植物生态学报 ›› 2010, Vol. 34 ›› Issue (10): 1185-1195.DOI: 10.3773/j.issn.1005-264x.2010.10.007
所属专题: 青藏高原植物生态学:群落生态学
收稿日期:
2009-11-02
接受日期:
2010-06-25
出版日期:
2010-11-02
发布日期:
2010-10-31
通讯作者:
朱万泽
作者简介:
* E-mail: wzzhu@imde.ac.cn
ZHU Wan-Ze1,*(), WANG San-Gen2, HAO Yun-Qing3
Received:
2009-11-02
Accepted:
2010-06-25
Online:
2010-11-02
Published:
2010-10-31
Contact:
ZHU Wan-Ze
摘要:
萌生更新是森林更新的重要方式, 是硬叶栎林受到干扰后植被恢复的主要机制。以位于青藏高原东南缘的川西折多山东坡川滇高山栎(Quercus aquifoliodes)灌丛为研究对象, 调查分析了砍伐后灌丛萌生过程中基株根系和萌株生物量动态、营养元素含量, 以及基株根系和土壤对萌株生长过程中的营养元素供应动态。结果表明, 川滇高山栎灌丛平均地上和地下生物量分别为(11.25 ± 0.92) t·hm-2和(34.85 ± 2.02) t·hm-2, 具有较大的根冠比(3.10:1); 萌生过程中, 萌株生物量呈线性增加趋势, 以灌丛活细根生物量变化为最大, 其次是活中根和活粗根, 树桩和根蔸生物量变化最小; 萌生过程中, 灌丛细根和中根N、P含量表现为先增加、后降低的变化趋势, 萌生初期树桩、粗根和根蔸中N和K的含量明显下降, 根蔸中Ca含量略有下降, 而P没有明显下降, 根系Mg含量变化幅度较大, 灌丛地下根系储存了较多的营养元素; 土壤、树桩、粗根和根蔸是川滇高山栎灌丛砍伐后0-120天萌生生长的主要营养来源, 砍伐后60天, 萌株生长所需的营养除K元素主要来源于根系外, 其余营养元素主要来源于土壤; 在砍伐后60-120天, 基株根系对萌株生长所需的N、K和Ca贡献较大, 而对P和Mg的贡献较小; 在砍伐后120-180天, 根系除K元素对萌生生长还保持较大的贡献外, 对其余营养元素的贡献均较小。高山栎林管理要注重加强地下根系的保护。
朱万泽, 王三根, 郝云庆. 川滇高山栎灌丛萌生过程中的营养元素供应动态. 植物生态学报, 2010, 34(10): 1185-1195. DOI: 10.3773/j.issn.1005-264x.2010.10.007
ZHU Wan-Ze, WANG San-Gen, HAO Yun-Qing. Dynamics of nutrient supply to sprouts from the roots and soil during sprouting of Quercus aquifoliodes shrublands, western Sichuan, China. Chinese Journal of Plant Ecology, 2010, 34(10): 1185-1195. DOI: 10.3773/j.issn.1005-264x.2010.10.007
植物部分 Plant parts | 伐后时间 Time after coppicing (d) | ||||||
---|---|---|---|---|---|---|---|
0 | 30 | 60 | 90 | 120 | 150 | 180 | |
总地上生物量 Total aboveground biomass | 11 247 ± 916 | 503 ± 26 | 859 ± 27 | 1 360 ± 53 | 2 032 ± 60 | 2 332 ± 77 | 2 472 ± 65 |
树桩 Stump | 484 ± 26 | 482 ± 25 | 467 ± 26 | 463 ± 27 | 457 ± 28 | 454 ± 26 | 453 ± 25 |
萌株:叶 Sprout : leaf | 21 ± 2 | 232 ± 18 | 510 ± 29 | 827 ± 50 | 964 ± 53 | 1 031 ± 52 | |
萌株:茎 Sprouts : stem | 160 ± 10 | 387 ± 19 | 748 ± 36 | 914 ± 43 | 988 ± 48 | ||
总地下生物量 Total belowground biomass | 34 853 ± 2 016 | 35 027 ± 2 055 | 35 548 ± 2 054 | 36 008 ± 2 083 | 35 849 ± 2 061 | 35 826 ± 2 071 | 35 819 ± 2 030 |
细根 Fine root (fr) | 1 404 ± 102 | 1 451 ± 97 | 1 652 ± 113 | 1 853 ± 119 | 1 647 ± 117 | 1 572 ± 128 | 1 515 ± 110 |
中根 Medium root (mr) | 3 458 ± 220 | 3 476 ± 225 | 3 576 ± 216 | 3 766 ± 219 | 3 700 ± 214 | 3 654 ± 215 | 3 619 ± 210 |
粗根 Coarse root (cr) | 5 714 ± 319 | 5 774 ± 326 | 5 942 ± 331 | 5 949 ± 332 | 5 999 ± 323 | 6 047 ± 333 | 6 082 ± 299 |
根蔸 Taproot | 24 276 ± 1 400 | 24 326 ± 1 435 | 24 378 ± 1 427 | 24 440 ± 1 443 | 24 053 ± 1 441 | 24 553 ± 1 439 | 24 603 ± 1 448 |
细根:粗根 (fr) : (cr) ratio | 0.25 ± 0.01 | 0.25 ± 0.01 | 0.28 ± 0.01 | 0.31 ± 0.01 | 0.27 ± 0.01 | 0.26 ± 0.01 | 0.25 ± 0.01 |
细根:中根 (fr) : (mr) ratio | 0.41 ± 0.01 | 0.42 ± 0.01 | 0.46 ± 0.02 | 0.49 ± 0.01 | 0.45 ± 0.02 | 0.43 ± 0.02 | 0.42 ± 0.02 |
