植物生态学报 ›› 2010, Vol. 34 ›› Issue (3): 279-288.DOI: 10.3773/j.issn.1005-264x.2010.03.005
收稿日期:
2009-02-16
接受日期:
2009-06-20
出版日期:
2010-02-16
发布日期:
2010-03-01
通讯作者:
毛子军
作者简介:
* E-mail: zijunm@yahoo.com.cn
MA Li-Xiang, ZHAO Meng, MAO Zi-Jun*(), LIU Lin-Xin, ZHAO Xi-Zhu
Received:
2009-02-16
Accepted:
2009-06-20
Online:
2010-02-16
Published:
2010-03-01
Contact:
MAO Zi-Jun
摘要:
蒙古栎(Quercus mongolica)是东北地区天然次生林重要组成树种, 研究该树种对未来气候变暖的响应, 可为预测未来气候变暖情况下蒙古栎林的发展动态、制定合理的经营措施提供科学参考。该文旨在探讨不同的供氮水平下, CO2浓度和温度升高综合作用对蒙古栎幼苗生物量及其分配的影响。实验采用人工气候箱控制, 控制条件分别为温度升高4 ℃(ET)、CO2浓度倍增(700 μmol CO2 ·mol-1) × 温度升高4 ℃ (ECET)和对照(正常温度, CO2浓度为400 μmol CO2·mol-1) (CK), 每个控制条件幼苗的基质分别用3种氮素水平处理: N1 (15 mmol·L-1 N)、N2 (7.5 mmol·L-1 N)和N3 (不施氮)。研究结果显示, 1)在ET条件下, N1明显促进幼苗茎的高生长、径生长和生物量积累, 幼苗生物量的分配随氮素浓度的增加, 地下生物量所占的比例增大。2) ECET条件下N1明显促进幼苗的高生长, 但对径生长影响不显著, 对幼苗总生物量积累的影响不显著。但N1增加了地下生物量的比例。3) ET与ECET条件下幼苗叶片的碳氮比均随供氮水平降低而升高, 但ECET下碳氮比的升高是由于叶片碳含量较高引起的, 而ET条件下则是由于叶片氮含量的降低而引起的。ECET和ET条件较低的氮素供应水平综合作用对蒙古栎幼苗的生物量积累无促进作用。因此, 在未来气候变化情况下, 土壤中充足的氮供给可能将促进蒙古栎幼苗的生长, 增加其天然更新潜力, 并增加其碳库容。
马立祥, 赵甍, 毛子军, 刘林馨, 赵溪竹. 不同氮素水平下增温及[CO2]升高综合作用对蒙古栎幼苗生物量及其分配的影响. 植物生态学报, 2010, 34(3): 279-288. DOI: 10.3773/j.issn.1005-264x.2010.03.005
MA Li-Xiang, ZHAO Meng, MAO Zi-Jun, LIU Lin-Xin, ZHAO Xi-Zhu. Effects of elevated temperature and [CO2] under different nitrogen regimes on biomass and its allocation in Quercus mongolica seedlings. Chinese Journal of Plant Ecology, 2010, 34(3): 279-288. DOI: 10.3773/j.issn.1005-264x.2010.03.005
图1 不同处理条件下蒙古栎幼苗株高的动态变化(平均值±标准误差, n = 4)。 N1, 15 mmol·L-1 N; N2, 7.5 mmol·L-1 N; N3, no add N in soil substrate。A, CO2浓度倍增和高温。B, 高温。C, 对照。
Fig. 1 Dynamic of seedling hight of Quercus mongolica grown under different treatment conditions (mean ± SE, n = 4). N1, 15 mmol·L-1 N; N2, 7.5 mmol·L-1 N; N3, no add N in soil substrate. A, Elevated [CO2] and high temperature. B, Elevated temperature. C, CK.
图2 不同处理条件下蒙古栎幼苗基径的动态变化。 图注同图1。
Fig. 2 Dynamic of stem base diameter of Quercus mongolica seedlings grown under different treatment conditions (mean ± SE, n = 4). Notes see Fig. 1.
图3 不同处理条件下蒙古栎幼苗总生物量分配的动态变化(平均值±标准误差, n = 4)。 图注同图1。
Fig. 3 Dynamics of total biomass allocation of Quercus mongolica seedlings grown under different treatment conditions (mean ± SE, n = 4). Notes see Fig. 1.
