植物生态学报 ›› 2015, Vol. 39 ›› Issue (12): 1188-1197.DOI: 10.17521/cjpe.2015.0115
出版日期:
2015-12-01
发布日期:
2015-12-31
通讯作者:
李德志
作者简介:
# 共同第一作者
基金资助:
CHEN Qing-Qing1, LI De-Zhi1,2,3,*()
Online:
2015-12-01
Published:
2015-12-31
Contact:
De-Zhi LI
About author:
# Co-first authors
摘要:
在根系隔离情况下, 通过研究邻株身份(亲缘株、非亲缘株、陌生株)及其与种植密度(高、低)和土壤养分水平(高、低)交互作用对谷子(Setaria italica)形态学特征和生物量分配的影响, 探索谷子地上部分是否能够识别亲缘邻株, 以及谷子的这种亲缘识别能力对环境因子如何响应。结果显示: 1)亲缘组谷子叶生物量分配显著降低, 茎秆显著增粗, 暗示着亲缘组谷子植株间减少竞争, 并增强对当地多风气候的适应。而非亲缘组谷子叶生物量分配显著增加, 表明非亲缘组谷子植株间竞争较强。2)与非亲缘组相比, 陌生组谷子种子生物量分配显著增加, 株高显著减少, 表明陌生组谷子植株通过不对称竞争(与邻株糜(Panicum miliaceum)植株相比, 株高显著增加), 进一步限制邻株(糜)生长, 从而增强竞争能力, 同时, 将更多的生物量投资于繁殖, 增加适合度。3)在高密度种植条件下, 谷子茎生物量和叶生物量分配在各邻株身份处理间无显著差异, 而在低密度种植条件下, 与非亲缘组相比, 亲缘组谷子茎生物量显著增加, 叶生物量分配显著减小; 随着种植间距的增大(种植密度减小), 亲缘组谷子叶生物量分配显著减少, 而非亲缘组和陌生组叶生物量分配在高、低种植密度条件下无显著差异。4)在低土壤养分条件下, 亲缘组和非亲缘组谷子叶生物量分配无显著差异, 前者穗长显著小于后者, 而在高土壤养分条件下, 亲缘组谷子叶生物量分配显著小于非亲缘组, 前者穗长显著大于后者。结果表明, 在根系隔离的情况下,谷子能够识别亲缘邻株, 且谷子地上部分竞争信号在亲缘识别过程中扮演重要角色。较低种植密度和较高土壤养分水平有利于谷子亲缘识别能力的表达。
陈青青, 李德志. 根系隔离条件下的谷子亲缘识别. 植物生态学报, 2015, 39(12): 1188-1197. DOI: 10.17521/cjpe.2015.0115
CHEN Qing-Qing,LI De-Zhi. Kin recognition in Setaria italica under the condition of root segregation. Chinese Journal of Plant Ecology, 2015, 39(12): 1188-1197. DOI: 10.17521/cjpe.2015.0115
图1 实验方案示意图。空白框, 亲缘组; 竖条框, 非亲缘组; 横条框, 陌生组。L, 低营养; H, 高营养。10和16.7, 种植间距(cm)。A, 混合谷子种子; B, 混合糜种子。
Fig. 1 Diagram of experimental design. Blank box, kin group; Vertical bars box, non-kin group; Stripes box, stranger group. H, high soil nutrient level; L, low soil nutrient level. 10 and 16.7, plant spacing (cm). A, mixed seeds of Setaria italica; B, mixed seed of Panicum miliaceum.
