweetgum ( Liquidambar styraciflua) grown in elevated and ambient carbon dioxide concentrations. Tree Physiology, 23, 109-118. |
[15] | Jiang GM (蒋高明), Dong M (董鸣) (2000). A comparative study on photosynthesis and water use efficiency between clonal and non-clonal plant species along the Northeast China Transect (NECT). Acta Botanica Sinica (植物学报), 42, 855-863. (in Chinese with English abstract) |
[16] |
Lawlor DW, Tezara W (2009). Causes of decreased photosynthetic rate and metabolic capacity in water-deficient leaf cells: a critical evaluation of mechanisms and integration of processes. Annals of Botany, 103, 561-579.
URL PMID |
[17] |
Leakey ADB, Ainsworth EA, Bernacchi CJ, Rogers A, Long SP, Ort DR (2009). Elevated CO2 effects on plant carbon, nitrogen, and water relations: six important lessons from FACE. Journal of Experimental Botany, 60, 2859-2876.
DOI URL PMID |
[18] | Lee JS (2011). Combined effect of elevated CO2 and temperature on the growth and phenology of two annual C3 and C4 weedy species. Agriculture, Ecosystems and Environment, 140, 484-491. |
[19] | Li LZ (李林芝), Zhang DG (张德罡), Xin XP (辛晓平), Yan YC (闫玉春), Yang GX (杨桂霞), Li J (李瑾), Wang X (王旭) (2009). Photosynthetic characteristics of Leymus chinensis under different soil moisture grades in Hulunber Prairie. Acta Ecologica Sinica (生态学报), 29, 5271-5279. (in Chinese with English abstract) |
[20] | Li QM (李清明), Liu BB (刘彬彬), Zou ZR (邹志荣) (2011). Effects of doubled CO2 concentration on photosynthetic characteristics of cucumber seedlings under drought stresses. Scientia Agricultura Sinica (中国农业科学), 44, 963-971. (in Chinese with English abstract) |
[21] | Li XZ (李新周), Liu XD (刘晓东), Ma ZG (马柱国) (2004). Analysis on the drought characteristics in the main arid regions in the world since recent hundred-odd years. Arid Zone Research (干旱区研究), 21, 97-103. (in Chinese with English abstract) |
[22] | Liao JX (廖建雄), Wang GX (王根轩) (2002). Effects of drought, CO2 concentration and temperature increasing on photosynthesis rate, evapotranspiration, and water use efficiency of spring wheat. Chinese Journal of Applied Ecology (应用生态学报), 13, 547-550. (in Chinese with English abstract) |
[23] | Lin XL (林祥磊), Xu ZZ (许振柱), Wang YH (王玉辉), Zhou GS (周广胜) (2008). Modeling the responses of leaf photosynthetic parameters of Leymus chinensis to drought and rewatering. Acta Ecologica Sinica (生态学报), 10, 4718-4724. (in Chinese with English abstract) |
[24] | Madore MA, Lucas WJ (1995). Carbon Partitioning and Source-sink Interactions in Plants. American Society of Plant Physiologists, Rockville, USA. 287. |
[25] | Manderscheid R, Erbs M, Weigal HJ (2012). Interactive effects of free-air CO2 enrichment and drought stress on maize growth. European Journal of Agronomy, doi: 10.1016/j.eja.2011.12.007 |
[26] | Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A, Raper SCB, Watterson IG, Weaver AJ, Zhao ZC (2007). Global climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL eds. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Annual Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK. 747-845. |
[27] |
Morgan JA, LeCain DR, Pendall E, Blumenthal DM, Kimball BA, Carrillo Y, Williams DG, Heisler-White J, Dijkstra FA, West M (2011). C4 grasses prosper as carbon dioxide eliminates desiccation in warmed semi-arid grassland. Nature, 476, 202-205.
URL PMID |
[28] |
Morison JIL, GIfford RM (1983). Stomatal sensitivity to carbon dioxide and humidity: a comparison of two C3 and two C4 grass species. Plant Physiology, 71, 789-796.
