植物生态学报 ›› 2010, Vol. 34 ›› Issue (10): 1174-1184.DOI: 10.3773/j.issn.1005-264x.2010.10.006
收稿日期:
2009-11-09
接受日期:
2010-01-17
出版日期:
2010-11-09
发布日期:
2010-10-31
通讯作者:
毛子军
作者简介:
* E-mail: zijunm@yahoo.com.cn
MAO Zi-Jun*(), JIA Gui-Mei, LIU Lin-Xin, ZHAO Meng
Received:
2009-11-09
Accepted:
2010-01-17
Online:
2010-11-09
Published:
2010-10-31
Contact:
MAO Zi-Jun
摘要:
蒙古栎(Quercus mongolica)是中国东北地区天然次生林重要组成树种, 研究该树种幼苗有机碳积累及碳库容对未来气候变化的响应, 可为预测未来气候变暖情景下蒙古栎林的天然更新及幼苗的培育提供科学参考。该文旨在探讨CO2浓度和温度升高综合作用对蒙古栎幼苗非结构性碳水化合物(NSC)积累及其分配的影响。实验环境条件用人工气候箱控制, 控制条件如下: 1) CO2浓度倍增(700 μmol·mol-1), 温度升高4 ℃处理(HCHT); 2) CO2浓度正常(400 μmol·mol-1), 温度升高4 ℃处理(HT); 3) CO2浓度和温度均正常, 即对照组(CK); 每个气候箱幼苗分别在3种氮素水平下生长: N2 (15 mmol·L-1, 高氮), N1 (7.5 mmol·L-1, 正常供氮)和N0 (不施氮), 一共为9个处理。研究结果表明, 1) HCHT共同作用对NSC积累无促进作用, 但改变了植物各器官中NSC的分配比例, 叶片中可溶性糖和淀粉的积累明显增加, HCHT下N2水平有利于NSC的积累。2) HT明显影响了蒙古栎一年生幼苗NCS的积累和分配。在N2水平下, HT明显促进NSC的积累, 并增加了在主根中的分配比例。3)植株各器官可溶性糖含量的动态变化因处理不同而异。主根淀粉含量随时间逐渐增加, 而细根淀粉含量随时间逐渐减少。在未来气候变暖的情况下, 土壤中大量的氮供给, 可能将促进蒙古栎幼苗的生长、增加其碳库容和抵御不良环境的能力, 进而提高其天然更新潜力。
毛子军, 贾桂梅, 刘林馨, 赵甍. 温度增高、CO2浓度升高、施氮对蒙古栎幼苗非结构碳水化合物积累及其分配的综合影响. 植物生态学报, 2010, 34(10): 1174-1184. DOI: 10.3773/j.issn.1005-264x.2010.10.006
MAO Zi-Jun, JIA Gui-Mei, LIU Lin-Xin, ZHAO Meng. Combined effects of elevated temperature, elevated [CO2] and nitrogen supply on non-structural carbohydrate accumulation and allocation in Quercus mongolica seedlings. Chinese Journal of Plant Ecology, 2010, 34(10): 1174-1184. DOI: 10.3773/j.issn.1005-264x.2010.10.006
图1 气候箱1、2中6-8月份温度和3个气候箱的光强。
Fig. 1 Temperature (in growth camber 1, camber 2) and illumination (in all of three chambers) of June, July and August. PAR, photosynthetically active radiation.
图2 幼苗各部分干物质中可溶性糖的百分含量。 0A, 叶。B, 茎。C, 主根。D, 侧根。E, 细根。N2, 高氮(15 mmol·L-1); N1, 正常氮(7.5 mmol·L-1); N0, 不施氮;HCHT, CO2浓度倍增(700 μmol·mol-1)和平均气温增加4 ℃; HT, 平均气温增加4 ℃; CK, 对照。
Fig. 2 Percentage of soluble sugar of dry matter in various parts of seedlings. A, Leaf. B, Stem. C, Taproot. D, Lateral root. E, Fine root. N2, high nitrogen (15 mmol·L-1); N1, normal nitrogen (7.5 mmol·L-1); N0, no added nitrogen. HCHT, CO2 concentration elevated to 700 μmol·mol-1 and temperature elevated 4 ℃; HT, temperature elevated 4 ℃; CK, control.