变异来源 Source of variation | df | STB | LBA | SBA | RBA | H | EL | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F | P | F | P | F | P | F | P | F | P | F | P | |||||||
D | 1 | 129.80 | 0.000 | 0.32 | 0.573 | 15.66 | 0.000 | 12.15 | 0.001 | 13.98 | 0.000 | 5.42 | 0.022 | |||||
SN | 1 | 12.74 | 0.001 | 7.61 | 0.007 | 43.24 | 0.000 | 5.48 | 0.022 | 0.02 | 0.878 | 47.99 | 0.000 | |||||
NI | 2 | 10.82 | 0.000 | 5.76 | 0.004 | 4.53 | 0.013 | 0.19 | 0.828 | 5.54 | 0.005 | 0.32 | 0.725 | |||||
D × SN | 1 | 0.04 | 0.850 | 0.40 | 0.530 | 3.03 | 0.084 | 0.01 | 0.920 | 12.29 | 0.001 | 4.49 | 0.036 | |||||
D × NI | 2 | 3.53 | 0.032 | 4.15 | 0.018 | 0.68 | 0.508 | 0.20 | 0.817 | 2.42 | 0.093 | 0.84 | 0.432 | |||||
SN × NI | 2 | 0.35 | 0.708 | 6.72 | 0.002 | 1.76 | 0.176 | 0.97 | 0.382 | 2.59 | 0.079 | 4.76 | 0.010 | |||||
D × SN × NI | 2 | 0.19 | 0.828 | 3.63 | 0.029 | 2.27 | 0.107 | 0.40 | 0.669 | 1.75 | 0.177 | 3.78 | 0.026 | |||||
STB | 1 | 195.88 | 0.000 | 54.96 | 0.000 | 64.39 | 0.000 | 161.32 | 0.000 | 12.61 | 0.001 |
表1 邻株身份(亲缘株、非亲缘株、陌生株)及其与种植密度(高、低)和土壤养分(高、低)交互作用对谷子形态学特征和生物量分配的影响的协方差分析(以茎生物量作为协变量)
Table 1 Analysis of covariance (using stem biomass as a covariate) for the morphology and biomass allocation of Setaria italica in response to neighbor identity (kin, non-kin or stranger neighbors) and its interaction with plant density (high or low) and soil nutrient level (high or low)
变异来源 Source of variation | df | STB | LBA | SBA | RBA | H | EL | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F | P | F | P | F | P | F | P | F | P | F | P | |||||||
D | 1 | 129.80 | 0.000 | 0.32 | 0.573 | 15.66 | 0.000 | 12.15 | 0.001 | 13.98 | 0.000 | 5.42 | 0.022 | |||||
SN | 1 | 12.74 | 0.001 | 7.61 | 0.007 | 43.24 | 0.000 | 5.48 | 0.022 | 0.02 | 0.878 | 47.99 | 0.000 | |||||
NI | 2 | 10.82 | 0.000 | 5.76 | 0.004 | 4.53 | 0.013 | 0.19 | 0.828 | 5.54 | 0.005 | 0.32 | 0.725 | |||||
D × SN | 1 | 0.04 | 0.850 | 0.40 | 0.530 | 3.03 | 0.084 | 0.01 | 0.920 | 12.29 | 0.001 | 4.49 | 0.036 | |||||
D × NI | 2 | 3.53 | 0.032 | 4.15 | 0.018 | 0.68 | 0.508 | 0.20 | 0.817 | 2.42 | 0.093 | 0.84 | 0.432 | |||||
SN × NI | 2 | 0.35 | 0.708 | 6.72 | 0.002 | 1.76 | 0.176 | 0.97 | 0.382 | 2.59 | 0.079 | 4.76 | 0.010 | |||||
D × SN × NI | 2 | 0.19 | 0.828 | 3.63 | 0.029 | 2.27 | 0.107 | 0.40 | 0.669 | 1.75 | 0.177 | 3.78 | 0.026 | |||||
STB | 1 | 195.88 | 0.000 | 54.96 | 0.000 | 64.39 | 0.000 | 161.32 | 0.000 | 12.61 | 0.001 |
图2 邻株身份对谷子形态学特征和生物量分配的影响(平均值±标准误差)。谷子性状(除茎生物量)通过以茎生物量作为协变量的模型预测得到, 以此消除茎大小对各性状差异的影响。不同字母表示不同处理间差异显著(p < 0.05, LSD)。
Fig. 2 Effects of neighbor identity on the morphology and biomass allocation of Setaria italica (mean ± SE). The traits (except for stem biomass) were predicted from the models with stem biomass as a covariate, by which the effects of the differences of stem biomass on trait means were accounted for. Different letters indicated significant differences among different treatments (p < 0.05, LSD).