根冠比(地下部分:地上部分) Root : shoot ratio | 3.10 ± 0.19 | 69.66 ± 4.71 | 41.40 ± 2.49 | 26.48 ± 2.07 | 17.64 ± 1.08 | 15.36 ± 0.79 | 14.49 ± 0.49 |
表1 人工砍伐后川滇高山栎萌生过程中的生物量动态及其分布(平均值±标准偏差)
Table 1 Dynamic and its distribution for biomass (dry matter, kg·hm-2) of plant parts in the course of sprouting after coppicing of Quercus aquifoliodes shrubs (mean ± SD)
植物部分 Plant parts | 伐后时间 Time after coppicing (d) | ||||||
---|---|---|---|---|---|---|---|
0 | 30 | 60 | 90 | 120 | 150 | 180 | |
总地上生物量 Total aboveground biomass | 11 247 ± 916 | 503 ± 26 | 859 ± 27 | 1 360 ± 53 | 2 032 ± 60 | 2 332 ± 77 | 2 472 ± 65 |
树桩 Stump | 484 ± 26 | 482 ± 25 | 467 ± 26 | 463 ± 27 | 457 ± 28 | 454 ± 26 | 453 ± 25 |
萌株:叶 Sprout : leaf | 21 ± 2 | 232 ± 18 | 510 ± 29 | 827 ± 50 | 964 ± 53 | 1 031 ± 52 | |
萌株:茎 Sprouts : stem | 160 ± 10 | 387 ± 19 | 748 ± 36 | 914 ± 43 | 988 ± 48 | ||
总地下生物量 Total belowground biomass | 34 853 ± 2 016 | 35 027 ± 2 055 | 35 548 ± 2 054 | 36 008 ± 2 083 | 35 849 ± 2 061 | 35 826 ± 2 071 | 35 819 ± 2 030 |
细根 Fine root (fr) | 1 404 ± 102 | 1 451 ± 97 | 1 652 ± 113 | 1 853 ± 119 | 1 647 ± 117 | 1 572 ± 128 | 1 515 ± 110 |
中根 Medium root (mr) | 3 458 ± 220 | 3 476 ± 225 | 3 576 ± 216 | 3 766 ± 219 | 3 700 ± 214 | 3 654 ± 215 | 3 619 ± 210 |
粗根 Coarse root (cr) | 5 714 ± 319 | 5 774 ± 326 | 5 942 ± 331 | 5 949 ± 332 | 5 999 ± 323 | 6 047 ± 333 | 6 082 ± 299 |
根蔸 Taproot | 24 276 ± 1 400 | 24 326 ± 1 435 | 24 378 ± 1 427 | 24 440 ± 1 443 | 24 053 ± 1 441 | 24 553 ± 1 439 | 24 603 ± 1 448 |
细根:粗根 (fr) : (cr) ratio | 0.25 ± 0.01 | 0.25 ± 0.01 | 0.28 ± 0.01 | 0.31 ± 0.01 | 0.27 ± 0.01 | 0.26 ± 0.01 | 0.25 ± 0.01 |
细根:中根 (fr) : (mr) ratio | 0.41 ± 0.01 | 0.42 ± 0.01 | 0.46 ± 0.02 | 0.49 ± 0.01 | 0.45 ± 0.02 | 0.43 ± 0.02 | 0.42 ± 0.02 |
根冠比(地下部分:地上部分) Root : shoot ratio | 3.10 ± 0.19 | 69.66 ± 4.71 | 41.40 ± 2.49 | 26.48 ± 2.07 | 17.64 ± 1.08 | 15.36 ± 0.79 | 14.49 ± 0.49 |
植物部分 Plant parts | 伐后时间 Time after coppicing (d) | N | P | K | Ca | Mg | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
g·kg-1 | kg·hm-2 | g·kg-1 | kg·hm-2 | g·kg-1 | kg·hm-2 | g·kg-1 | kg·hm-2 | g·kg-1 | kg·hm-2 | ||
萌株:叶 Sprouts : leaf | 0 | ||||||||||
30 | 17.33 | 0.36 | 4.54 | 0.09 | 3.59 | 0.07 | 1.72 | 0.04 | 1.29 | 0.03 | |
60 | 26.21 | 6.08 | 5.29 | 1.23 | 3.81 | 0.88 | 2.13 | 0.49 | 1.56 | 0.36 | |
90 | 24.57 | 12.52 | 5.24 | 2.67 | 3.71 | 1.89 | 2.23 | 1.14 | 1.44 | 0.74 | |
120 | 22.26 | 18.40 | 5.25 | 4.34 | 3.63 | 3.00 | 2.27 | 1.88 | 1.28 | 1.06 | |
150 | 18.57 | 17.91 | 4.63 | 4.46 | 3.60 | 3.47 | 2.32 | 2.24 | 1.27 | 1.22 | |
180 | 16.41 | 16.92 | 4.61 | 4.76 | 3.38 | 3.48 | 2.34 | 2.41 | 1.17 | 1.21 | |
萌株:茎 Sprouts : stem | 0 | ||||||||||
30 | |||||||||||
60 | 10.10 | 1.62 | 2.26 | 0.36 | 4.08 | 0.65 | 2.50 | 0.40 | 1.56 | 0.25 | |
