植物生态学报 ›› 2015, Vol. 39 ›› Issue (12): 1198-1208.DOI: 10.17521/cjpe.2015.0116
朱婉芮1, 汪其同1, 刘梦玲1, 王华田1,2, 王延平1,2,,A;*(), 张光灿1,2, 李传荣1,2
出版日期:
2015-12-01
发布日期:
2015-12-31
通讯作者:
王延平
作者简介:
# 共同第一作者
基金资助:
ZHU Wan-Rui1, WANG Qi-Tong1, LIU Meng-Ling1, WANG Hua-Tian1,2, WANG Yan-Ping1,2,*(), ZHANG Guang-Can1,2, LI Chuan-Rong1,2
Online:
2015-12-01
Published:
2015-12-31
Contact:
Yan-Ping WANG
About author:
# Co-first authors
摘要:
树木细根生长与根际过程的关系十分密切。该研究仿生欧美杨107 (Populus × euramericana ‘Neva’)人工林根际土壤酚酸沉降与氮素有效性变化, 通过设置3种酚酸梯度(0X、0.5X、1.0X, X为田间土壤酚酸含量)与3种氮素水平(缺氮0 mmol·L-1、正常氮10 mmol·L-1、高氮20 mmol·L-1), 探究酚酸和氮素对欧美杨107细根形态的影响, 以期为阐明树木根系生长对根-土界面过程的响应奠定基础。结果表明: (1)在无酚酸(0X)环境中, 缺氮和高氮均可抑制欧美杨107细根生长, 尤其对1-3级细根的影响更为显著。比根长随氮素水平升高逐渐减小, 但其他细根特征并未呈现与氮素水平的线性关系。(2) 0.5X和1.0X酚酸梯度相比, 欧美杨107的1-2级细根直径和体积随酚酸浓度增加而显著增大(p < 0.05)。酚酸和氮素对杨树细根的影响存在交互作用, 1-2级细根直径、体积受酚酸的影响显著, 而4-5级细根长度、表面积受氮素影响显著。双因素方差分析结果表明, 酚酸和氮素对细根形态建成具有协同或拮抗效应。(3)主成分分析(PCA)和冗余分析(RDA)结果表明, 在酚酸和氮素交互效应下, 杨树1-3级、 4级、 5级细根之间具有显著的形态差异。第一主成分主要体现细根觅食性状特征, 可解释细根形态变异的60.9%的信息; 第二主成分主要体现细根形态构建特征, 可解释25.3%的信息。杨树细根形态变化与根序高度相关, N素影响杨树细根形态的主效应较酚酸更强。因此, 根际环境中酚酸累积和氮素有效性变化会影响杨树细根的形态构建和细根对水分、养分的吸收, 而氮素有效性是影响杨树细根生长的重要因素, 开展杨树人工林土壤养分管理是林分生产力长期维持的关键。
朱婉芮, 汪其同, 刘梦玲, 王华田, 王延平, 张光灿, 李传荣. 酚酸和氮素交互作用下欧美杨107细根形态特征. 植物生态学报, 2015, 39(12): 1198-1208. DOI: 10.17521/cjpe.2015.0116
ZHU Wan-Rui,WANG Qi-Tong,LIU Meng-Ling,WANG Hua-Tian,WANG Yan-Ping,ZHANG Guang-Can,LI Chuan-Rong. Interactive effects of phenolic acid and nitrogen on morphological traits of poplar (Populus × euramericana ‘Neva’) fine roots. Chinese Journal of Plant Ecology, 2015, 39(12): 1198-1208. DOI: 10.17521/cjpe.2015.0116
对羟基苯甲酸 p-hydroxybenzoic acid | 香草醛 Vanillin | 阿魏酸 Ferulic acid | 苯甲酸 Benzoic acid | 肉桂酸 Cinnamic acid | ||
---|---|---|---|---|---|---|
林地土壤内酚酸含量 Content of phenolic acid in field soil (μg·g-1) | 152.00 | 10.40 | 6.50 | 20.60 | 1.95 | |
土壤酚酸吸附率 Absorption rate of phenolic acid in soil (%) | 61.66 | 93.78 | 89.30 | 37.85 | 94.41 | |
酚酸含量梯度 Gradient of phenolic acid content (μg·mL-1) | 0.5X | 123 | 6 | 4 | 27 | 1 |
1.0X | 247 | 11 | 7 | 54 | 2 |
表1 酚酸浓度设定
Table 1 Phenolic acid concentration setting in the treatment solutions
对羟基苯甲酸 p-hydroxybenzoic acid | 香草醛 Vanillin | 阿魏酸 Ferulic acid | 苯甲酸 Benzoic acid | 肉桂酸 Cinnamic acid | ||
---|---|---|---|---|---|---|
林地土壤内酚酸含量 Content of phenolic acid in field soil (μg·g-1) | 152.00 | 10.40 | 6.50 | 20.60 | 1.95 | |
土壤酚酸吸附率 Absorption rate of phenolic acid in soil (%) | 61.66 | 93.78 | 89.30 | 37.85 | 94.41 | |
酚酸含量梯度 Gradient of phenolic acid content (μg·mL-1) | 0.5X | 123 | 6 | 4 | 27 | 1 |
1.0X | 247 | 11 | 7 | 54 | 2 |