图3 邻株身份和种植密度的交互作用对谷子形态学特征和生物量分配的影响(平均值±标准误差)。谷子性状 (除茎生物量)通过以茎生物量作为协变量的模型预测得到, 以此消除茎大小对各性状差异的影响。不同字母表示不同处理间差异显著 (p < 0.05, LSD)。
Fig. 3 Interaction effects of neighbor identity and plant density on the morphology and biomass allocation of Setaria italica (mean ± SE). The traits (except for stem biomass) were predicted from the models with stem biomass as a covariate, by which the effects of the differences of stem biomass on the trait means were accounted for. Different letters indicated significant differences among different treatments (p < 0.05, LSD).
图4 邻株身份和土壤养分水平的交互作用对谷子形态学特征和生物量分配的影响(平均值±标准误差)。谷子性状 (除茎生物量)通过以茎生物量作为协变量的模型预测得到, 以此消除茎大小对各性状差异的影响。不同字母表示不同处理间差异显著(p < 0.05, LSD)。
Fig. 4 Interaction effects of neighbor identity and soil nutrient level on the morphology and biomass allocation of Setaria italica (mean ± SE). The traits (except for stem biomass) were predicted from the models with stem biomass as a covariate, by which the effects of the differences of stem biomass on trait means were accounted for. Different letters indicated significant differences among different treatments (p < 0.05, LSD).
[29] | (in Chinese with English abstract) [李洁, 孙庚, 胡霞, 张洪轩, 刘琳, 吴宁 (2014). 植物的亲缘选择. 生态学报, 34, 3827-3838.] |
[30] | Liu B, Zhao M, Wang XR, Zhang LY, Zhao YK (2013). Effects of different nitrogen fertilizer rate on yield and economic benefits millet.Culture with Planting, (5), 11-12. |
(in Chinese with English abstract) [刘斌, 赵敏, 王显瑞, 张立媛, 赵禹凯 (2013). 不同施氮量对谷子产量和效益的影响. 耕作与栽培, (5), 11-12.] | |
[31] | Liu EK, Duan XS, Liu HX, Zhang DR, Liu YP, Liu H, Hou SL, Zhang M, Song YF, Wang XY, Zhou HZ (2013). The analysis of quantitative relationships between the planting density and yield in spring foxtail millet.Chinese Agricultural Science Bulletin, 29(30), 118-123. |
(in Chinese with English abstract) [刘恩魁, 段喜顺, 刘红霞, 张德荣, 刘永平, 刘环, 侯升林, 张敏, 宋银芳, 王新玉, 周汉章 (2013). 春谷种植密度与产量的数量关系及其分析. 中国农学通报, 29(30), 118-123.] | |
[32] | Maestre FT, Callaway RM, Valladares F, Lortie CJ (2009). Refining the stress-gradient hypothesis for competition and facilitation in plant communities.Journal of Ecology, 97, 199-205. |
[33] | Markham J, Halwas S (2011). Effect of neighbour presence and soil volume on the growth of Andropogon gerardii Vitman.Plant Ecology & Diversity, 4, 265-268. |
[34] | Mercer CA, Eppley SM (2014). Kin and sex recognition in a dioecious grass.Plant Ecology, 215, 845-852. |
[35] | Milla R, Forero DM, Escudero A, Iriondo JM (2009). Growing with siblings: A common ground for cooperation or for fiercer competition among plants?Proceedings of the Royal Society B: Biological Sciences, 276, 2531-2540. |
[36] | Milla R, Vélez Del Burgo A, Escudero A, Iriondo JM (2012). Kinship rivalry does not trigger specific allocation strategies in Lupinus angustifolius.Annals of Botany, 110, 165-175. |