90 | 9.36 | 3.62 | 2.36 | 0.91 | 4.43 | 1.71 | 2.73 | 1.05 | 1.72 | 0.67 | |
120 | 9.11 | 6.81 | 2.25 | 1.68 | 4.07 | 3.04 | 2.81 | 2.10 | 1.58 | 1.18 | |
150 | 8.64 | 7.89 | 2.12 | 1.93 | 3.85 | 3.52 | 3.26 | 2.98 | 1.51 | 1.38 | |
180 | 7.88 | 7.79 | 2.03 | 2.00 | 3.70 | 3.66 | 3.23 | 3.19 | 1.25 | 1.23 | |
萌株:叶+茎 Sprout : leaf + stem | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |||||
30 | 0.36 | 0.09 | 0.07 | 0.04 | 0.03 | ||||||
60 | 7.70 | 1.59 | 1.54 | 0.90 | 0.61 | ||||||
90 | 16.14 | 3.58 | 3.61 | 2.19 | 1.40 | ||||||
120 | 25.21 | 6.02 | 6.04 | 3.98 | 2.24 | ||||||
150 | 25.80 | 6.40 | 6.99 | 5.21 | 2.60 | ||||||
180 | 24.71 | 6.76 | 7.14 | 5.61 | 2.44 | ||||||
树桩 Stump | 0 | 2.75 | 1.33 | 0.75 | 0.36 | 1.33 | 0.64 | 0.91 | 0.44 | 0.33 | 0.16 |
30 | 2.57 | 1.24 | 0.71 | 0.34 | 1.20 | 0.58 | 0.91 | 0.44 | 0.34 | 0.16 | |
60 | 2.35 | 1.10 | 0.65 | 0.30 | 1.19 | 0.56 | 0.87 | 0.41 | 0.32 | 0.15 | |
90 | 2.14 | 0.99 | 0.60 | 0.28 | 1.17 | 0.54 | 0.88 | 0.41 | 0.32 | 0.15 | |
120 | 2.09 | 0.97 | 0.59 | 0.27 | 1.18 | 0.55 | 0.87 | 0.40 | 0.32 | 0.15 | |
150 | 1.99 | 0.91 | 0.57 | 0.26 | 1.17 | 0.53 | 0.83 | 0.37 | 0.29 | 0.13 | |
180 | 2.01 | 0.91 | 0.57 | 0.26 | 1.18 | 0.54 | 0.82 | 0.37 | 0.32 | 0.14 | |
细根 Fine root | 0 | 5.77 | 8.10 | 1.24 | 1.74 | 2.65 | 3.73 | 2.61 | 3.67 | 1.32 | 1.86 |
30 | 6.11 | 8.86 | 1.29 | 1.88 | 2.72 | 3.94 | 2.62 | 3.80 | 1.58 | 2.30 | |
60 | 6.29 | 10.40 | 1.35 | 2.23 | 2.81 | 4.65 | 2.71 | 4.47 | 1.56 | 2.58 | |
90 | 6.38 | 11.82 | 1.34 | 2.48 | 2.84 | 5.26 | 2.75 | 5.09 | 1.67 | 3.10 | |
120 | 6.30 | 10.38 | 1.31 | 2.16 | 2.87 | 4.73 | 2.82 | 4.64 | 1.68 | 2.78 | |
150 | 6.23 | 9.80 | 1.24 | 1.95 | 2.74 | 4.31 | 2.81 | 4.42 | 1.70 | 2.67 | |
180 | 6.21 | 9.41 | 1.27 | 1.92 | 2.69 | 4.08 | 2.83 | 4.29 | 1.71 | 2.60 | |
中根 Medium root | 0 | 2.88 | 9.96 | 1.13 | 3.92 | 1.69 | 5.85 | 2.18 | 7.54 | 1.35 | 4.68 |
30 | 3.06 | 10.64 | 1.16 | 4.04 | 1.73 | 6.02 | 2.21 | 7.69 | 1.40 | 4.88 | |
60 | 3.07 | 10.97 | 1.19 | 4.27 | 1.76 | 6.31 | 2.29 | 8.21 | 1.42 | 5.09 | |
90 | 2.58 | 9.72 | 1.17 | 4.42 | 1.84 | 6.92 | 2.33 | 8.78 | 1.52 | 5.72 | |
120 | 2.55 | 9.44 | 1.16 | 4.29 | 1.76 | 6.51 | 2.31 | 8.55 | 1.53 | 5.67 | |
150 | 2.58 | 9.43 | 1.14 | 4.18 | 1.74 | 6.35 | 2.31 | 8.45 | 1.66 | 6.07 | |
180 | 2.58 | 9.34 | 1.11 | 4.01 | 1.69 | 6.11 | 2.27 | 8.22 | 1.61 | 5.82 | |
粗根 Coarse root | 0 | 2.13 | 12.17 | 1.11 | 6.32 | 1.63 | 9.30 | 2.07 | 11.80 | 1.44 | 8.25 |
30 | 2.08 | 12.01 | 1.14 | 6.59 | 1.57 | 9.06 | 2.01 | 11.60 | 1.43 | 8.25 | |
60 | 1.89 | 11.26 | 1.11 | 6.57 | 1.48 | 8.82 | 2.02 | 12.01 | 1.38 | 8.22 | |
90 | 1.68 | 10.02 | 1.03 | 6.15 | 1.37 | 8.13 | 2.02 | 12.03 | 1.24 | 7.39 | |
120 | 1.64 | 9.81 | 1.08 | 6.48 | 1.47 | 8.82 | 2.05 | 12.29 | 1.17 | 7.00 | |