根序 Root order | 氮素水平 Nitrogen level (mmol·L-1) | 根长度 Total root length (cm) | 根表面积 Total root surface area (cm2) | 根体积 Total root volume (cm3) | 平均直径 Average diameter (mm) | 根干质量 Root dry mass (g) | 比根长 Specific root length (m·g-1) | 根组织密度 Root tissue density (g·cm-3) |
---|---|---|---|---|---|---|---|---|
1 | 0 | 534.51 ± 58.78a | 28.93 ± 2.11a | 0.13 ± 0.005a | 0.17 ± 0.064a | 0.013 ± 0.000a | 323.00 ± 12.66a | 0.114 ± 0.010ab |
10 | 822.03 ± 65.15b | 55.41 ± 9.47b | 0.41 ± 0.007b | 0.23 ± 0.013b | 0.028 ± 0.002b | 287.53 ± 4.28b | 0.091 ± 0.015a | |
20 | 389.77 ± 48.70a | 23.55 ± 2.28a | 0.12 ± 0.011a | 0.18 ± 0.025a | 0.014 ± 0.002a | 246.51 ± 37.71b | 0.146 ± 0.001b | |
2 | 0 | 716.81 ± 49.22a | 42.01 ± 2.90a | 0.19 ± 0.013a | 0.19 ± 0.001a | 0.023 ± 0.003a | 269.07 ± 36.03a | 0.113 ± 0.003a |
10 | 871.82 ± 15.89a | 72.59 ± 3.10b | 0.26 ± 0.017b | 0.25 ± 0.011b | 0.042 ± 0.002b | 228.89 ± 18.80ab | 0.085 ± 0.001b | |
20 | 428.53 ± 61.70b | 39.30 ± 1.34a | 0.23 ± 0.008ab | 0.21 ± 0.006a | 0.023 ± 0.001a | 185.39 ± 10.71b | 0.108 ± 0.001a | |
3 | 0 | 249.26 ± 19.75a | 16.37 ± 0.22a | 0.10 ± 0.007a | 0.24 ± 0.016a | 0.013 ± 0.001a | 184.68 ± 22.25a | 0.104 ± 0.004a |
10 | 462.39 ± 52.25b | 28.30 ± 3.85b | 0.22 ± 0.014b | 0.30 ± 0.037a | 0.026 ± 0.000b | 146.59 ± 11.16ab | 0.118 ± 0.006ab | |
20 | 179.04 ± 16.34a | 16.42 ± 1.27a | 0.14 ± 0.026a | 0.29 ± 0.003a | 0.017 ± 0.002a | 111.33 ± 2.83b | 0.129 ± 0.005b | |
4 | 0 | 38.28 ± 4.84a | 4.39 ± 0.30a | 0.06 ± 0.002a | 0.32 ± 0.016a | 0.006 ± 0.000a | 75.49 ± 7.93a | 0.108 ± 0.002a |
10 | 43.26 ± 4.42b | 5.62 ± 0.47ab | 0.07 ± 0.009b | 0.42 ± 0.037a | 0.008 ± 0.003a | 63.54 ± 5.19b | 0.122 ± 0.005a | |
20 | 39.29 ± 4.19b | 4.52 ± 0.91b | 0.04 ± 0.011a | 0.39 ± 0.016a | 0.005 ± 0.002a | 60.92 ± 1.38b | 0.130 ± 0.003a | |
5 | 0 | 32.85 ± 1.14a | 7.41 ± 0.44a | 0.17 ± 0.024a | 0.74 ± 0.018a | 0.032 ± 0.001a | 12.58 ± 1.83a | 0.155 ± 0.004a |
10 | 48.15 ± 4.71a | 13.85 ± 1.63a | 0.47 ± 0.046a | 1.03 ± 0.056a | 0.043 ± 0.003a | 9.85 ± 1.06b | 0.114 ± 0.284a | |
20 | 28.24 ± 11.61a | 7.74 ± 4.25a | 0.17 ± 0.118a | 0.74 ± 0.136a | 0.024 ± 0.016a | 8.69 ± 0.49b | 0.140 ± 0.003a |
表2 不同根序细根形态指标对氮素的响应
Table 2 The response of morphological traits of different order fine roots to the nitrogen treatments
根序 Root order | 氮素水平 Nitrogen level (mmol·L-1) | 根长度 Total root length (cm) | 根表面积 Total root surface area (cm2) | 根体积 Total root volume (cm3) | 平均直径 Average diameter (mm) | 根干质量 Root dry mass (g) | 比根长 Specific root length (m·g-1) | 根组织密度 Root tissue density (g·cm-3) |
---|---|---|---|---|---|---|---|---|