图4 不同条件下幼苗干物质可溶性糖的百分含量。 不同小写字母表示在p ≤ 0.05水平下相同月份不同处理间差异显著。CK、HCHT、HT、N0、N1、N2同图2。
Fig. 4 The percentage of sugar of the whole seedling in different conditions. Different small letters show significant differences (p ≤ 0. 05) among different treatments in the same month. CK, HCHT, HT, N0, N1, N2, see Fig. 2.
图5 不同条件下幼苗干物质的淀粉百分含量。 不同小写字母表示在p ≤ 0.05水平下相同月份不同处理间差异显著性不同。N0、N1、N2同图2。
Fig. 5 The percentage of starch of the whole seedling in different conditions. Different small letters show significant differences (p ≤ 0. 05) among different treatments in the same month. N0, N1, N2, see Fig. 2.
图6 不同条件下幼苗干物质的总NSC百分含量。 不同小写字母表示在p ≤ 0.05水平下相同月份不同处理间差异显著性不同。N0、N1、N2同图2。
Fig. 6 The percentage of non-structure carbohydrate of the whole seedling in different conditions. Different small letters show significant differences (p ≤ 0. 05) among different treatments in the same each month. N0, N1, N2, see Fig. 2.
图7 整株幼苗及其各个部分可溶性糖的积累动态。 FR, 细根; L, 叶; LR, 侧根; S, 茎; TR, 主根。图中不同小写字母表示相同月份不同处理在p ≤ 0.05水平下差异显著。CK、HCHT、HT、N0、N1、N2同图2。
Fig. 7 Dynamics of the accumulation of sugar in whole seedlings and their various parts. FR, fine root; L, leaf; LR, lateral root; S, stem; TR, taproot. Columns of the same variable in columns N2, N1, and N0 with different small letters above them are significantly different (p ≤ 0. 05) among different treatments in the same each month. CK, HCHT, HT, N0, N1, N2, see Fig. 2.
N水平 N level | HCHT | HT | CK | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
L | S | TR | LR | FR | L | S | TR | LR | FR | L | S | TR | LR | FR | |
N2 | 42 | 11 | 40 | 3 | 4 | 12 | 16 | 60 | 8 | 4 | 23 | 4 | 57 | 4 | 2 |
N1 | 43 | 14 | 38 | 3 | 2 | 26 | 28 | 36 | 6 | 4 | 22 | 21 | 47 | 5 | 5 |
N0 | 33 | 11 | 42 | 6 | 8 | 22 | 23 | 46 | 4 | 5 | 17 | 17 | 55 | 4.5 | 6.5 |
表1 不同处理条件下幼苗各部分可溶性糖的分配(%)
Table 1 Allocation of soluble sugars in various parts of seedlings under different treatment conditions (%)
N水平 N level | HCHT | HT | CK | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
L | S | TR | LR | FR | L | S | TR | LR | FR | L | S | TR | LR | FR | |
N2 | 42 | 11 | 40 | 3 | 4 | 12 | 16 | 60 | 8 | 4 | 23 | 4 | 57 | 4 | 2 |
N1 | 43 | 14 | 38 | 3 | 2 | 26 | 28 | 36 | 6 | 4 | 22 | 21 | 47 | 5 | 5 |
N0 | 33 | 11 | 42 | 6 | 8 | 22 | 23 | 46 | 4 | 5 | 17 | 17 | 55 | 4.5 | 6.5 |
N水平 N level | HCHT | HT | CK | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
L | S | TR | LR | FR | L | S | TR | LR | FR | L | S | TR | LR | FR | |||
N2 | 25 | 6 | 64 | 4 | 1 | 6 | 8 | 76 | 9 | 1 | 9 | 10 | 76 | 4 | 1 | ||
N1 | 17 | 7 | 72 | 3 | 1 | 21 | 18 | 57 | 3 | 1 | 11 | 16 | 69 | 3 | 1 | ||
N0 | 28 | 6 | 60 | 4 | 2 | 18 | 11 | 68 | 2 | 1 | 7 | 7 | 83 | 2 | 1 |
表2 不同处理条件下幼苗各部分淀粉的分配(%)
