植物生态学报 ›› 2014, Vol. 38 ›› Issue (5): 499-506.DOI: 10.3724/SP.J.1258.2014.00046
收稿日期:
2013-12-16
接受日期:
2014-03-04
出版日期:
2014-12-16
发布日期:
2014-05-13
通讯作者:
万贤崇
基金资助:
ZHANG Cui-Ping1,MENG Ping2,ZHANG Jin-Song2,WAN Xian-Chong1,*()
Received:
2013-12-16
Accepted:
2014-03-04
Online:
2014-12-16
Published:
2014-05-13
Contact:
WAN Xian-Chong
摘要:
采用砂培方法, 在温室内将一年生核桃(Juglans regia)嫁接苗木和绿豆(Vigna radiata)进行间作, 研究绿豆对核桃苗木生长、水分平衡和光合特性的影响。该研究设有5种处理, 即: 对照(核桃单作, 正常供应氮素); 核桃单作, 不添加氮素; 核桃绿豆间作, 不添加氮素; 核桃绿豆间作, 正常供应氮素; 绿豆单作, 不添加氮素。结果显示: 种植绿豆可以增加土壤氮含量和核桃茎内氮含量, 但对核桃叶和根系中的氮含量影响不明显。种植绿豆显著增加不施氮核桃的高生长和直径生长, 但降低了正常供氮核桃的生长。无论种植绿豆与否, 不供氮处理降低了核桃的总叶面积, 提高了根冠比。核桃叶片气孔气体交换对各处理的响应和生长有相同的趋势。缺氮显著降低了核桃叶柄在中午的导水率、提高了导水损失率; 种植绿豆显著提高不供氮核桃的导水率而且明显降低了其导水损失率。然而, 种植绿豆使正常供氮的核桃降低了导水率, 加剧了导水损失率。同时, 绿豆受到间作的竞争压力, 产量和生物量有所下降。由研究结果可知, 在贫瘠的土壤上, 固氮植物绿豆改善了间作的核桃的氮营养, 有益于核桃木质部发育、水分平衡以及光合代谢。但是在氮充足的土壤中, 种植绿豆反而降低了核桃的水分供应, 影响其气体交换和生长。
张翠萍,孟平,张劲松,万贤崇. 固氮植物绿豆对核桃幼苗生长、叶片气孔气体交换及水力特征的作用. 植物生态学报, 2014, 38(5): 499-506. DOI: 10.3724/SP.J.1258.2014.00046
ZHANG Cui-Ping,MENG Ping,ZHANG Jin-Song,WAN Xian-Chong. Effects of a nitrogen fixing plant Vigna radiata on growth, leaf stomatal gas exchange and hydraulic characteristics of the intercropping Juglans regia seedlings. Chinese Journal of Plant Ecology, 2014, 38(5): 499-506. DOI: 10.3724/SP.J.1258.2014.00046
营养元素 Nutrient | 无氮处理 Nitrogen deficit | 正常氮处理 Adequate nitrogen |
---|---|---|
KNO3 | - | 2 |
K2HPO4 | 1 | 1 |
NH4NO3 | - | 2 |
(NH4)2SO4 | - | 3 |
K2SO4 | 1 | - |
MgSO4 | 2 | 2 |
CaSO4 | 2 | - |
Ca(NO3)2 | - | 2 |
表1 氮处理营养液成分
Table 1 Composition of nutrient solutions with different rates of nitrogen (mmol·L-1)
营养元素 Nutrient | 无氮处理 Nitrogen deficit | 正常氮处理 Adequate nitrogen |
---|---|---|
KNO3 | - | 2 |
K2HPO4 | 1 | 1 |
NH4NO3 | - | 2 |
(NH4)2SO4 | - | 3 |
K2SO4 | 1 | - |
MgSO4 | 2 | 2 |
CaSO4 | 2 | - |
Ca(NO3)2 | - | 2 |
图1 不同处理土壤氮含量(平均值±标准误差)。CK, 核桃单作, 正常供氮素; T1, 核桃单作, 不添加氮素; T2, 核桃绿豆间作, 不添加氮素; T3, 核桃绿豆间作, 正常供应氮素; VCK, 绿豆单作, 不添加氮素。不同小写字母表示处理间差异显著(p < 0.05)。
Fig. 1 Nitrogen content in soil of different treatments (mean ± SE). CK, Juglans regia monocropping with ordinary nitrogen; T1, J. regia monocropping without nitrogen; T2, J. regia and Vigna radiata intercropping without nitrogen; T3, J. regia and V. radiata intercropping with ordinary nitrogen; VCK, V. radiata monocropping without nitrogen. Different small letters indicate significant differences among treatments (p < 0.05).