1 | 0 | 534.51 ± 58.78a | 28.93 ± 2.11a | 0.13 ± 0.005a | 0.17 ± 0.064a | 0.013 ± 0.000a | 323.00 ± 12.66a | 0.114 ± 0.010ab |
10 | 822.03 ± 65.15b | 55.41 ± 9.47b | 0.41 ± 0.007b | 0.23 ± 0.013b | 0.028 ± 0.002b | 287.53 ± 4.28b | 0.091 ± 0.015a | |
20 | 389.77 ± 48.70a | 23.55 ± 2.28a | 0.12 ± 0.011a | 0.18 ± 0.025a | 0.014 ± 0.002a | 246.51 ± 37.71b | 0.146 ± 0.001b | |
2 | 0 | 716.81 ± 49.22a | 42.01 ± 2.90a | 0.19 ± 0.013a | 0.19 ± 0.001a | 0.023 ± 0.003a | 269.07 ± 36.03a | 0.113 ± 0.003a |
10 | 871.82 ± 15.89a | 72.59 ± 3.10b | 0.26 ± 0.017b | 0.25 ± 0.011b | 0.042 ± 0.002b | 228.89 ± 18.80ab | 0.085 ± 0.001b | |
20 | 428.53 ± 61.70b | 39.30 ± 1.34a | 0.23 ± 0.008ab | 0.21 ± 0.006a | 0.023 ± 0.001a | 185.39 ± 10.71b | 0.108 ± 0.001a | |
3 | 0 | 249.26 ± 19.75a | 16.37 ± 0.22a | 0.10 ± 0.007a | 0.24 ± 0.016a | 0.013 ± 0.001a | 184.68 ± 22.25a | 0.104 ± 0.004a |
10 | 462.39 ± 52.25b | 28.30 ± 3.85b | 0.22 ± 0.014b | 0.30 ± 0.037a | 0.026 ± 0.000b | 146.59 ± 11.16ab | 0.118 ± 0.006ab | |
20 | 179.04 ± 16.34a | 16.42 ± 1.27a | 0.14 ± 0.026a | 0.29 ± 0.003a | 0.017 ± 0.002a | 111.33 ± 2.83b | 0.129 ± 0.005b | |
4 | 0 | 38.28 ± 4.84a | 4.39 ± 0.30a | 0.06 ± 0.002a | 0.32 ± 0.016a | 0.006 ± 0.000a | 75.49 ± 7.93a | 0.108 ± 0.002a |
10 | 43.26 ± 4.42b | 5.62 ± 0.47ab | 0.07 ± 0.009b | 0.42 ± 0.037a | 0.008 ± 0.003a | 63.54 ± 5.19b | 0.122 ± 0.005a | |
20 | 39.29 ± 4.19b | 4.52 ± 0.91b | 0.04 ± 0.011a | 0.39 ± 0.016a | 0.005 ± 0.002a | 60.92 ± 1.38b | 0.130 ± 0.003a | |
5 | 0 | 32.85 ± 1.14a | 7.41 ± 0.44a | 0.17 ± 0.024a | 0.74 ± 0.018a | 0.032 ± 0.001a | 12.58 ± 1.83a | 0.155 ± 0.004a |
10 | 48.15 ± 4.71a | 13.85 ± 1.63a | 0.47 ± 0.046a | 1.03 ± 0.056a | 0.043 ± 0.003a | 9.85 ± 1.06b | 0.114 ± 0.284a | |
20 | 28.24 ± 11.61a | 7.74 ± 4.25a | 0.17 ± 0.118a | 0.74 ± 0.136a | 0.024 ± 0.016a | 8.69 ± 0.49b | 0.140 ± 0.003a |
图1 酚酸和氮素影响下杨树各根序细根形态特征(平均值±标准误差)。小写字母分别表示0.5X和1.0X酚酸环境中(X为田间土壤酚酸含量), 3种氮素水平间的差异显著性, 不同字母表示差异显著(p < 0.05)。+, *, #分别表示缺氮(0 mmol·L-1)、正常氮(10 mmol·L-1)、高氮(20 mmol·L-1)时, 两酚酸浓度间具有显著差异(p < 0.05)。
Fig. 1 The fine root morphological characteristics in the interaction of phenolic acid and nitrogen treatments (mean ± SE). Different lowercase letters and capital letters represent significant difference among three nitrogen treatments under 0.5X and 1.0X phenolic acids respectively (p < 0.05), here X represents the contents of phenolic acids in the soil of poplar plantation. Three symbols, +, * and #, represent significant difference between two treatments of phenolic acids under nitrogen deficiency (0 mmol·L-1), normal nitrogen (10 mmol·L-1) and high nitrogen (20 mmol·L-1), respectively.