150 | 1.72 | 10.40 | 1.03 | 6.21 | 1.45 | 8.77 | 2.08 | 12.60 | 1.18 | 7.14 | |
180 | 1.80 | 10.96 | 1.05 | 6.38 | 1.48 | 9.01 | 2.10 | 12.77 | 1.17 | 7.11 | |
根蔸 Taproot | 0 | 1.39 | 33.73 | 0.55 | 13.47 | 1.19 | 28.96 | 0.82 | 19.98 | 0.37 | 9.09 |
30 | 1.32 | 32.19 | 0.57 | 13.90 | 1.16 | 28.24 | 0.84 | 20.46 | 0.36 | 8.86 | |
60 | 1.21 | 29.47 | 0.50 | 12.20 | 1.11 | 27.04 | 0.77 | 18.66 | 0.34 | 8.31 | |
90 | 1.12 | 27.40 | 0.47 | 11.39 | 1.04 | 25.32 | 0.68 | 16.50 | 0.31 | 7.53 | |
120 | 1.06 | 25.89 | 0.49 | 12.12 | 1.00 | 24.58 | 0.68 | 16.72 | 0.33 | 8.19 | |
150 | 1.17 | 28.69 | 0.51 | 12.61 | 1.06 | 25.92 | 0.70 | 17.18 | 0.32 | 7.79 | |
180 | 1.21 | 29.87 | 0.52 | 12.80 | 1.06 | 26.05 | 0.71 | 17.38 | 0.33 | 8.11 |
表2 川滇高山栎萌生过程中萌株和地下根系营养元素的含量及其积累
Table 2 Concentration and accumulation of nutrient elements in the sprout, stumps and roots in the course of sprouting after coppicing of Quercus aquifoliodes shrubs
植物部分 Plant parts | 伐后时间 Time after coppicing (d) | N | P | K | Ca | Mg | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
g·kg-1 | kg·hm-2 | g·kg-1 | kg·hm-2 | g·kg-1 | kg·hm-2 | g·kg-1 | kg·hm-2 | g·kg-1 | kg·hm-2 | ||
萌株:叶 Sprouts : leaf | 0 | ||||||||||
30 | 17.33 | 0.36 | 4.54 | 0.09 | 3.59 | 0.07 | 1.72 | 0.04 | 1.29 | 0.03 | |
60 | 26.21 | 6.08 | 5.29 | 1.23 | 3.81 | 0.88 | 2.13 | 0.49 | 1.56 | 0.36 | |
90 | 24.57 | 12.52 | 5.24 | 2.67 | 3.71 | 1.89 | 2.23 | 1.14 | 1.44 | 0.74 | |
120 | 22.26 | 18.40 | 5.25 | 4.34 | 3.63 | 3.00 | 2.27 | 1.88 | 1.28 | 1.06 | |
150 | 18.57 | 17.91 | 4.63 | 4.46 | 3.60 | 3.47 | 2.32 | 2.24 | 1.27 | 1.22 | |
180 | 16.41 | 16.92 | 4.61 | 4.76 | 3.38 | 3.48 | 2.34 | 2.41 | 1.17 | 1.21 | |
萌株:茎 Sprouts : stem | 0 | ||||||||||
30 | |||||||||||
60 | 10.10 | 1.62 | 2.26 | 0.36 | 4.08 | 0.65 | 2.50 | 0.40 | 1.56 | 0.25 | |
90 | 9.36 | 3.62 | 2.36 | 0.91 | 4.43 | 1.71 | 2.73 | 1.05 | 1.72 | 0.67 | |
120 | 9.11 | 6.81 | 2.25 | 1.68 | 4.07 | 3.04 | 2.81 | 2.10 | 1.58 | 1.18 | |
150 | 8.64 | 7.89 | 2.12 | 1.93 | 3.85 | 3.52 | 3.26 | 2.98 | 1.51 | 1.38 | |
180 | 7.88 | 7.79 | 2.03 | 2.00 | 3.70 | 3.66 | 3.23 | 3.19 | 1.25 | 1.23 | |
萌株:叶+茎 Sprout : leaf + stem | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |||||
30 | 0.36 | 0.09 | 0.07 | 0.04 | 0.03 | ||||||
60 | 7.70 | 1.59 | 1.54 | 0.90 | 0.61 | ||||||
90 | 16.14 | 3.58 | 3.61 | 2.19 | 1.40 | ||||||
120 | 25.21 | 6.02 | 6.04 | 3.98 | 2.24 | ||||||
150 | 25.80 | 6.40 | 6.99 | 5.21 | 2.60 | ||||||
180 | 24.71 | 6.76 | 7.14 | 5.61 | 2.44 | ||||||
树桩 Stump | 0 | 2.75 | 1.33 | 0.75 | 0.36 | 1.33 | 0.64 | 0.91 | 0.44 | 0.33 | 0.16 |
30 | 2.57 | 1.24 | 0.71 | 0.34 | 1.20 | 0.58 | 0.91 | 0.44 | 0.34 | 0.16 | |
60 | 2.35 | 1.10 | 0.65 | 0.30 | 1.19 | 0.56 | 0.87 | 0.41 | 0.32 | 0.15 | |