[37] | Mohana GS, Shaanker RU, Ganeshaiah KN, Dayanandan S (2001). Genetic relatedness among developing seeds and intra fruit seed abortion in Dalbergia sissoo (Fabaceae).American Journal of Botany, 88, 1181-1188. |
[38] | Murphy GP, Dudley SA (2009). Kin recognition: Competition and cooperation in Impatiens (Balsaminaceae).American Journal of Botany, 96, 1990-1996. |
[39] | Murphy GP, File AL, Dudley SA (2013). Differentiating the effects of pot size and nutrient availability on plant biomass and allocation.Botany, 91, 799-803. |
[40] | Pakkasmaa S, Laurila A (2004). Are the effects of kinship modified by environmental conditions in Rana temporaria tadpoles?Annales Zoologici Fennici, 41, 413-420. |
[41] | Sadras VO (2007). Evolutionary aspects of the trade-off between seed size and number in crops.Field Crops Research, 100, 125-138. |
[42] | Semchenko M, Saar S, Lepik A (2014). Plant root exudates mediate neighbour recognition and trigger complex behavioural changes.New Phytologist, 204, 631-637. |
[43] | Silvertown J (2004). Plant coexistence and the niche.Trends in Ecology & Evolution, 19, 605-611. |
[44] | Tonsor SJ (1989). Relatedness and intraspecific competition in Plantago lanceolata.The American Naturalist, 134, 897-906. |
[45] | Weiner J (2004). Allocation, plasticity and allometry in plants.Perspectives in Plant Ecology, Evolution and Systematics, 6, 207-215. |
[46] | Weinig C (2000). Differing selection in alternative competitive environments: Shade-avoidance responses and germination timing.Evolution, 54, 124-136. |
[47] | Willson MF, Hoppes WG, Goldman DA, Thomas PA, Katusic- Malmborg PL, Bothwell JL (1987). Sibling competition in plants: An experimental study.The American Naturalist, 129, 304-311. |
[48] | Yang YJ, Wang HF, Guo PY, Wang YG, Yuan XY, Xing GF, Shao DH, Qi X, Xie LL, Nie ME, Guo J, Ning N (2013). Effects of fertilization and density on photosynthetic characteristics and yield of hybrid foxtail millet.Plant Nutrition and Fertilizer Science, 19, 566-576. |
[1] | Axelrod R, Hamilton WD (1981). The evolution of cooperation.Science, 211, 1390-1396. |
[2] | Bais HP (2015). Shedding light on kin recognition response in plants.New Phytologist, 205, 4-6. |
[3] | Bertness MD, Callaway RM (1994). Positive interactions in communities.Trends in Ecology and Evolution, 9, 191-193. |
[4] | Bhatt MV, Khandelwal A, Dudley SA (2011). Kin recognition, not competitive interactions, predicts root allocation in young Cakile edentula seedling pairs.New Phytologist, 189, 1135-1142. |
[5] | Biedrzycki ML, Bais HP (2010). Kin recognition in plants: A mysterious behaviour unsolved.Journal of Experimental Botany, 61, 4123-4128. |
[6] | Biedrzycki ML, Jilany TA, Dudley SA, Bais HP (2010). Root exudates mediate kin recognition in plants.Communicative & Integrative Biology, 3, 28-35. |