图2 酚酸和氮素影响下各根序细根干质量、比根长和组织密度(平均值±标准误差)。小写字母分别表示0.5X和1.0X酚酸环境中(X为田间土壤酚酸含量), 3种氮素水平间的差异显著性, 不同字母表示差异显著(p < 0.05)。+, *, #分别表示缺氮(0 mmol·L-1)、正常氮(10 mmol·L-1)、高氮(20 mmol·L-1)时, 两酚酸浓度间具有显著差异(p < 0.05)。
Fig. 2 The dry mass, specific root length and root tissue density of different fine root orders under the interaction of phenolic acid and nitrogen conditions (mean ± SE). Different lowercase letters and capital letters represent significant difference among three nitrogen treatments under 0.5X and 1.0X phenolic acids respectively (p < 0.05), here X represents the contents of phenolic acids in the soil of poplar plantation. Three symbols, +, * and #, represent significant difference between two treatments of phenolic acids under nitrogen deficiency (0 mmol·L-1), normal nitrogen (10 mmol·L-1) and high nitrogen (20 mmol·L-1), respectively.
根序 Root order | 处理 Treatment | 根长度 Total root Length (cm) | 根表面积 Total root surface area (cm2) | 根体积 Total root volume (cm3) | 根平均直径 Average diameter of root (mm) | 根干质量 Root dry mass (g) | 比根长 Specific root length (m·g-1) | 根组织密度 Root tissue density (g·cm-3) |
---|---|---|---|---|---|---|---|---|
1级 First order | pN | 0.002* | 0.000* | 0.000* | 0.000* | 0.009* | 0.018* | 0.001* |
pT | 0.116ns | 0.559ns | 0.295ns | 0.201ns | 0.023* | 0.048* | 0.667ns | |
p(N×T) | 0.300ns | 0.394ns | 0.003* | 0.867ns | 0.067ns | 0.852ns | 0.008* | |
2级 Second order | pN | 0.005* | 0.015* | 0.071ns | 0.001* | 0.001* | 0.000* | 0.009* |
pT | 0.041* | 0.054ns | 0.569ns | 0.083ns | 0.002* | 0.715ns | 0.164ns | |
p(N×T) | 0.015* | 0.028* | 0.557ns | 0.424ns | 0.001* | 0.853ns | 0.011* | |
3级 Third order | pN | 0.039* | 0.014* | 0.080ns | 0.003* | 0.017* | 0.000* | 0.000* |
pT | 0.481ns | 0.011* | 0.046* | 0.164ns | 0.035* | 0.366ns | 0.931ns | |
p(N×T) | 0.004* | 0.012* | 0.086ns | 0.923ns | 0.118ns | 0.494ns | 0.023* | |
4级 Forth order | pN | 0.001* | 0.021* | 0.503ns | 0.001* | 0.097ns | 0.000* | 0.052ns |
pT | 0.066ns | 0.764ns | 0.406ns | 0.066ns | 0.379ns | 0.409ns | 0.521ns | |
p(N×T) | 0.220ns | 0.926ns | 0.070ns | 0.220ns | 0.121ns | 0.634ns | 0.819ns | |
5级 Fifth order | pN | 0.005* | 0.048* | 0.012* | 0.067ns | 0.108ns | 0.002* | 0.222ns |
pT | 0.631ns | 0.238ns | 0.111ns | 0.453ns | 0.163ns | 0.092ns | 0.876ns | |
p(N×T) | 0.760ns | 0.824ns | 0.552ns | 0.129ns | 0.884ns | 0.124ns | 0.569ns |
表3 酚酸和氮素对细根形态特征的交互效应分析
Table 3 The interaction effect of phenolic acid and nitrogen on morphological traits of poplar fine roots
根序 Root order | 处理 Treatment | 根长度 Total root Length (cm) | 根表面积 Total root surface area (cm2) | 根体积 Total root volume (cm3) | 根平均直径 Average diameter of root (mm) | 根干质量 Root dry mass (g) | 比根长 Specific root length (m·g-1) | 根组织密度 Root tissue density (g·cm-3) |
---|---|---|---|---|---|---|---|---|
1级 First order | pN | 0.002* | 0.000* | 0.000* | 0.000* | 0.009* | 0.018* | 0.001* |
pT | 0.116ns | 0.559ns | 0.295ns | 0.201ns | 0.023* | 0.048* | 0.667ns | |
p(N×T) | 0.300ns | 0.394ns | 0.003* | 0.867ns | 0.067ns | 0.852ns | 0.008* | |
2级 Second order | pN | 0.005* | 0.015* | 0.071ns | 0.001* | 0.001* | 0.000* | 0.009* |