90 | 2.14 | 0.99 | 0.60 | 0.28 | 1.17 | 0.54 | 0.88 | 0.41 | 0.32 | 0.15 | |
120 | 2.09 | 0.97 | 0.59 | 0.27 | 1.18 | 0.55 | 0.87 | 0.40 | 0.32 | 0.15 | |
150 | 1.99 | 0.91 | 0.57 | 0.26 | 1.17 | 0.53 | 0.83 | 0.37 | 0.29 | 0.13 | |
180 | 2.01 | 0.91 | 0.57 | 0.26 | 1.18 | 0.54 | 0.82 | 0.37 | 0.32 | 0.14 | |
细根 Fine root | 0 | 5.77 | 8.10 | 1.24 | 1.74 | 2.65 | 3.73 | 2.61 | 3.67 | 1.32 | 1.86 |
30 | 6.11 | 8.86 | 1.29 | 1.88 | 2.72 | 3.94 | 2.62 | 3.80 | 1.58 | 2.30 | |
60 | 6.29 | 10.40 | 1.35 | 2.23 | 2.81 | 4.65 | 2.71 | 4.47 | 1.56 | 2.58 | |
90 | 6.38 | 11.82 | 1.34 | 2.48 | 2.84 | 5.26 | 2.75 | 5.09 | 1.67 | 3.10 | |
120 | 6.30 | 10.38 | 1.31 | 2.16 | 2.87 | 4.73 | 2.82 | 4.64 | 1.68 | 2.78 | |
150 | 6.23 | 9.80 | 1.24 | 1.95 | 2.74 | 4.31 | 2.81 | 4.42 | 1.70 | 2.67 | |
180 | 6.21 | 9.41 | 1.27 | 1.92 | 2.69 | 4.08 | 2.83 | 4.29 | 1.71 | 2.60 | |
中根 Medium root | 0 | 2.88 | 9.96 | 1.13 | 3.92 | 1.69 | 5.85 | 2.18 | 7.54 | 1.35 | 4.68 |
30 | 3.06 | 10.64 | 1.16 | 4.04 | 1.73 | 6.02 | 2.21 | 7.69 | 1.40 | 4.88 | |
60 | 3.07 | 10.97 | 1.19 | 4.27 | 1.76 | 6.31 | 2.29 | 8.21 | 1.42 | 5.09 | |
90 | 2.58 | 9.72 | 1.17 | 4.42 | 1.84 | 6.92 | 2.33 | 8.78 | 1.52 | 5.72 | |
120 | 2.55 | 9.44 | 1.16 | 4.29 | 1.76 | 6.51 | 2.31 | 8.55 | 1.53 | 5.67 | |
150 | 2.58 | 9.43 | 1.14 | 4.18 | 1.74 | 6.35 | 2.31 | 8.45 | 1.66 | 6.07 | |
180 | 2.58 | 9.34 | 1.11 | 4.01 | 1.69 | 6.11 | 2.27 | 8.22 | 1.61 | 5.82 | |
粗根 Coarse root | 0 | 2.13 | 12.17 | 1.11 | 6.32 | 1.63 | 9.30 | 2.07 | 11.80 | 1.44 | 8.25 |
30 | 2.08 | 12.01 | 1.14 | 6.59 | 1.57 | 9.06 | 2.01 | 11.60 | 1.43 | 8.25 | |
60 | 1.89 | 11.26 | 1.11 | 6.57 | 1.48 | 8.82 | 2.02 | 12.01 | 1.38 | 8.22 | |
90 | 1.68 | 10.02 | 1.03 | 6.15 | 1.37 | 8.13 | 2.02 | 12.03 | 1.24 | 7.39 | |
120 | 1.64 | 9.81 | 1.08 | 6.48 | 1.47 | 8.82 | 2.05 | 12.29 | 1.17 | 7.00 | |
150 | 1.72 | 10.40 | 1.03 | 6.21 | 1.45 | 8.77 | 2.08 | 12.60 | 1.18 | 7.14 | |
180 | 1.80 | 10.96 | 1.05 | 6.38 | 1.48 | 9.01 | 2.10 | 12.77 | 1.17 | 7.11 | |
根蔸 Taproot | 0 | 1.39 | 33.73 | 0.55 | 13.47 | 1.19 | 28.96 | 0.82 | 19.98 | 0.37 | 9.09 |
30 | 1.32 | 32.19 | 0.57 | 13.90 | 1.16 | 28.24 | 0.84 | 20.46 | 0.36 | 8.86 | |
60 | 1.21 | 29.47 | 0.50 | 12.20 | 1.11 | 27.04 | 0.77 | 18.66 | 0.34 | 8.31 | |
90 | 1.12 | 27.40 | 0.47 | 11.39 | 1.04 | 25.32 | 0.68 | 16.50 | 0.31 | 7.53 | |
120 | 1.06 | 25.89 | 0.49 | 12.12 | 1.00 | 24.58 | 0.68 | 16.72 | 0.33 | 8.19 | |
150 | 1.17 | 28.69 | 0.51 | 12.61 | 1.06 | 25.92 | 0.70 | 17.18 | 0.32 | 7.79 | |
180 | 1.21 | 29.87 | 0.52 | 12.80 | 1.06 | 26.05 | 0.71 | 17.38 | 0.33 | 8.11 |
图1 砍伐后不同时间内川滇高山栎灌丛萌生过程中根系(RS)和土壤(SS)对萌株的营养供应(平均值±标准偏差)。
Fig. 1 Nitrogen elements supplied by the roots (RS) and soil (SS) to the sprouts at the different times after coppicing (mean ± SD).