图2 核桃各器官中氮含量(平均值±标准误差)。CK、T1、T2、T3同图1。不同小写字母表示处理间差异显著(p < 0.05)。
Fig. 2 Nitrogen content in different organs of Juglans regia (mean ± SE). CK, T1, T2, T3 see Fig. 1. Different small letters indicate significant differences among treatments (p < 0.05).
图3 不同处理条件下核桃苗木的生长。CK、T1、T2、T3同图1。不同小写字母表示处理间差异显著(p < 0.05)。
Fig. 3 Growth of Juglans regia seedlings under different treatments. CK, T1, T2, T3 see Fig. 1. Different small letters indicate significant differences among treatments (p < 0.05).
图4 不同处理条件下核桃苗木的叶面积。CK、T1、T2、T3同图1。不同小写字母表示处理间差异显著(p < 0.05)。
Fig. 4 Leaf area of Juglans regia seedlings under different treatments. CK, T1, T2, T3 see Fig. 1. Different small letters indicate significant differences among treatments (p < 0.05).
图5 不同处理条件下核桃苗木的根冠比。CK、T1、T2、T3同图1。不同小写字母表示处理间差异显著(p < 0.05)。
Fig. 5 Root:shoot of Juglans regia seedlings under different treatments. CK, T1, T2, T3 see Fig. 1. Different small letters indicate significant differences among treatments (p < 0.05).
图6 不同处理条件下绿豆的生长和产量。VCK、T2、T3同图1。不同小写字母表示处理间差异显著(p < 0.05)。
Fig. 6 Biomass and yield of Vigna radiata under different treatments. VCK,T2, T3 see Fig. 1. Different small letters indicate significant differences among treatments (p < 0.05).
图7 核桃苗木在不同处理条件下气体交换的变异。CK、T1、T2、T3同图1。不同小写字母表示处理间差异显著(p < 0.05)。
Fig. 7 Variation in gas exchanges of Juglans regia seedlings under different treatments. CK, T1, T2, T3 see Fig. 1. Different small letters indicate significant differences among treatments (p < 0.05).
图8 不同处理条件下核桃叶柄导水率和导水损失率。CK、T1、T2、T3同图1。不同小写字母表示处理间差异显著(p < 0.05)。
Fig. 8 Variation in the hydraulic conductivity and percentage loss of hydraulic conductivity (PLC) of Juglans regia petioles under different treatments. CK, T1, T2, T3 see Fig.1. Different small letters indicate significant differences among treatments (p < 0.05).
图10 不同处理下核桃叶柄木质部导管显微结构研究。A, 核桃单作, 正常供氮素; B, 核桃绿豆间作, 不添加氮素; C, 核桃单作, 不添加氮素; D, 核桃绿豆间作, 正常供应氮素。
Fig. 10 Microstructure of petiole xylem vessel under different treatments. A, Juglans regia monocropping with ordinary nitrogen; B, J. regia and Vigna radiata intercropping without nitrogen; C, J. regia monocropping without nitrogen; D, J. regia and V. radiata intercropping with ordinary nitrogen.