pT | 0.041* | 0.054ns | 0.569ns | 0.083ns | 0.002* | 0.715ns | 0.164ns | |
p(N×T) | 0.015* | 0.028* | 0.557ns | 0.424ns | 0.001* | 0.853ns | 0.011* | |
3级 Third order | pN | 0.039* | 0.014* | 0.080ns | 0.003* | 0.017* | 0.000* | 0.000* |
pT | 0.481ns | 0.011* | 0.046* | 0.164ns | 0.035* | 0.366ns | 0.931ns | |
p(N×T) | 0.004* | 0.012* | 0.086ns | 0.923ns | 0.118ns | 0.494ns | 0.023* | |
4级 Forth order | pN | 0.001* | 0.021* | 0.503ns | 0.001* | 0.097ns | 0.000* | 0.052ns |
pT | 0.066ns | 0.764ns | 0.406ns | 0.066ns | 0.379ns | 0.409ns | 0.521ns | |
p(N×T) | 0.220ns | 0.926ns | 0.070ns | 0.220ns | 0.121ns | 0.634ns | 0.819ns | |
5级 Fifth order | pN | 0.005* | 0.048* | 0.012* | 0.067ns | 0.108ns | 0.002* | 0.222ns |
pT | 0.631ns | 0.238ns | 0.111ns | 0.453ns | 0.163ns | 0.092ns | 0.876ns | |
p(N×T) | 0.760ns | 0.824ns | 0.552ns | 0.129ns | 0.884ns | 0.124ns | 0.569ns |
细根形态指标 Morphological traits of fine root | 主成分 Principal component | |
---|---|---|
1 | 2 | |
根长 Total root length | 0.872 | 0.421 |
根表面积 Total root surface area | 0.912 | 0.542 |
根体积 Total root volume | 0.239 | 0.916 |
根直径 Average diameter of root | -0.805 | 0.246 |
根干质量 Root dry mass | 0.000 | 0.952 |
比根长 Specific root length | 0.956 | 0.069 |
根组织密度 Root tissue density | -0.655 | -0.330 |
表4 细根形态指标的主分量载荷
Table 4 Component matrix of fine root growth indices
细根形态指标 Morphological traits of fine root | 主成分 Principal component | |
---|---|---|
1 | 2 | |
根长 Total root length | 0.872 | 0.421 |
根表面积 Total root surface area | 0.912 | 0.542 |
根体积 Total root volume | 0.239 | 0.916 |
根直径 Average diameter of root | -0.805 | 0.246 |
根干质量 Root dry mass | 0.000 | 0.952 |
比根长 Specific root length | 0.956 | 0.069 |
根组织密度 Root tissue density | -0.655 | -0.330 |
Fig. 3 The principal component analysis on morphological traits of poplar fine roots under phenolic acid and nitrogen treatments. The number 1-15, 16-30 and 31-45 represent the fine root samples under 0X (no phenolic acid) , 0.5X and 1.0X phenolic acids, respectively, here X represents the contents of phenolic acids in the soil of poplar plantation. , ▲和○ represent nitrogen deficiency (0 mmol·L-1), normal nitrogen (10 mmol·L-1) and high nitrogen (20 mmol·L-1), respectively.
图4 杨树细根形态特征对酚酸和氮素响应的冗余分析。实线向量分别为环境因子(酚酸和氮素), 虚线向量为细根各形态参数(指标同表2)。向量越长代表环境因子主效应越强, 环境向量与根系特征向量的夹角代表它们之间的相关性。环境向量与细根特征向量同方向表明正相关, 反方向表明负相关, 垂直表明不相关。
Fig. 4 Redundancy analysis (RDA) on the effects of phenolic acids and nitrogen on morphological traits of poplar fine roots. Real vectors represent environmental factors (phenolic acids and nitrogen), and dotted vectors represent morphological traits of poplar fine roots (the same indices with Table 2). The longer vector is the more important the environmental effects. The correlation between the variables is illustrated by the angle between two vectors. Vectors pointing in nearly the same direction indicate a high positive correlation, vectors pointing in opposite directions have a high negative correlation, and vectors crossing at right angles are related to a near zero correlation.