[1] | Abrams MD (1996). Distribution, historical development and ecophysiological attributes of oak species in the eastern United States. Annals of Forest Science, 53, 487-512. |
[2] |
Abrams MD, Downs JA (1990). Successional replacement of old-growth whiten oak by mixed mesophytic hardwoods in southwestern Pennsylvania. Canadian Journal of Forest Research, 20, 1864-1870.
DOI URL |
[3] |
Andersson C (1991). Distribution of seedlings and saplings of Quercus robur in a grazed deciduous forest. Journal of Vegetation Science, 2, 279-282.
DOI URL |
[4] | Ågren G, Axelsson B, Flower-Ellis JGK, Linder T, Persson H, Staaf H, Troeng E (1980). Annual carbon budget for a young Scots pine. Ecological Bulletin, 32, 307-313. |
[5] | Bao WK (包维楷), Chen QH (陈庆恒), Liu ZG (刘照光) (2000). Changes of structure and species composition of degraded plant community along disturbance gradients of different intensities. Acta Botanica Yunnanica (云南植物研究), 22, 307-361. (in Chinese with English abstract) |
[6] |
Basnet K (1993). Recovery of a tropical rain forest after hurricane damage. Vegetatio, 109, 1-4.
DOI URL |
[7] |
Bell TL, Ojeda F (1999). Underground starch storage in Erica species of the Cape Floristic Region―differences between seeders and resprouters. New Phytologist, 144, 143-152.
DOI URL |
[8] |
Bond WJ, Midgley JJ (2001). Ecology of sprouting in woody plants: the persistence niche. Trends in Ecology & Evolution, 16, 45-51.
URL PMID |
[9] | Bowen BJ, Pate JS (1993). The significance of root starch in post-fire shoot recovery of the resprouter Stirlingia latifolia R. Br. (Proteaceae). Annual Journal of Botany, 72, 7-16. |
[10] |
Canadell J, Rodà F (1991). Root biomass of Quercus ilex in a montane Mediterranean forest. Canadian Journal of Forest Research, 21, 1771-178.
DOI URL |
[11] |
Clarke PJ, Knox KJE, Wills KE, Campbell M (2005). Landscape patterns of woody plant response to crown fire: disturbance and productivity influence sprouting ability. Journal of Ecology, 93, 544-555.
URL PMID |
[12] |
Crow TR (1992). Population dynamics and growth patterns for a cohort of northern red oak (Quercus rubra) seedlings. Oecologia, 91, 192-200.
DOI URL PMID |
[13] |
de Viñas ICR, Ayanz ASM (2000). Biomass of root and shoot systems of Quercus coccifera shrublands in Eastern Spain. Annals of Forest Science, 57, 803-810.
DOI URL |
[14] |
El Omari B, Aranda X, Verdaguer D, Pascual G, Fleck I (2003). Resource remobilization in Quercus ilex L. resprouts. Plant and Soil, 252, 349-357.
DOI URL |
[15] |
Espelta JM, Riba M, Retana J (1995). Patterns of seedling recruitment in west Mediterranean Quercus ilex forests influenced by canopy development. Journal of Vegetation Science, 6, 465-472.
DOI URL |
[16] | Espelta JM, Sabate S, Retana J (1999). Resprouting dynamics. In: Roda F, Retana J, Gracia CA, Bellot J eds. Ecology of Mediterranean Evergreen Oak Forests Springer, Berlin. 61-73. |
[17] |
FitzGerald RD, Hoddinott J (1983). The utilization of carbohydrates in aspen roots following partial or complete top removal. Canadian Journal of Forest Research, 13, 685-689.
DOI URL |
[18] |
Gurvich DE, Enrico L, Cingolani AM (2005). Linking plant functional traits with post-fire sprouting vigour in woody species in central Argentina. Austral Ecology, 30, 789-796.
DOI URL |
[19] |
Hansen A, Pate JS, Hansen AP (1991). Growth and reproductive performance of a seeder and a resprouter species of Bossiaea as a function of plant age after fire. Annals of Botany, 67, 497-509.
DOI URL |
[20] |
Herrera J (1995). Acorn predation and seedling production in a low density population of cork oak (Quercus suber L.). Forest Ecology and Management, 76, 197-201.
DOI URL |
[21] |
Iwasa Y, Kubo T (1997). Optimal size of storage for recovery after unpredictable disturbances. Evolutionary Ecology, 11, 41-65.