[7] | Biernaskie JM (2011). Evidence for competition and cooperation among climbing plants.Proceedings of the Royal Society B: Biological Sciences, 278, 1989-1996. |
[8] | Brooker RW, Maestre FT, Callaway RM, Lortie CL, Cavieres LA, Kunstler G, Liancourt P, Tielbörger K, Travis JMJ, Anthelme F, Armas C, Coll L, Corcket E, Delzon S, Forey E, Kikvidze Z, Olofsson J, Pugnaire F, Quiroz CL, Saccone P, Schiffers K, Seifan M, Touzard B, Michalet R (2008). Facilitation in plant communities: The past, the present, and the future.Journal of Ecology, 96, 18-34. |
[9] | Cahill JF (2003). Lack of relationship between below-ground competition and allocation to roots in 10 gressland species.Journal of Ecology, 91, 532-540. |
[10] | Cahill JF Jr, McNickle GG, Haag JJ, Lamb EG, Nyanumba SM, St Clair CC (2010). Plants integrate information about nutrients and neighbors.Science, 328, 1657-1657. |
[11] | Callaway RM (2007). Positive Interactions and Interdependence in Plant Communities. Springer, Dordrecht, The Netherlands. |
[12] | Casal JJ (2013). Photoreceptor signaling networks in plant responses to shade.Annual Review of Plant Biology, 64, 403-427. |
[13] | Cavieres LA, Peñaloza A (2012). Facilitation and interference at the intraspecific level: Recruitment of Kageneckia angustifolia D. Don (Rosaceae) in the montane sclerophyllous woodland of central Chile.Perspectives in Plant Ecology, Evolution and Systematics, 14, 13-19. |
[14] | Chen BJW, During HJ, Anten NPR (2012). Detect thy neighbor: Identity recognition at the root level in plants.Plant Science, 195, 157-167. |
[15] | Cheplick GP (1992). Sibling competition in plants.Journal of Ecology, 80, 567-575. |
[16] | Clara Castellanos M, Donat-Caerols S, González-Martínez SC, Verdú M (2014). Can facilitation influence the spatial genetics of the beneficiary plant population?Journal of Ecology, 102, 1214-1221. |
[17] | Crepy MA, Casal JJ (2015). Photoreceptor-mediated kin recognition in plants.New Phytologist, 205, 329-338. |
[18] | Dudley SA, File AL (2007). Kin recognition in an annual plant.Biology Letters, 3, 435-438. |
[19] | Dudley SA, Murphy GP, File AL (2013). Kin recognition and competition in plants.Functional Ecology, 27, 898-906. |
[20] | Fajardo A, McIntire EJB (2011). Under strong niche overlap conspecifics do not compete but help each other to survive: Facilitation at the intraspecific level.Journal of Ecology, 99, 642-650. |
[21] | Fang S, Clark RT, Zheng Y, Iyer-Pascuzzi AS, Weitz JS, Kochian LV, Edelsbrunner H, Liao H, Benfey PN (2013). Genotypic recognition and spatial responses by rice roots.Proceedings of the National Academy of Sciences of the United States of America, 110, 2670-2675. |
[22] | Farrer EC, Goldberg DE (2011). Patterns and mechanisms of conspecific and heterospecific interactions in a dry perennial grassland.Journal of Ecology, 99, 265-276. |