URL PMID |
[29] | Ogaya R, Peñuelas J (2003). Comparative field study of Quercus ilex and Phillyrea latifolia: photosynthetic response to experimental drought conditions. Environmental and Experimental Botany, 50, 137-148. |
[30] | Oksanen E, Riikonen J, Kaakinen S, Holopainen T, Vapaavuori E (2005). Structural characteristics and chemical composition of birch ( Betula pendula) leaves are modified by increasing CO2 and ozone. Global Change Biology, 11, 732-748. |
[31] | Onoda Y, Hirose T, Hikosaka K (2007). Effect of elevated CO2 levels on leaf starch, nitrogen and photosynthesis of plants growing at three natural CO2 springs in Japan. Ecological Research, 22, 475-484. |
[32] |
Pinheiro C, Chaves MM (2011). Photosynthesis and drought: Can we make metabolic connections from available data? Journal of Experimental Botany, 62, 869-882.
DOI URL PMID |
[33] | Shi ZJ (时忠杰), Gao JX (高吉喜), Xu LH (徐丽宏), Feng ZY (冯朝阳), Lü SH (吕世海), Shang JX (尚建勋) (2011). Effect of vegetation on changes of temperature and precipitation in Inner Mongolia, China. Ecology and Environmental Sciences (生态环境学报), 20, 1594-1601. (in Chinese with English abstract) |
[34] | Su B (苏波), Han XG (韩兴国), Li LH (李凌浩), Huang JH (黄建辉), Bai YF (白永飞), Qu CM (渠春梅) (2000). Responses of δ13C value and water use efficiency of plant species to environmental gradients along the grassland zone of northeast China transect . Acta Phytoecologica Sinica (植物生态学报), 24, 648-655. (in Chinese with English abstract) |
[35] | Walker B, Steffen W (1997). An overview of the implications of global change for natural and managed terrestrial ecosystems. Conservation Ecology, 1, 2-20. |
[36] | Wang CH (王澄海), Li J (李健), Li XL (李小兰), Xu XG (许晓光) (2012). Analysis on quasi-periodic characteristics of precipitation in recent 50 years and trend in next 20 years in China. Arid Zone Research (干旱区研究), 29, 1-10. (in Chinese with English abstract) |
[37] | Wang J (王静), Fang F (方锋), Wei YM (尉元明) (2005). Effects of elevated atmospheric CO2 concentrations on plants. Agricultural Research in the Arid Areas (干旱地区农业研究), 23, 229-233. (in Chinese with English abstract) |
[38] | Wang JL (王建林), Wen XF (温学发) (2010). Modeling the response of stomatal conductance to variable CO2 concentration and its physiological mechanism. Acta Ecologica Sinica (生态学报), 30, 4815-4820. (in Chinese with English abstract) |
[39] | Wang MY (王美玉), Zhao TH (赵天宏), Zhang WW (张巍巍), Shi Y (史奕) (2007). Effects of interactions between elevated CO2 concentration and temperature, drought on physio-ecological processes of plants. Agricultural Re- search in the Arid Areas (干旱地区农业研究), 25, 99-103. (in Chinese with English abstract) |
[40] | Wang QW (王庆伟), Yu DP (于大炮), Dai LM (代力民), Zhou L (周莉), Zhou WM (周旺明), Qi G (齐光), Qi L (齐麟), Ye YJ (叶雨静) (2010). Research progress in water use efficiency of plants under global climate change. Chinese Journal of Applied Ecology (应用生态学报), 21, 3255-3265. (in Chinese with English abstract) |
[41] | Xu ZZ (许振柱), Zhou GS (周广胜), Li H (李晖) (2004). Responses of gas exchange characteristics in leaves of Leymus chinensis to changes in temperature and soil moisture. Acta Phytoecologica Sinica (植物生态学报), 28, 300-304. (in Chinese with English abstract) |
[42] |
Xu ZZ, Zhou GS (2006). Combined effects of water stress and high temperature on photosynthesis, nitrogen metabolism and lipid peroxidation of a perennial grass Leymus chinensis. Planta, 224, 1080-1090.