CK | T1 | T2 | T3 | |
---|---|---|---|---|
导管密度 Vessel density (mm-2) | 318 ± 41.35a | 260 ± 37.06b | 280 ± 46.19ab | 288 ± 24.39ab |
导管直径 Vessel diameter (μm) | 28.43 ± 3.32ab | 21.13 ± 1.15b | 28.23 ± 1.31ab | 32.17 ± 2.19a |
最大导管直径 Max vessel diameter (μm) | 45.41 ± 2.85a | 31.98 ± 2.38c | 39.70 ± 1.20b | 47.09 ± 0.83a |
表2 核桃苗木叶柄木质部导管结构特征(平均值±标准误差)
Table 2 Vessel structure in petiole xylem of Juglans regia seedlings under different treatments (mean ± SE)
CK | T1 | T2 | T3 | |
---|---|---|---|---|
导管密度 Vessel density (mm-2) | 318 ± 41.35a | 260 ± 37.06b | 280 ± 46.19ab | 288 ± 24.39ab |
导管直径 Vessel diameter (μm) | 28.43 ± 3.32ab | 21.13 ± 1.15b | 28.23 ± 1.31ab | 32.17 ± 2.19a |
最大导管直径 Max vessel diameter (μm) | 45.41 ± 2.85a | 31.98 ± 2.38c | 39.70 ± 1.20b | 47.09 ± 0.83a |
[1] | Aerts R (1999). Interspecific competition in natural plant communities: mechanisms, trade-offs and plant-soil feedbacks. Journal of Experimental Botany, 50, 29-37. |
[2] |
Brodribb TJ, Hill RS (2000). Increases in water potential gradient reduce xylem conductivity in whole plants: evidence from a low-pressure conductivity method. Plant Physiology, 123, 1021-1027.
DOI URL PMID |
[3] | Brooker RW, Maestre FT, Callaway RM, Lortie CL, Cavieres LA, Kunstler G, Liancourt P, Tielbörger K, Travis JMJ, Anthelme F, Armas C, Coll L, Corcket E, Delzon S, Forey E, Kikvidze Z, Olofsson J, Pugnaire F, Quiroz CL, Saccone P, Schiffers K, Seifan M, Touzard B, Michalet R (2008). Facilitation in plant communities: the past, the present, and the future. Journal of Ecology, 96, 18-34. |
[4] |
Bucci SJ, Scholz FG, Goldstein G, Meinzer FC, Franco AC, Campanello PI, Villalobos-Vega R, Bustamante M, Miralles-Wilhelm F (2006). Nutrient availability constrains the hydraulic architecture and water relations of savannah trees. Plant, Cell & Environment, 29, 2153-2167.
DOI URL PMID |
[5] | Callaway RM, Walker LR (1997). Competition and facilitation: a synthetic approach to interactions in plant communities. Ecology, 78, 1958-1965. |
[6] | Lowther JR (1980). Use of a single sulphuric acid-hydrogen peroxide digest for the analysis of Pinus radiata needles. Communications in Soil Science & Plant Analysis, 11, 175-188. |
[7] | Mao DR (1994). Research Methods of Plant Nutrition. Beijing Agricultural University Press, Beijing. |
[ 毛达如 (1994). 植物营养研究方法. 北京农业大学出版社, 北京.] | |
[8] |
Mugendi DN, Nair PKR, Mugwe JN, O’Neill MK, Woomer P (1999). Alley cropping of maize with calliandra and leucaena in the subhumid highlands of Kenya: Part 2. Soil-fertility changes and maize yield. Agroforestry Systems, 46, 39-50.
DOI URL |
[9] |
Plavcová L, Hacke UG (2012). Phenotypic and developmental plasticity of xylem in hybrid poplar saplings subjected to experimental drought, nitrogen fertilization, and shading. Journal of Experimental Botany, 63, 6481-6491.
DOI URL |
[10] |
Santiago LS, Goldstein G, Meinzer FC, Fisher JB, Machado K, Woodruff D, Jones T (2004). Leaf photosynthetic traits scale with hydraulic conductivity and wood density in Panamanian forest canopy trees. Oecologia, 140, 543-550.