Table 2 Allocation of starch in various parts of seedling under different treatment conditions (%)
N水平 N level | HCHT | HT | CK | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
L | S | TR | LR | FR | L | S | TR | LR | FR | L | S | TR | LR | FR | |||
N2 | 25 | 6 | 64 | 4 | 1 | 6 | 8 | 76 | 9 | 1 | 9 | 10 | 76 | 4 | 1 | ||
N1 | 17 | 7 | 72 | 3 | 1 | 21 | 18 | 57 | 3 | 1 | 11 | 16 | 69 | 3 | 1 | ||
N0 | 28 | 6 | 60 | 4 | 2 | 18 | 11 | 68 | 2 | 1 | 7 | 7 | 83 | 2 | 1 |
[1] |
Andrews M, Raven JA, Sprent JI (2001). Environmental effects on dry matter partitioning between shoot and root of crop plants: relations with growth and shoot protein concentration. Annals of Applied Biology, 138, 57-68.
DOI URL |
[2] |
Coleman W, Bazzaz FA (1992). Is carbon dioxide a ‘good’ greenhouse gas? Effect of increasing carbon dioxide on ecological systems. Global Environment Change, 2, 301-310.
DOI URL |
[3] |
Domisch T, Finer L, Lehto T (2001). Effects of soil temperature on biomass and carbohydrate allocation in Scots pine (Pinus sylvestris L.) seedlings at the beginning of the growing season. Tree Physiology, 21, 465-472.
DOI URL PMID |
[4] | Farrar JF, Williams ML (1991). The effects of increased atmospheric carbon dioxide and temperature on carbon partitioning, source-sink relations and respiration. Plant, Cell & Environment, 14, 819-830. |
[5] |
Fischer C, Höll W (1991). Food reserves of Scots pine (Pinus sylvestris L.). 1. Seasonal-changes in the carbohydrate and fat reserves of pine needles. Trees, 5, 187-195.
DOI URL |
[6] |
Hobbie EA, Gregg J, Olszyk DM, Rygiewicz PT, Tingey DT (2002). Effects of climate change on labile and structural carbon in Douglas fir needles as estimated by delta C-13 and C-area measurements. Global Change Biology, 8, 1072-1084.
DOI URL |
[7] |
Hyvonen R, Agren GI, Linder S, Persson T, Cotrufo MF, Ekblad A, Freeman M, Grelle A, Janssens IA, Jarvis PG, Kellomaki S, Lindroth A, Loustau D, Lundmark T, Norby RJ, Oren R, Pilegaard K, Ryan MG, Sigurdsson BD, Stromgren M, van Oijen M, Wallin G (2007). The likely impact of elevated [CO2], nitrogen deposition, increased temperature and management on carbon sequestration in temperate and boreal forest ecosystems: a literature review. New Phytologist, 173, 463-480.
DOI URL |
[8] |
Kozlowski TT (1992). Carbohydrate sources and sinks in woody plants. Botanical Review, 58, 107-222 .
DOI URL |
[9] | Kozlowski TT, Pallardy SG (1997). Physiology of Woody Plants 2nd edn. Academic Press, San Diego, USA. 159-173. |
[10] | Lambers H, Chapin III FS, Pons TL (1998). Plant Physiological Ecology. Springer-Verlag, New York. 58-59. |
[11] |
Landhäusser SM, Lieffers VJ (2003). Seasonal changes in carbohydrate reserves in mature northern Populus tremuloides clones. Trees, 17, 471-476.