[1] | Baziramakenga R, Leroux GD, Simard RR (1995). Effects of benzoic and cinnamic acids on membrane permeability of soybean roots.Journal of Chemical Ecology, 21, 1271-1285. |
[2] | Block RMA, van Rees KCJ, Knight JD (2006). A review of fine root dynamics in Populus plantations.Agroforestry Systems, 67, 73-84. |
[3] | Bloomfield J, Vogt KA, Wargo PM (1996). Tree root turnover and senescence. In: Waisel Y, Eshel A, Kafkafi U eds. Plant Roots, The Hidden Half. 2nd ed. Marcel Dekker Press, New York. 363-381. |
[4] | Chapin III FS (1995). New cog in the nitrogen cycle.Nature, 377, 199-200. |
[5] | Chen HB, Wei X, Wang J, Wang ZQ (2010). Morphological and anatomical responses of Fraxinus mandshurica seedling roots to different nitrogen concentrations.Scientia Silvae Sinicae, 46(2), 61-66. |
(in Chinese with English abstract) [陈海波, 卫星, 王婧, 王政权 (2010). 水曲柳苗木根系形态和解剖结构对不同氮浓度的反应. 林业科学, 46(2), 61-66.] | |
[6] | Chon SU, Choi SK, Jung S, Jang HG, Pyo BS, Kim SM (2002). Effects of alfalfa leaf extracts and phenolic allelochemicals on early seedling growth and root morphology of alfalfa and barnyard grass.Crop Protection, 21, 1077-1082. |
[7] | Devi SR, Prasad MNV (1996). Ferulic acid mediated changes in oxidative enzymes of maize seedlings: Implications in growth.Biologia Plantarum, 38, 387-395. |
[8] | Ding GQ, Yu LZ, Wang ZQ, Hu WL, Zheng Y, Jin X, Ding L, Xu QX (2010). Effects of fertilization on fine root morphology of Larix kaempferi.Journal of Northeast Forestry University, 38(5), 16-19.(in Chinese with English abstract) |
[丁国泉, 于立忠, 王政权, 胡万良, 郑颖, 金鑫, 丁磊, 徐庆祥 (2010). 施肥对日本落叶松细根形态的影响. 东北林业大学学报, 38(5), 16-19.] | |
[9] | Eissenstat DM (1997). Trade-offs in root form and function. In: Jackson LE ed. Ecology in Agriculture. Academic Press, San Diego, USA. 173-199. |
[10] | Fitter AH, Self GK, Wolfenden J, van Vuuren MMI, Brown TK, Williamson L, Graves JD, Robinson D (1996). Root production and mortality under elevated atmospheric carbon dioxide.Plant and Soil, 187, 299-306. |
[11] | Guo DL, Fan PP (2007). Four hypotheses about the effects of soil nitrogen availability on fine root production and turnover.Chinese Journal of Applied Ecology, 18, 2354-2360. |
(in Chinese with English abstract) [郭大立, 范萍萍 (2007). 关于氮有效性影响细根生产量和周转率的四个假说. 应用生态学报, 18, 2354-2360.] | |
[12] | Hodge A (2004). The plastic plant: Root responses to heterogeneous supplies of nutrients.New Phytologist, 162, 9-24. |
[13] | Inderjit, Duke SO (2003). Ecophysiological aspects of allelopathy.Planta, 217, 529-539. |
[14] | Inderjit, Mallik AU (1997). Effect of phenolic compounds on selected soil properties.Forest Ecology and Management, 92, 11-18. |
[15] | Jones DL, Nguyen C, Finlay RD (2009). Carbon flow in the rhizosphere: Carbon trading at the soil-root interface.Plant and Soil, 321, 5-33. |
[16] | Kaur H, Inderjit, Kaushik S (2005). Cellular evidence of allelopathic interference of benzoic acid to mustard (Brassica juncea L.) seedling growth.Plant Physiology and Biochemistry, 43, 77-81. |
[17] | Kern CC, Friend AL, Johnson JMF, Coleman MD (2004). Fine root dynamics in a developing Populus deltoides plantation.Tree Physiology, 24, 651-660. |
[18] | King JS, Thomas RB, Strain BR (1997). Morphology and tissue quality of seedling root systems of Pinus taeda and Pinus ponderosa as affected by varying CO2, temperature, and nitrogen.Plant and Soil, 195, 107-119. |
[19] | Kong CH, Chen LC, Xu XH, Wang P, Wang SL (2008). Allelochemicals and activities in a replanted Chinese fir (Cunninghamia lanceolata (Lamb.) Hook) tree ecosystem.Journal of Agricultural and Food Chemistry, 56, 11734-11739. |