图4 不同处理条件下蒙古栎幼苗各部分生物量分配比例。
Fig. 4 Partitioning proportion of seedling biomass of Quercus mongolica seedlings grown under different treatment conditions. CK, control; ECET, 700 mmol CO2·mol-1 and elevated temperature (+4 °C); ET, Elevated temperature (+4 °C).
图5 不同处理条件下蒙古栎幼苗叶片碳、氮含量及C/N(平均值±标准误差, n = 4)。 A, 叶片碳含量。B, 叶片氮含量。C, 叶片C/N。CK, 对照; ECET, CO2浓度倍增和高温; ET, 高温。
Fig. 5 Leaf C and N concentration and C/N of Quercus mongolica seedlings grown under different treatment conditions (mean ± SE, n = 4). A, Leaf C concentration. B, Leaf N concentration. C, C/N ratio in leaf. CK, control; ECET, 700 mmol CO2·mol-1 and elevated temperature (+4 °C); ET, elevated temperature (+4 °C).
[1] | Ågren GI, Ingestad T (1987). Root : shoot ratio as a balance between nitrogen productivity and photosynthesis. Plant, Cell and Environment, 10, 579-586. |
[2] | Chen DX, Coughenour MB, Eberts D, Thullen JS (1994). Interactive effects of CO2 enrichment and temperature on the growth of dioecious Hydrilla verticellata. Environmental and Experimental Botany, 34, 345-353. |
[3] | Coleman JS, Bazzaz FA (1992). Effects of CO2 and temperature on growth and resource use of co-occurring C3 and C4 annuals. Ecology, 73, 1244-1259. |
[4] |
Cruz C, Lips H, Martins-Loução MA (2003). Nitrogen use efficiency by a slow-growing species as affected by CO2 levels, root temperature, N source and availability. Journal of Plant Physiology, 160, 1421-1428.
DOI URL PMID |
[5] | Eamus D, Jarvis PG (1989). The direct effects of increase in the global atmospheric CO2 concentration on natural and commercial temperate trees and forests. Advances in Ecological Research, 19, 1-55. |
[6] | Fan ZQ (范志强), Wang ZQ (王政权), Wu C (吴楚), Li HX (李红心) (2004). Effect of different nitrogen supply on Fraxinus mandshurica seedling’s biomass, N partitioning and their seasonal variation. Chinese Journal of Applied Ecology (应用生态学报), 15, 1497-1501. (in Chinese with English abstract) |
[7] |
Farquhar GD, von Caemmerer S, Berry JA (1980). A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta, 149, 78-90.
DOI URL PMID |
[8] |
Frink CR, Waggoner PE, Ausubel JH (1999). Nitrogen ferti- lizer: retrospect and prospect. Proceedings of the National Academy of Sciences of the United States of America, 96, 1175-1180.
DOI URL PMID |
[9] | van Gardingen PR, Grace J, Harkness DD, Miglietta F, Raschi A (1995). Carbon dioxide emissions at an Italian mineral spring: measurements of average CO2 concentration and air temperature. Agricultural and Forest Meteorology, 73, 17-27. |
[10] | Gebauer RLE, Reynolds JF, Strain BR (1996). Allometric relations and growth in Pinus taeda: the effect of elevated CO2 and changing N availability. New Phytologist, 134, 85-93. |
[11] |
Gielen B, Ceulemans R (2001). The likely impact of rising atmospheric CO2 on natural and managed Populus: a literature review. Environmental Pollution, 115, 335-358.