DOI URL |
[12] | Li QC (李青超), Zhang YB (张远彬), Wang KY (王开运), Xu Y (徐燕), Qiao YZ (乔匀周) (2008). Effects of elevated CO2 concentration on carbohydrate contents and allocation in Betula albo-sinensis seedlings in sub-alpine forest area. Journal of Northwest Forestry University (西北林学院学报), 23(1), 1-5. (in Chinese with English abstract) |
[13] | Li ZX (李正祥) (1983). Many varieties comparison with Duncan Duncan’s new multiple range test method of statistical and analytical method. China Beet & Sugar (中国甜菜糖业), (2), 16-18. (in Chinese) |
[14] | Lin FP (林丰平), Chen ZH (陈章和), Chen ZP (陈兆平), Zhang DM (张德明) (1999). Physiological and biochemical responses of the seedlings of four legume species to high CO2 concentration. Acta Phytoecologica Sinica (植物生态学报), 23, 220-227. (in Chinese with English abstract) |
[15] | Ma LX (马立祥), Zhao M (赵甍), Mao ZJ (毛子军), Liu LX (刘林馨), Zhao XZ (赵溪竹) (2010). Effects of elevated temperature and [CO2] under different nitrogen regimes on biomass and its allocation in Quercus mongolica seedlings. Chinese Journal of Plant Ecology (植物生态学报), 34, 279-288. (in Chinese with English abstract) |
[16] |
Overdieck D, Fenselau K (2009). Elevated CO2 concentration and temperature effects on the partitioning of chemical components along juvenile Scots pine (Pinus sylvestris L.) stems. Trees, 23, 771-786.
DOI URL |
[17] | Pan QM (潘庆民), Han XG (韩兴国), Bai YF (白永飞), Yang QC (杨景成) (2002). Advances in physiology and ecology studies on stored non-structural carbohydrates in plant. Chinese Bulletin of Botany (植物学通报), 19, 30-38. (in Chinese with English abstract) |
[18] |
Piispanen R, Saranpää P (2001). Variation of non-structural carbohydrates in silver birch (Betula pendula Roth) wood. Trees, 15, 444-451.
DOI URL |
[19] | Poorter H, Villar R (1997). The fate of acquired carbon in plant: chemical composition and construction cost. In: Bazzaz FA, Grace J eds. Plant Resource Allocation Academic Press, London. 39-72. |
[20] |
Rawson SA, Veverka C (1992). Innovative techniques for collection of saturated and unsaturated subsurface basalts and sediments for microbiological characterization. Journal of Microbiological Methods, 15, 279-292.
DOI URL |
[21] |
Rowiand-Bamford AJ, Baker JT, Allen LH Jr, Bowes G (1996). Interactions of CO2 enrichment and temperature on carbohydrate accumulation and partitioning in rice. Environmental and Experimental Botany, 36, 111-124.
DOI URL |
[22] |
Schaberg PG, Snyder MC, Shane JB, Donnelly JR (2000). Seasonal patterns of carbohydrate reserves in red spruce seedlings. Tree Physiology, 20, 549-555.
DOI URL PMID |
[23] |
Schädel C, Blöchl A, Richter A, Hoch G (2009). Short-term dynamics of nonstructural carbohydrates and hemicelluloses in young branches of temperate forest trees during bud break. Tree Physiology, 29, 901-911.
URL PMID |
[24] |
Spann TM, Beede RH, Dejong TM (2008). Seasonal carbohydrate storage and mobilization in bearing and non-bearing pistachia (Pistacia vera) trees. Tree Physiology, 28, 207-213.