DOI URL PMID |
[43] | Yang LM (杨利民), Han M (韩梅), Zhou GS (周广胜), Li JD (李建东) (2007). The changes of water-use efficiency and stoma density of Leymus chinensis along Northeast China Transect. Acta Ecologica Sinica (生态学报), 27, 16-24. (in Chinese with English abstract) |
[44] | Yang LX (杨连新), Li SF (李世峰), Wang YL (王余龙), Huang JY (黄建晔), Yang HJ (杨洪建), Dong GC (董桂春), Zhu JG (朱建国), Liu G (刘钢) (2007). Effects of free-air CO2 enrichment (FACE) on yield formation of wheat. Chinese Journal of Applied Ecology (应用生态学报), 18, 75-80. (in Chinese with English abstract) |
[45] | Zeng XP (曾小平), Zhao P (赵平), Sun GC (孙谷畴) (2006). Effects of climate warming on terraneous plants. Chinese Journal of Applied Ecology (应用生态学报), 17, 2445-2450. (in Chinese with English abstract) |
[46] | Zhang Q (张庆), Niu JM (牛建明), Ding Y (丁勇), Kang S (康萨如拉), Dong JJ (董建军) (2010). Current research advances and future prospects of biology and ecology of Stipa breviflora. Chinese Journal of Grassland (中国草地学报), 32, 93-101. (in Chinese with English abstract) |
[47] | Zheng YY, Xie ZX, Rimmington GM, Yu YJ, Gao Y, Zhou GS, An P, Li XJ, Tsuji W, Shimizu H (2010). Elevated CO2 accelerates net assimilation rate and enhance growth of dominant shrub species in a sand dune in central Inner Mongolia. Environmental and Experimental Botany, 68, 31-36. |
[1] | 张文瑾 佘维维 秦树高 乔艳桂 张宇清. 氮和水分添加对黑沙蒿群落优势植物叶片氮磷化学计量特征的影响[J]. 植物生态学报, 2024, 48(5): 590-600. |
[2] | 陈以恒 玉素甫江·如素力 阿卜杜热合曼·吾斯曼. 2001-2020年天山新疆段草地植被覆盖度时空变化及驱动因素分析[J]. 植物生态学报, 2024, 48(5): 561-576. |
[3] | 张计深, 史新杰, 刘宇诺, 吴阳, 彭守璋. 气候变化下中国潜在自然植被生态系统碳储量动态[J]. 植物生态学报, 2024, 48(4): 428-444. |
[4] | 臧妙涵, 王传宽, 梁逸娴, 刘逸潇, 上官虹玉, 全先奎. 基于纬度移栽的落叶松叶、枝、根生态化学计量特征对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 469-482. |
[5] | 梁逸娴, 王传宽, 臧妙涵, 上官虹玉, 刘逸潇, 全先奎. 落叶松径向生长和生物量分配对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 459-468. |
[6] | 吴茹茹, 刘美珍, 谷仙, 常馨月, 郭立月, 蒋高明, 祁如意. 气候变化对巨柏适宜生境分布的潜在影响和预测[J]. 植物生态学报, 2024, 48(4): 445-458. |
[7] | 萨其拉, 张霞, 朱琳, 康萨如拉. 长期不同放牧强度下荒漠草原优势种无芒隐子草叶片解剖结构变化[J]. 植物生态学报, 2024, 48(3): 331-340. |
[8] | 杨宇萌, 来全, 刘心怡. 气候变化和人类活动对内蒙古植被总初级生产力的定量影响[J]. 植物生态学报, 2024, 48(3): 306-316. |
[9] | 张启, 程雪寒, 王树芝. 北京西山老龄树记载的森林干扰历史[J]. 植物生态学报, 2024, 48(3): 341-348. |
[10] | 李冰, 朱湾湾, 韩翠, 余海龙, 黄菊莹. 降水量变化下荒漠草原土壤呼吸及其影响因素[J]. 植物生态学报, 2023, 47(9): 1310-1321. |
[11] | 张雅琪, 庞丹波, 陈林, 曹萌豪, 何文强, 李学斌. 荒漠草原土壤氨氧化细菌群落结构对氮添加和枯落物输入的响应[J]. 植物生态学报, 2023, 47(5): 699-712. |
[12] | 刘建新, 刘瑞瑞, 刘秀丽, 贾海燕, 卜婷, 李娜. 外源硫化氢对盐碱胁迫下裸燕麦光合碳代谢的调控[J]. 植物生态学报, 2023, 47(3): 374-388. |
[13] | 任培鑫, 李鹏, 彭长辉, 周晓路, 杨铭霞. 洞庭湖流域植被光合物候的时空变化及其对气候变化的响应[J]. 植物生态学报, 2023, 47(3): 319-330. |
[14] | 张潇, 武娟娟, 贾国栋, 雷自然, 张龙齐, 刘锐, 吕相融, 代远萌. 降水控制对侧柏液流变化特征及其水分来源的影响[J]. 植物生态学报, 2023, 47(11): 1585-1599. |
[15] | 李杰, 郝珉辉, 范春雨, 张春雨, 赵秀海. 东北温带森林树种和功能多样性对生态系统多功能性的影响[J]. 植物生态学报, 2023, 47(11): 1507-1522. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19