植物生态学报 ›› 2023, Vol. 47 ›› Issue (10): 1356-1374.DOI: 10.17521/cjpe.2023.0008

所属专题: 全球变化与生态系统 生态遥感及应用

• 综述 • 上一篇    下一篇

森林地上生物量遥感估算研究综述

郝晴1, 黄昌1,2,*()   

  1. 1西北大学城市与环境学院, 西安 710127
    2陕西省地表系统与环境承载力重点实验室, 陕西省碳中和技术重点实验室, 西北大学, 西安 710127
  • 收稿日期:2023-01-11 接受日期:2023-05-30 出版日期:2023-10-20 发布日期:2023-11-23
  • 通讯作者: * (changh@nwu.edu.cn)

A review of forest aboveground biomass estimation based on remote sensing data

HAO Qing1, HUANG Chang1,2,*()   

  1. 1College of Urban and Environmental Science, Northwest University, Xi’an 710127, China
    2Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, Shannxi Key Laboratory for Carbon Neutral Technology, Northwest University, Xi’an 710127, China
  • Received:2023-01-11 Accepted:2023-05-30 Online:2023-10-20 Published:2023-11-23
  • Contact: * (changh@nwu.edu.cn)

摘要:

森林是重要的陆地生态系统, 分布广、生物总量大, 在全球碳循环中起着重要作用。森林地上生物量(AGB)是森林生态系统生产力的重要指标, 也是碳循环的重要参数, 森林AGB的精确估算对研究生态系统的物质循环和全球气候变化具有重要意义。传统的森林AGB估算方法需要获取单木尺度或者林分尺度的物理结构信息, 较为耗时、耗力, 而遥感技术因其可以获得全方位、多时相、大范围的森林结构信息, 在森林AGB估算中发挥着不可替代的作用。因此, 有必要对近年来遥感技术估算森林AGB领域所取得的进展进行归纳、总结和展望, 以期进一步促进遥感数据和方法在该领域的应用以及有效指导相关行业的发展。该文系统归纳了光学数据、合成孔径雷达(SAR)数据与激光雷达(LiDAR)数据估算森林AGB的原理及方法, 并对多源遥感数据协同估算森林AGB的研究现状进行了梳理, 总结了如下结论: 1)新型遥感数据(如高分系列卫星、全球生态系统动态监测激光雷达等)在生物量估算领域的应用愈加广泛, 在时空分辨率方面不断突破, 进一步丰富了森林AGB研究的数据来源; 2)多源遥感数据协同方式能更好地提高森林AGB估算的精度, 但相关模型仍需进行更深层次的优化; 3)目前机器学习、人工智能、深度学习已广泛应用于森林AGB的估算, 但是遥感机理的研究是创新的根源, 模型或方法的改进仍需围绕遥感机理展开。

关键词: 森林地上生物量, 光学遥感, 合成孔径雷达, 激光雷达, 多源遥感协同

Abstract:

Forests are crucial terrestrial ecosystems with wide distribution and substantial biomass, playing a vital role in the global carbon cycle. The estimation of aboveground biomass (AGB) in forests serves as a significant indicator of ecosystem productivity and is pivotal for studying material cycles and global climate change. Traditional methods for AGB estimation rely on individual tree-scale or forest stand-scale tree physical structural information measurements, which are often time-consuming and labor-intensive to obtain. Remote sensing technology offers a solution for comprehensively and multi-temporally obtaining forest structural information in large scale, making it indispensable for forest AGB estimation. Therefore, it is important to review and summarize recent advancements in remote sensing techniques for estimating forest AGB to promote their application and guide the development of related industries. This paper presents a comprehensive overview of the principles and methods used for estimating forest AGB using optical data, synthetic aperture radar (SAR) data, and light detection and ranging (LiDAR) data. It also analyzes the current status of synergistic estimation of forest AGB using multiple remote sensing data sources. The study highlights three key findings: (1) The use of novel remote sensing data, such as high-resolution satellite imagery and Global Ecosystem Dynamics Investigation LiDAR data, is expanding the boundaries of spatial and temporal resolutions, providing enhanced data sources for forest AGB research. (2) Synergistic approaches that combine multiple remote sensing data sources show promise in improving the accuracy of forest AGB estimation, but further optimization of related models is needed. (3) Machine learning, artificial intelligence, and deep learning techniques have been widely applied in forest AGB estimation, but continuous research on remote sensing mechanisms remains essential for innovation. Improvements in models and methodologies should revolve around a better understanding of these mechanisms.

Key words: forest aboveground biomass, optical remote sensing, synthetic aperture radar, light detection and ranging, multi-source remote sensing data collaboration