[20] | Li ZH, Wang Q, Ruan X, Pan CD, Jiang DA (2010). Phenolics and plant allelopathy.Molecules, 15, 8933-8952. |
[21] | Liu FD, Jiang YZ, Wang HT, Kong LG, Wang Y (2005). Effect of continuous cropping on poplar plantation.Journal of Soil and Water Conservation, 19(2), 102-105. |
(in Chinese with English abstract) [刘福德, 姜岳忠, 王华田, 孔令刚, 王迎 (2005). 杨树人工林连作效应的研究. 水土保持学报, 19(2), 102-105.] | |
[22] | Liu JL, Mei L, Gu JC, Quan XK, Wang ZQ (2009). Effects of nitrogen fertilization on fine root biomass and morphology of Fraxinus mandshu-rica and Larix gmelinii: A study with in-growth core approach.Chinese Journal of Ecology, 28, 1-6. |
(in Chinese with English abstract) [刘金梁, 梅莉, 谷加存, 全先奎, 王政权 (2009). 内生长法研究施氮肥对水曲柳和落叶松细根生物量和形态的影响. 生态学杂志, 28, 1-6.] | |
[23] | Lü WG, Zhang CL,Yuan F, Peng Y (2002). Mechanism of allelochemicals inhibiting continuous cropping cucumber growth.Scientia Agricultura Sinica, 35, 106-109. |
(in Chinese with English abstract) [吕卫光, 张春兰, 袁飞, 彭宇 (2002). 化感物质抑制连作黄瓜生长的作用机理. 中国农业科学, 35, 106-109.] | |
[24] | Martens DA (2002). Relationship between plant phenolic acids released during soil mineralization and aggregate stabiliza- tion.Soil Science Society of America Journal, 66, 1857-1867. |
[25] | Norby RJ, Jackson RB (2000). Root dynamics and global change: Seeking an ecosystem perspective.New Phytologist, 147, 3-12. |
[26] | Osmont KS, Sibout R, Hardtke CS (2007). Hidden branches: Developments in root system architecture.Annual Review of Plant Biology, 58, 93-113. |
[27] | Politycka B (1996). Peroxidase activity and lipid peroxidation in roots of cucumber seedlings influenced by derivatives of cinnamic and benzoic acids.Acta Physiologiae Plantarum, 18, 365-370. |
[28] | Pregitzer KS, DeForest JL, Burton AJ, Allen MF, Ruess RW, Hendrick RL (2002). Fine root architecture of nine North American trees.Ecological Monographs, 72, 293-309. |
[29] | Qu XH, Wang JG (2008). Effect of amendments with different phenolic acids on soil microbial biomass, activity, and community diversity.Applied Soil Ecology, 39, 172-179. |
[30] | Rice EL (1984). Allelopathy. 2nd ed. Academic Press, London. 9-10. |
[31] | Ruffel S, Krouk G, Ristova D, Shasha D, Birnbaum KD, Coruzzi GM (2011). Nitrogen economics of root foraging: Transitive closure of the nitrate-cytokinin relay and distinct systemic signaling for N supply vs. demand.Proceedings of the National Academy of Sciences of the United States of America, 108, 18524-18529. |
[32] | Schweinsberg-Mickan MSZ, Jörgensen RG, Müller T (2012). Rhizodeposition: Its contribution to microbial growth and carbon and nitrogen turnover within the rhizosphere.Journal of Plant Nutrition and Soil Science, 175, 750-760. |
[33] | Sun CL, Zhu ZX, Wang Z, Tong CR (1995). Study on the soil degradation of the poplar plantation and the technique to preserve and increase soil fertility.Scientia Silvae Sinicae, 31, 506-512. |
(in Chinese with English abstract) [孙翠玲, 朱占学, 王珍, 佟超然 (1995). 杨树人工林地力退化及维护与提高土壤肥力技术的研究. 林业科学, 31, 506-512.] | |
[34] | Sun Y, Xu XL, Kuzyakov Y (2014). Mechanisms of rhizosphere priming effects and their ecological significance.Chinese Journal of Plant Ecology, 38, 62-75. |
(in Chinese with English abstract) [孙悦, 徐兴良, Kuzyakov Y (2014). 根际激发效应的发生机制及其生态重要性. 植物生态学报, 38, 62-75.] | |
[35] | Tan XM, Wang HT, Kong LG, Wang YP (2008). Accumulation of phenolic acids in soil of a continuous cropping poplar plantation and their effects on soil microbes. Journal of Shandong University (Natural Science), 43, 14-19. |
(in Chinese with English abstract) [谭秀梅, 王华田, 孔令刚, 王延平 (2008). 杨树人工林连作土壤中酚酸积累规律及对土壤微生物的影响. 山东大学学报(理学版), 43, 14-19.] | |