DOI URL PMID |
[12] | de Groot CC, Marcelis LFM, van den Boogaard R, Lambers H (2001). Growth and dry mass partitioning in tomato as affected by phosphorus nutrition and light. Plant, Cell & Environment, 24, 1309-1317. |
[13] | Guo JP (郭建平), Gao SH (高素华), Liu L (刘玲), Zhou GS (周广胜) (2005). Impacts of climatic change on Quercus mongolica. Resources Science (资源科学), 27, 168-172. (in Chinese with English abstract) |
[14] | Hanson PJ, Wullschleger SD, Norby RJ, Tschaplinski TJ, Gunderson CA (2005). Importance of changing CO2, temperature, precipitation, and ozone on carbon and water cycles of an upland oak forest: incorporating experimental results into model simulations. Global Change Biology, 11, 1402-1423. |
[15] | Harrison KG, Norby RJ, Post WM, Chapp EL (2004). Soil C accumulation in a white oak CO2-enrichment experiment via enhanced root production. Earth Interactions, 8, 1-15. |
[16] | Hunt HW, Elliot DT, Detling JK, Morgan JA, Chen DX (1996). Responses of a C3 and a C4 perennial grass to elevated CO2 and temperature under different water regimes. Global Change Biology, 2, 35-47. |
[17] | Huo CF (霍常富), Wang ZQ (王政权), Sun HL (孙海龙), Fan ZQ (范志强), Zhao XM (赵晓敏) (2008). Interactive effects of light intensity and nitrogen supply on Fraxinus mandshurica seedlings growth, biomass, and nitrogen allocation. Chinese Journal of Applied Ecology (应用生态学报), 19, 1658-1664. (in Chinese with English abstract) |
[18] | Hutching MJ, de Kroon H (1994). Foraging in plants: the role of morphological plasticity in resource acquisition. Advances in Ecological Research, 25, 159-238. |
[19] | Hyvönen R, Ågren GI, Linder S, Persson T, Cotrufo MF, Ekblad A, Freeman M, Grelle A, Janssens IA, Jarvis PG, Kellomäki S, Lindroth A, Loustau D, Lundmark T, Norby RJ, Oren R, Pilegaard K, Ryan MIG, Sigurdsson BD, Strömgren M, van Oijen M, Wallin G (2007). The likely impact of elevated [CO2], nitrogen deposition, increased temperature, and management on carbon sequestration in temperate and boreal forest ecosystems: a literature review. New Phytologist, 173, 463-480. |
[20] | Idso KE, Idso SB (1994). Plant responses to atmospheric CO2 enrichment in the face of environmental constraints: a review of the past 10 years’ research. Agricultural and Fo- rest Meteorology, 69, 153-203. |
[21] | IPCC (Intergovernmental Panel on Climate Change) (2001). Climate Change 2001: the Scientific Basis Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK. |
[22] |
Kelloämki S, Wang KY (2001). Growth and resource use of birch seedlings under elevated carbon dioxide and temperature. Annals of Botany, 87, 669-682.
DOI URL |
[23] |
Kramer PJ (1981). Carbon dioxide concentration, photosynthesis, and dry matter production. BioScience, 31, 29-33.
DOI URL |
[24] | Lambers H, Freijsen N, Poorter H, Hirose T, van der Werf A (1990). Analyses of growth based on net assimilation rate and nitrogen productivity. Their physiological background. In: Lambers H, Cambridge ML, Konings H, Pons TL eds. Causes and Consequences of Variation in Growth Rate and Productivity of Higher Plants. SPB Academic Publishing, Hague, The Netherlands. 1-18. |
[25] |
Lilley JM, Bolger TP, Gifford RM (2001a). Productivity of Trifolium subterraneum and Phalaris aquatica under warmer, high CO2 conditions. New Phytologist, 150, 371-383.
DOI URL |
[26] |
Lilley JM, Bolger TP, Peoples MB, Gifford RM (2001b). Nutritive value and the nitrogen dynamics of Trifolium subterraneum and Phalaris aquatica under warmer, high CO2 conditions. New Phytologist, 150, 385-395.
DOI URL |
[27] | Morgan JA, Hunt HW, Monz CA, LeCain DR (1994). Consequences of growth at two carbon dioxide concentrations and two temperatures for leaf gas exchange in Pascopyrum smithii (C3) and Bouteloua gracilis (C4) Plant, Cell & Environment, 17, 1023-1033. |
[28] | Morison L, Lawlor W (1999). Interactions between increasing CO2 concentration and temperature on plant growth. Plant, Cell & Environment, 22, 659-682. |
[29] |
Norby RJ, DeLucia EH, Gielen B, Calfapietra C, Giardina CP, King JS, Ledford J, McCarthy HR, Moore DJP, Ceulemans R, de Angelis P, Finzi AC, Karnosky DF, Kubiske ME, Lukac M, Pregitzer KS, Scarascia-Mugnozza GE, Schlesinger WH, Oren R (2005). Forest response to elevated CO2 is conserved across a broad range of productivity. Proceedings of the National Academy of Sciences of the United States of America, 102, 18052-18056.