DOI URL |
[22] | Joslin JD, Henderson GS (1987). Organic matter and nutrients associated with fine root turnover in a white oak stand. Forest Science, 33, 330-346. |
[23] |
Kauffman JB (1991). Survival by sprouting following fire in tropical forests of the eastern Amazon. Biotropica, 23, 219-224.
DOI URL |
[24] | Kays JS, Canham CD (1991). Effects of time and frequency of cutting on hardwood root reserves and sprout growth. Forest Science, 37, 524-539. |
[25] |
Knox KJE, Clarke PJ (2005). Nutrient availability induces contrasting allocation and starch formation in resprouting and obligate seeding shrubs. Functional Ecology, 19, 690-698.
DOI URL |
[26] | Kramer PJ, Kozlowski TT (1979). Physiology of Wood Plants. Academic Press, New York. 277, 811. |
[27] | Kuhns MR, Garrett HE, Teskey RO, Hinckley TM (1985). Root growth of black walnut trees related to soil temperature, soil water potential and leaf water potential. Forest Science, 31, 617-629. |
[28] |
Kummerow J, Kummerow M, Trabaud L (1990). Root biomass, root distribution and the fine-root growth dynamics of Quercus coccifera L. in the garrigue of southern France. Vegetatio, 87, 37-44.
DOI URL |
[29] |
Kurz WA, Kimmins JP (1987). Analysis of some sources of error in methods used to determine fine root production in forest ecosystems: a simulation approach. Canadian Journal of Forest Research, 17, 909-912.
DOI URL |
[30] | Liu XL (刘兴良), Hao XD (郝晓东), Yang DS (杨冬生), Liu SR (刘世荣), Su YM (宿以明), Cai XH (蔡小虎), He F (何飞), Ma QY (马钦彦) (2006). Aboveground biomass and its models of Quercus aquifolioides thicket community in Balangshan Mountain in Wolong Natural Reserve. Chinese Journal of Ecology (生态学杂志), 25, 487-491. (in Chinese with English abstract) |
[31] | Liu XL (刘兴良), Yue YJ (岳永杰), Zheng SW (郑少伟), Liu SR (刘世荣), Shi ZM (史作民), Yang DS (杨冬生), Yang YP (杨玉坡), Ma QY (马钦彦) (2005). The altitudinal gradient changes of population demography characteristics of Quercus aquifolioides population. Journal of Sichuan Forestry Science and Technology (四川林业科技), 26(4), 9-15. (in Chinese with English abstract) |
[32] |
López B, Sabaté S, Gracia CA (2001). Annual and seasonal changes in fine root biomass of a Quercus ilex L. forest. Plant and Soil, 230, 125-134.
DOI URL |
[33] |
Lorimer CG, Chapman W, Lambert WD (1994). Tall understory vegetation as a factor in the poor development of oak seedlings beneath mature stands. Journal of Ecology, 82, 227-237.
DOI URL |
[34] | Marschner H (1995). Mineral Nutrition of Higher Plants. Academic Press, London. 889. |
[35] |
Nadelhoffer KJ, Raich JW (1992). Fine root production estimates and belowground carbon allocation in forest ecosystems. Ecology, 73, 1139-1147.
DOI URL |
[36] |
Nzunda EF, Griffiths ME, Lawes MJ (2008). Sprouting by remobilization of above-ground resources ensures persistence after disturbance of coastal dune forest trees. Functional Ecology, 22, 577-582.
DOI URL |
[37] | Ou XK (欧晓昆), Zhang YC (张云春) (1992). Primary study on the population pattern of dominant species and biomass of Quercus longispica sprouted shrub community. Journal of Yunnan University (Natural Sciences Edition) 云南大学学报(自然科学版)), 14, 198-201. (in Chinese with English abstract) |
[38] |
Pate JS, Froend RH, Bowen BJ, Hansen A, Kuo J (1990). Seedling growth and storage characteristics of seeder and resprouter species of Mediterranean-type ecosystems of S.W. Australia. Annals of Botany, 65, 585-601.
DOI URL |
[39] |
Pate JS, Meney KA, Dixon KW (1991). Contrasting growth and morphological characteristics of fire-sensitive (obligate seeder) and fire-resistant (resprouter) species of Restionaceae (S. Hemisphere Restiads) from south-western Western Australia. Australian Journal of Botany, 39, 505-525.
DOI URL |
[40] |
Persson HA (1983). The distribution and productivity of fine roots in boreal forests. Plant and Soil, 71, 87-101.
DOI URL |
[41] |
Roundy BA, Jordan GL (1988). Vegetation changes in relation to livestock exclusion and root plowing in southeastern Arizona (USA). The Southwestern Naturalist, 33, 425-436.
DOI URL |
[42] | Sichuan Forest Editorial Committee (四川森林编委会) (1992). Forests in Sichuan. Chinese Forestry Press, Beijing. 634-645. (in Chinese) |
[43] |
Simon ML, Victor JL (2003). Seasonal changes in carbohydrate reserves in matyre northern Populus tremuloides clones. Trees, 17, 471-476.
DOI URL |
[44] |
Teixeira PC, Novais RF, Barros NF, Neves JCL, Teixeira JL (2002). Eucalyptus urophylla root growth, stem sprouting and nutrient supply from the roots and soil. Forest Ecology and Management, 160, 263-271.
DOI URL |
[45] |
Teskey RO, Hinckley TM (1981). Influence of temperature and water potential on root growth of white oak. Physiologia Plantarum, 52, 363-369.