[36] | Valenzuela-Estrada LR, Vera-Caraballo V, Ruth LE, Eissenstat DM (2008). Root anatomy, morphology, and longevity among root orders in Vaccinium corymbosum (Ericaceae).American Journal of Botany, 95, 1506-1514. |
[37] | Wan KY, Chen F, Yu CB, Zhong ZX (2005). Allelopathy and its application in poplar-corps system.Ecologic Science, 24, 57-60. |
(in Chinese with English abstract) [万开元, 陈防, 余常兵, 钟志祥 (2005). 杨树-农作物复合系统中的化感作用. 生态科学, 24, 57-60.] | |
[38] | Wang HT, Wang YP (2013). Hotspot discussion on decline mechanism of replanted plantation. Journal of Shandong University (Natural Science), 48(7), 1-8. |
(in Chinese with English abstract) [王华田, 王延平 (2013). 关于连作人工林衰退机理几个热点问题的探讨. 山东大学学报(理学版), 48(7), 1-8.] | |
[39] | Wang YP, Wang HT (2010a). Allelochemicals from roots exudation and its environment behavior in soil.Chinese Journal of Soil Science, 41, 501-507. |
(in Chinese with English abstract) [王延平, 王华田 (2010a). 植物根分泌的化感物质及其在土壤中的环境行为. 土壤通报, 41, 501-507.] | |
[40] | Wang YP, Wang HT, Yang Y, Jiang YZ, Wang ZQ (2010b). Study on adsorption and retention of exogenous phenolic acids in the soil of poplar (Populus deltoids Marsh) plantation.Journal of Soil and Water Conservation, 24, 251-256. |
(in Chinese with English abstract) [王延平, 王华田, 杨阳, 姜岳忠, 王宗芹 (2010b). 外源酚酸在杨树人工林土壤中的吸附与滞留动态研究. 水土保持学报, 24, 251-256.] | |
[41] | Wang YP, Wang HT, Jiang YZ, Chen HY, Ni GP (2011). Se- cretion dynamics of phenolic acids from poplar (Populus × euramericana ‘Neva’) seedling roots under N, P defi- ciency conditions.Scientia Silvae Sinicae, 47(1), 73-79. |
(in Chinese with English abstract) [王延平, 王华田, 姜岳忠, 陈鸿鹰, 倪桂萍 (2011). 氮磷亏缺条件下杨树幼苗根系分泌酚酸的动态. 林业科学, 47(1), 73-79.] | |
[42] | Wang YP, Wang HT, Xu T, Ni GP, Jiang YZ (2013). Effects of exogenous phenolic acid on soil nutrient availability and enzyme activities in a poplar plantation.Chinese Journal of Applied Ecology, 24, 667-674. |
(in Chinese with English abstract) [王延平, 王华田, 许坛, 倪桂萍, 姜岳忠 (2013). 酚酸对杨树人工林土壤养分有效性及酶活性的影响. 应用生态学报, 24, 667-674.] | |
[43] | Xu T, Wang HT, Wang YP, Han YF, Jiang YZ, Zhu WR (2014). Correlation between soil nutrient availability and bacteria community succession in poplar plantations.Chinese Journal of Applied and Environmental Biology, 20, 491-498. |
(in Chinese with English abstract) [许坛, 王华田, 王延平, 韩亚飞, 姜岳忠, 朱婉芮 (2014). 杨树人工林土壤养分有效性变化及其与土壤细菌群落演变的相关性. 应用与环境生物学报, 20, 491-498.] | |
[44] | Xu T, Wang HT, Zhu WR, Wang YP, Li CR, Jiang YZ (2015). Morphological and anatomical traits of poplar fine roots in successive rotation plantations.Scientia Silvae Sinicae, 51, 119-126. |
(in Chinese with English abstract) [许坛, 王华田, 朱婉芮, 王延平, 李传荣, 姜岳忠 (2015). 连作杨树细根根序形态及解剖结构. 林业科学, 51, 119-126.] | |
[45] | Yang Y, Wang HT, Wang YP, Jiang YZ, Wang ZQ (2010). Effects of exogenous phenolic acids on root physiologic characteristics and morphologic development of poplar hydroponic cuttings.Scientia Silvae Sinicae, 46(11), 73-80. |
(in Chinese with English abstract) [杨阳, 王华田, 王延平, 姜岳忠, 王宗芹 (2010). 外源酚酸对杨树幼苗根系生理和形态发育的影响. 林业科学, 46(11), 73-80.] | |
[46] | Zhu XR, Wang DL (1997). Potential effect of extracts of roots of Malus pumila and Populus canadensis on wheat growth.Acta Phytoecologica Sinica, 21, 226-233. |
(in Chinese with English abstract) [祝心如, 王大力 (1997). 苹果、杨树等林木根系浸取物对小麦生长的潜在影响 . 植物生态学报,21, 226-233.] |
[1] | 曲泽坤, 朱丽琴, 姜琦, 王小红, 姚晓东, 蔡世锋, 罗素珍, 陈光水. 亚热带常绿阔叶林丛枝菌根树种养分觅食策略及其与细根形态间的关系[J]. 植物生态学报, 2024, 48(4): 416-427. |
[2] | 陈冠陶, 彭勇, 郑军, 李顺, 彭天驰, 邱细容, 涂利华. 氮添加对亚热带次生常绿阔叶林扁刺栲细根生物量、寿命和形态的短期影响[J]. 植物生态学报, 2017, 41(10): 1041-1050. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19