[23] | File AL, Murphy GP, Dudley SA (2012). Fitness consequences of plants growing with siblings: Reconciling kin selection, niche partitioning and competitive ability.Proceedings of the Royal Society B: Biological Sciences, 279, 209-218. |
[24] | Gundel PE, Pierik R, Mommer L, Ballare CL (2014). Competing neighbors: Light perception and root function.Oecologia, 176, 1-10. |
[25] | Hamilton WD (1964a). The genetical evolution of social behaviour. I.Journal of Theoretical Biology, 7, 1-16. |
[26] | Hamilton WD (1964b). The genetical evolution of social behaviour. II.Journal of Theoretical Biology, 7, 17-52. |
[27] | Hess L, de Kroon H (2007). Effects of rooting volume and nutrient availability as an alternative explanation for root self/non-self discrimination.Journal of Ecology, 95, 241-251. |
[28] | Lepik A, Abakumova M, Zobel K, Semchenko M (2012). Kin recognition is density-dependent and uncommon among temperate grassland plants.Functional Ecology, 26, 1214-1220. |
[48] | (in Chinese with English abstract) [杨艳君, 王宏富, 郭平毅, 王玉国, 原向阳, 邢国芳, 邵东红, 祁祥, 解丽丽, 聂萌恩, 郭俊, 宁娜 (2013). 施肥和密度对张杂谷5号光合特性及产量的影响. 植物营养与肥料学报, 19, 566-576.] |
[29] | Li J, Sun G, Hu X, Zhang HX, Liu L, Wu N (2014). Kin selection in plants.Acta Ecologica Sinica, 34, 3827-3838. |
[1] | 周建 王焓. 森林径级结构研究:从统计描述到理论演绎[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 梁逸娴, 王传宽, 臧妙涵, 上官虹玉, 刘逸潇, 全先奎. 落叶松径向生长和生物量分配对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 459-468. |
[3] | 耿雪琪, 唐亚坤, 王丽娜, 邓旭, 张泽凌, 周莹. 氮添加增加中国陆生植物生物量并降低其氮利用效率[J]. 植物生态学报, 2024, 48(2): 147-157. |
[4] | 冉松松, 余再鹏, 万晓华, 傅彦榕, 邹秉章, 王思荣, 黄志群. 邻域树种多样性对杉木叶片氮磷生态化学计量比的影响[J]. 植物生态学报, 2023, 47(7): 932-942. |
[5] | 刘艳杰, 刘玉龙, 王传宽, 王兴昌. 东北温带森林5个羽状复叶树种叶成本-效益关系比较[J]. 植物生态学报, 2023, 47(11): 1540-1550. |
[6] | 张增可, 李曾燕, 杨柏钰, 赛碧乐, 杨安娜, 张立, 牟凌, 郑俊勇, 金乐薇, 赵钊, 王万胜, 杜运才, 阎恩荣. 上海大金山岛常见木本植物功能性状对生长和死亡的影响[J]. 植物生态学报, 2023, 47(10): 1398-1406. |
[7] | 史欢欢, 雪穷, 于振林, 汪承焕. 密度、物种比例对盐沼植物种子萌发阶段种内、种间相互作用的影响[J]. 植物生态学报, 2023, 47(1): 77-87. |
[8] | 赵长兴, 赵维俊, 张兴林, 刘思敏, 牟文博, 刘金荣. 祁连山排露沟流域青海云杉种群种内竞争与促进作用分析[J]. 植物生态学报, 2022, 46(9): 1027-1037. |
[9] | 柳牧青, 杨小凤, 石钰铭, 刘雨薇, 李小蒙, 廖万金. 模拟酸雨对入侵植物豚草与伴生种鬼针草竞争关系的影响[J]. 植物生态学报, 2022, 46(8): 932-940. |
[10] | 谭一波, 田红灯, 曾春阳, 沈浩, 申文辉, 叶建平, 甘国娟. 猫儿山铁杉相邻植株冠层机械磨损对枝叶性状的影响[J]. 植物生态学报, 2021, 45(12): 1281-1291. |
[11] | 王娇, 关欣, 张伟东, 黄苛, 朱睦楠, 杨庆朋. 杉木幼苗生物量分配格局对氮添加的响应[J]. 植物生态学报, 2021, 45(11): 1231-1240. |
[12] | 邢磊, 段娜, 李清河, 刘成功, 李慧卿, 孙高洁. 白刺不同物候期的生物量分配规律[J]. 植物生态学报, 2020, 44(7): 763-771. |
[13] | 庞芳, 夏维康, 何敏, 祁珊珊, 戴志聪, 杜道林. 固氮菌缓解氮限制环境中丛枝菌根真菌对加拿大一枝黄花的营养竞争[J]. 植物生态学报, 2020, 44(7): 782-790. |
[14] | 康剑, 梁寒雪, 蒋少伟, 朱火星, 周鹏, 黄建国. 竞争和气候对新疆阿尔泰山西伯利亚五针松树木径向生长的影响[J]. 植物生态学报, 2020, 44(12): 1195-1202. |
[15] | 张娜, 朱阳春, 李志强, 卢信, 范如芹, 刘丽珠, 童非, 陈静, 穆春生, 张振华. 淹水和干旱生境下铅对芦苇生长、生物量分配和光合作用的影响[J]. 植物生态学报, 2018, 42(2): 229-239. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19