DOI URL PMID |
[25] | Sun GC (孙谷畴), Zhao P (赵平), Rao XQ (饶兴权), Cai XA (蔡锡安), Zeng XP (曾小平) (2005). Effects of nitrate application on alleviating photosynthesis restriction of Cinnamomum burmannii leaves under elevated CO2 concentration and enhanced temperature. Chinese Journal of Applied Ecology (应用生态学报), 16, 1399-1404. (in Chinese with English abstract) |
[26] | Tjoelker MG, Reich PB, Oleksyn J (1999). Changes in leaf nitrogen and carbohydrates underlie temperature and CO2 acclimation of dark respiration in five boreal tree species. Plant, Cell & Environment, 22, 767-778. |
[27] | Uprety DC, Sunita K, Neeta D, Rajat M (2000). Effect of elevated CO2 on the growth and yield of rice. Indian Journal of Plant Physiology, 5, 105-107. |
[28] |
Vu JCV, Allen LH Jr, Bowes G (1989). Leaf ultrastructure, carbohydrates and protein of soybeans grown under CO2 enrichment. Environmental and Experimental Botany, 29, 141-147.
DOI URL |
[29] | Wang JY (王晶英), Au H (敖红), Zhang J (张杰), Qu GQ (曲桂琴) (2003). Techniques and Principles of Plant Physiological Biochemical Experiment (植物生理生化实验技术与原理). Northeast Forestry University Press, Harbin. 11-15. (in Chinese). |
[30] |
Wang XW, Zhao M, Mao ZJ, Zhu SY, Zhang DL, Zhao XZ (2008). Combination of elevated CO2 concentration and elevated temperature and elevated temperature only promote photosynthesis of Quercus mongolica seedlings. Russian Journal of Plant Physiology, 55, 54-58.
DOI URL |
[31] |
Wang Z, Pan Q, Quebedeaux B (1999). Carbon partitioning into sorbitol, sucrose, and starch in source and sink apple leaves as affected by elevated CO2. Environmental and Experimental Botany, 41, 39-46.
DOI URL |
[32] |
Xu ZZ, Zhou GS, Wang YH (2007). Combined effects of elevated CO2 and soil drought on carbon and nitrogen allocation of the desert shrub Caragana intermedia. Plant and Soil, 301, 87-97.
DOI URL |
[33] | Yang JY (杨金艳), Yang WQ (杨万勤), Wang KY (王开运), Sun JP (孙建平) (2003). Woody plants respond to interactions between elevated CO2 and increased temperature. Acta Phytoecologica Sinica (植物生态学报), 27, 304-310. (in Chinese with English abstract) |
[1] | 张宏锦, 王娓. 生态系统多功能性对全球变化的响应: 进展、问题与展望[J]. 植物生态学报, 2021, 45(10): 1112-1126. |
[2] | 张维康, 李贺, 王国宏. 北京西北部山地两个垂直样带内主要植被类型的群落特征[J]. 植物生态学报, 2013, 37(6): 566-570. |
[3] | 于丽敏, 王传宽, 王兴昌. 三种温带树种非结构性碳水化合物的分配[J]. 植物生态学报, 2011, 35(12): 1245-1255. |
[4] | 马立祥, 赵甍, 毛子军, 刘林馨, 赵溪竹. 不同氮素水平下增温及[CO2]升高综合作用对蒙古栎幼苗生物量及其分配的影响[J]. 植物生态学报, 2010, 34(3): 279-288. |
[5] | 白莉萍, 仝乘风, 林而达, 卢志光, 饶敏杰. 基于CTGC试验系统下面包小麦主要品质性状的研究[J]. 植物生态学报, 2005, 29(5): 814-818. |
[6] | 杨金艳, 杨万勤, 王开运, 孙建平. 木本植物对CO2浓度和温度升高的相互作用的响应[J]. 植物生态学报, 2003, 27(3): 304-310. |
[7] | 桑卫国, 陈灵芝, 于顺利, 马克平. 蒙古栎红松林物种组成和结构动态的研究[J]. 植物生态学报, 2000, 24(2): 231-237. |
[8] | 于顺利, 桑卫国, 马克平, 陈灵芝, 徐存宝. 小兴安岭蒙古栎林演替的研究[J]. 植物生态学报, 1999, 23(199901): 70-76. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19