DOI URL PMID |
[30] |
Norby RJ, Pastor J, Melillo JM (1986). Carbon-nitrogen interactions in CO2-enriched white oak: physiological and long-term perspectives. Tree Physiology, 2, 233-241.
DOI URL PMID |
[31] |
Norby RJ, Wullschleger SD, Gunderson CA, Nietch CT (1995). Increased growth efficiency of Quercus alba trees in a CO2-enriched atmosphere. New Phytologist, 131, 91-97.
DOI URL |
[32] | Poorter H, Roumet C, Campbell BD (1996). Intraspecific variation in the growth response of plants to elevated CO2: a search for functional types. In: Korner C, Bazzaz F eds. Carbon Dioxide, Populations, and Communities. Academic Press, New York 375-412. |
[33] |
Rawson HM (1992). Plant responses to temperature under conditions of elevated CO2. Australian Journal of Botany, 40, 473-490.
DOI URL |
[34] |
Read JJ, Morgan JJ (1996). Growth and partitioning in Pascopyrum smithii (C3) and Bouteloua gracilis (C4) as influenced by carbon dioxide and temperature. Annals of Botany, 77, 487-496.
DOI URL |
[35] |
Retuerto R, Woodward FI (1993). The influences of increased CO2 and water supply on growth, biomass allocation and water use efficiency of Sinapis alba L. grown under different wind speeds. Oecologia, 94, 415-427.
DOI PMID |
[36] |
Roumet C, Bell MP, Sonié L, Jardon F, Roy J (1996). Growth response of grasses to elevated CO2: a physiological plurispecific analysis. New Phytologist, 133, 595-603.
DOI URL |
[37] | Stitt M, Krapp A (1999). The interaction between elevated carbon dioxide and nitrogen nutrition: the physiological and molecular background. Plant, Cell & Environment, 22, 553-621. |
[38] | Sun GC (孙谷畴), Zhao P (赵平), Rao XQ (饶兴权), Cai XA (蔡锡安), Zeng XP (曾小平) (2005). Effects of nitrate application on alleviating photosynthesis restriction of Cinnamomum burmannii leaves under elevated CO2 concentration and enhanced temperature. Chinese Journal of Applied Ecology (应用生态学报), 16, 1399-1404. (in Chinese with English abstract) |
[39] | Vitousek PM, Howarth RW (1991). Nitrogen limitation on land and in the sea: How can it occur? Biogeochemistry, 13, 87-115. |
[40] | Wang M (王淼), Li QR (李秋荣), Hao ZQ (郝占庆), Dong BL (董百丽) (2004). Effects of soil water regimes on the growth of Quercus mongolica seedlings in Changbai Mountains. Chinese Journal of Applied Ecology (应用生态学报), 15, 1765-1770. (in Chinese with English abstract) |
[41] | Wang ML (王满莲), Feng YL (冯玉龙) (2005). Effects of soil nitrogen levels on morphology, biomass allocation and photosynthesis in Ageratina adenophora and Chromol- eana odorata. Acta Phytoecologica Sinica (植物生态学报), 29, 697-705. (in Chinese with English abstract) |
[42] |
Wang XW, Zhao M, Mao ZJ, Zhu SY, Zhang DL, Zhao XZ (2008). Combination of elevated CO2 concentration and elevated temperature and elevated temperature only promote photosynthesis of Quercus mongolica seedlings. Russian Journal of Plant Physiology, 55, 54-58.