DOI URL |
[46] |
Thadani R, Ashton PMS (1995). Regeneration of banj oak (Quercus leucotricophora A. Camus) in the central Himalaya. Forest Ecology and Management, 78, 217-224.
DOI URL |
[47] |
Verdaguer D, Ojeda F (2002). Root starch storage and allocation patterns in seeder and resprouter seedlings of two Cape Erica (Ericaceae) species. American Journal of Botany, 89, 1189-1196.
URL PMID |
[48] |
Vesk PA, Westoby M (2004). Sprouting ability across diverse disturbances and vegetation types worldwide. Journal of Ecology, 92, 310-320.
DOI URL |
[49] | Yang QZ (杨钦周) (1990). The characteristics and classification of oak durisilvae in the Himalayan region of China. Acta Phytoecologica et Geobotanica Sinica (植物生态学与地植物学学报), 14, 197-211. (in Chinese with English abstract) |
[50] | Yu Y (于洋), Cao M (曹敏), Liu WS (刘文胜) (2003). Diversity of tree species of subalpine coniferous forests and Quercus sclerophyllous forests in northwest Yunnan. Journal of Mountain Science (山地学报), 21, 568-575. (in Chinese with English abstract) |
[51] | Zhu WZ (朱万泽), Wang JX (王金锡), Luo CR (罗成荣), Duan XM (段学梅) (2007). Progresses of studies on forest sprout regeneration. Scientia Silvae Sinicae (林业科学), 43(9), 74-82. (in Chinese with English abstract) |
[1] | 王袼, 胡姝娅, 李阳, 陈晓鹏, 李红玉, 董宽虎, 何念鹏, 王常慧. 不同类型草原土壤净氮矿化速率的温度敏感性[J]. 植物生态学报, 2024, 48(4): 523-533. |
[2] | 梁逸娴, 王传宽, 臧妙涵, 上官虹玉, 刘逸潇, 全先奎. 落叶松径向生长和生物量分配对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 459-468. |
[3] | 黄玲, 王榛, 马泽, 杨发林, 李岚, SEREKPAYEV Nurlan, NOGAYEV Adilbek, 侯扶江. 长期放牧和氮添加对黄土高原典型草原长芒草种群生长的影响[J]. 植物生态学报, 2024, 48(3): 317-330. |
[4] | 耿雪琪, 唐亚坤, 王丽娜, 邓旭, 张泽凌, 周莹. 氮添加增加中国陆生植物生物量并降低其氮利用效率[J]. 植物生态学报, 2024, 48(2): 147-157. |
[5] | 李娜, 唐士明, 郭建英, 田茹, 王姗, 胡冰, 罗永红, 徐柱文. 放牧对内蒙古草地植物群落特征影响的meta分析[J]. 植物生态学报, 2023, 47(9): 1256-1269. |
[6] | 赵艳超, 陈立同. 土壤养分对青藏高原高寒草地生物量响应增温的调节作用[J]. 植物生态学报, 2023, 47(8): 1071-1081. |
[7] | 苏炜, 陈平, 吴婷, 刘岳, 宋雨婷, 刘旭军, 刘菊秀. 氮添加与干季延长对降香黄檀幼苗非结构性碳水化合物、养分与生物量的影响[J]. 植物生态学报, 2023, 47(8): 1094-1104. |
[8] | 李冠军, 陈珑, 余雯静, 苏亲桂, 吴承祯, 苏军, 李键. 固体培养内生真菌对土壤盐胁迫下木麻黄幼苗渗透调节和抗氧化系统的影响[J]. 植物生态学报, 2023, 47(6): 804-821. |
[9] | 罗娜娜, 盛茂银, 王霖娇, 石庆龙, 何宇. 长期植被恢复对中国西南喀斯特石漠化土壤活性有机碳组分含量和酶活性的影响[J]. 植物生态学报, 2023, 47(6): 867-881. |
[10] | 杜英东, 袁相洋, 冯兆忠. 不同形态氮对杨树光合特性及生长的影响[J]. 植物生态学报, 2023, 47(3): 348-360. |
[11] | 和璐璐, 张萱, 章毓文, 王晓霞, 刘亚栋, 刘岩, 范子莹, 何远洋, 席本野, 段劼. 辽东山区不同坡向长白落叶松人工林树冠特征与林木生长关系[J]. 植物生态学报, 2023, 47(11): 1523-1539. |
[12] | 刘艳杰, 刘玉龙, 王传宽, 王兴昌. 东北温带森林5个羽状复叶树种叶成本-效益关系比较[J]. 植物生态学报, 2023, 47(11): 1540-1550. |
[13] | 郝晴, 黄昌. 森林地上生物量遥感估算研究综述[J]. 植物生态学报, 2023, 47(10): 1356-1374. |
[14] | 李变变, 张凤华, 赵亚光, 孙秉楠. 不同刈割程度对油莎豆非结构性碳水化合物代谢及生物量的影响[J]. 植物生态学报, 2023, 47(1): 101-113. |
[15] | 袁春阳, 李济宏, 韩鑫, 洪宗文, 刘宣, 杜婷, 游成铭, 李晗, 谭波, 徐振锋. 树种对土壤微生物生物量碳氮的影响: 同质园实验[J]. 植物生态学报, 2022, 46(8): 882-889. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19