DOI URL |
[43] | Wang ZQ (王忠强), Wu LH (吴良欢), Liu TT (刘婷婷), Chu YW (褚有为), Shao XL (邵雪玲) (2007). Effect of different nitrogen rates on Parthenocissus tricuspidata Planch seedling growth and nutrient distribution. Acta Ecologica Sinica (生态学报), 27, 3435-3441. (in Chinese with English abstract) |
[44] | White A, Cannel MGR, Friend AD (1999). Climate change impacts on ecosystems and the terrestrial carbon sink: a new assessment. Global Environmental Change, 9, 21-30. |
[45] | Zhao M (赵甍), Wang XW (王秀伟), Mao ZJ (毛子军) (2006). The effect of CO2 concentration and temperature on chlorophyll content of Quercus mongolica Fisch. under different nitrogen levels. Bulletin of Botanical Research (植物研究), 26, 337-341. (in Chinese with English abstract) |
[46] | Zhou XF (周晓峰), Zhang YD (张远东), Sun HZ (孙慧珍), Chai YX (柴一新), Wang YH (王义弘) (2002). The effect on climate change on population dynamics of Quercus mongolica in North Greater Xing’an Mountain. Acta Ecologica Sinica (生态学报), 22, 1035-1040. (in Chinese with English abstract) |
[1] | 梁逸娴, 王传宽, 臧妙涵, 上官虹玉, 刘逸潇, 全先奎. 落叶松径向生长和生物量分配对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 459-468. |
[2] | 耿雪琪, 唐亚坤, 王丽娜, 邓旭, 张泽凌, 周莹. 氮添加增加中国陆生植物生物量并降低其氮利用效率[J]. 植物生态学报, 2024, 48(2): 147-157. |
[3] | 刘艳杰, 刘玉龙, 王传宽, 王兴昌. 东北温带森林5个羽状复叶树种叶成本-效益关系比较[J]. 植物生态学报, 2023, 47(11): 1540-1550. |
[4] | 王娇, 关欣, 张伟东, 黄苛, 朱睦楠, 杨庆朋. 杉木幼苗生物量分配格局对氮添加的响应[J]. 植物生态学报, 2021, 45(11): 1231-1240. |
[5] | 张宏锦, 王娓. 生态系统多功能性对全球变化的响应: 进展、问题与展望[J]. 植物生态学报, 2021, 45(10): 1112-1126. |
[6] | 邢磊, 段娜, 李清河, 刘成功, 李慧卿, 孙高洁. 白刺不同物候期的生物量分配规律[J]. 植物生态学报, 2020, 44(7): 763-771. |
[7] | 张娜, 朱阳春, 李志强, 卢信, 范如芹, 刘丽珠, 童非, 陈静, 穆春生, 张振华. 淹水和干旱生境下铅对芦苇生长、生物量分配和光合作用的影响[J]. 植物生态学报, 2018, 42(2): 229-239. |
[8] | 高景, 王金牛, 徐波, 谢雨, 贺俊东, 吴彦. 不同雪被厚度下典型高山草地早春植物叶片性状、株高及生物量分配的研究[J]. 植物生态学报, 2016, 40(8): 775-787. |
[9] | 陈青青, 李德志. 根系隔离条件下的谷子亲缘识别[J]. 植物生态学报, 2015, 39(12): 1188-1197. |
[10] | 朱婉芮, 汪其同, 刘梦玲, 王华田, 王延平, 张光灿, 李传荣. 酚酸和氮素交互作用下欧美杨107细根形态特征[J]. 植物生态学报, 2015, 39(12): 1198-1208. |
[11] | 潘少安, 彭国全, 杨冬梅. 从叶内生物量分配策略的角度理解叶大小的优化[J]. 植物生态学报, 2015, 39(10): 971-979. |
[12] | 肖遥,陶冶,张元明. 古尔班通古特沙漠4种荒漠草本植物不同生长期的生物量分配与叶片化学计量特征[J]. 植物生态学报, 2014, 38(9): 929-940. |
[13] | 杨春, 谭太龙, 余佳玲, 廖琼, 张晓龙, 张振华, 宋海星, 官春云. 大气CO2浓度倍增对油菜韧皮部汁液成分及根部氮素积累的影响[J]. 植物生态学报, 2014, 38(7): 776-784. |
[14] | 张翠萍,孟平,张劲松,万贤崇. 固氮植物绿豆对核桃幼苗生长、叶片气孔气体交换及水力特征的作用[J]. 植物生态学报, 2014, 38(5): 499-506. |
[15] | 邓建明, 姚步青, 周华坤, 赵新全, 魏晴, 陈哲, 王文颖. 水氮添加条件下高寒草甸主要植物种氮素吸收分配的同位素示踪研究[J]. 植物生态学报, 2014, 38(2): 116-124. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19