DOI URL |
[11] | Sperry JS, Donnelly JR, Tyree MT (1988). A method for measuring hydraulic conductivity and embolism in xylem. Plant, Cell & Environment, 11, 35-40. |
[12] | Sperry JS, Pockman WT (1993). Limitation of transpiration by hydraulic conductance and xylem cavitation in Betula occidentalis. Plant, Cell & Environment, 16, 279-287. |
[13] | Sun SJ, Meng P, Zhang JS, Wan XC (2014). Hydraulic lift by Juglans regia relates to nutrient status in the intercropped shallow-root crop plant. Plant and Soil, 374, 629-641. |
[14] | Teklay T (2007). Decomposition and nutrient release from pruning residues of two indigenous agroforestry species during the wet and dry seasons. Nutrient Cycling in Agroecosystems, 77, 115-126. |
[15] | Tyree MT, Zimmermann MH (2002). Xylem Structure and the Ascent of Sap. 2nd edn. Springer, Berlin. |
[16] | Vander Willigen C, Sherwin HW, Pammenter NW (2000). Xylem hydraulic characteristics of subtropical trees from contrasting habitats grown under identical environmental conditions. New Phytologist, 145, 51-59. |
[17] | Wang L, Feng JX, Wang SX, Jia CR, Wan XC (2013). The interaction of drought and slope aspect on growth of Quercus variabilis and Platycladus orientalis. Acta Ecologica Sinica, 33, 2425-2433. (in Chinese with English abstract) |
[ 王林, 冯锦霞, 王双霞, 贾长荣, 万贤崇 (2013). 干旱和坡向互作对栓皮栎和侧柏生长的影响. 生态学报, 33, 2425-2433.] | |
[18] | Zhang HT, Guo LZ, Chai Q, He YH (2011). Effects of nodule bacteria inoculation on rhizosphere bacteria amount and N nutrition in pea/maize intercropping system. Journal of Gansu Agricultural University, 46, 30-33, 38. (in Chinese with English abstract) |
[ 张虎天, 郭丽琢, 柴强, 何亚慧 (2011). 接种根瘤菌对豌豆/玉米体系根际细菌数量及氮营养的影响. 甘肃农业大学学报, 46, 30-33, 38.] | |
[19] | Zhang JS, Meng P (2004). Simulation on water ecological characteristics of agroforestry in the hilly area of Taihang Mountain. Acta Ecologica Sinica, 24, 1172-1177. (in Chinese with English abstract) |
[ 张劲松, 孟平 (2004). 农林复合系统水分生态特征的模拟研究. 生态学报, 24, 1172-1177.] |
[1] | 许泽海 赵燕东. 生长季五角枫茎干水分含量序列特征及其影响因素解译[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 周建 王焓. 森林径级结构研究:从统计描述到理论演绎[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[3] | 施梦娇, 李斌, 伊力塔, 刘美华. 美洲黑杨幼苗生长和生理生态指标对干旱-复水响应的性别差异[J]. 植物生态学报, 2023, 47(8): 1159-1170. |
[4] | 吴晨, 陈心怡, 刘源豪, 黄锦学, 熊德成. 增温对森林细根生长、死亡及周转特征影响的研究进展[J]. 植物生态学报, 2023, 47(8): 1043-1054. |
[5] | 吴帆, 吴晨, 张宇辉, 余恒, 魏智华, 郑蔚, 刘小飞, 陈仕东, 杨智杰, 熊德成. 增温对成熟杉木人工林不同季节细根生长、形态及生理代谢特征的影响[J]. 植物生态学报, 2023, 47(6): 856-866. |
[6] | 杜英东, 袁相洋, 冯兆忠. 不同形态氮对杨树光合特性及生长的影响[J]. 植物生态学报, 2023, 47(3): 348-360. |
[7] | 汪晶晶, 王嘉浩, 黄致云, Vanessa Chiamaka OKECHUKW, 胡蝶, 祁珊珊, 戴志聪, 杜道林. 不同氮水平下内生固氮菌对入侵植物南美蟛蜞菊生长策略的影响[J]. 植物生态学报, 2023, 47(2): 195-205. |
[8] | 刘美君, 陈秋文, 吕金林, 李国庆, 杜盛. 黄土丘陵区辽东栎和刺槐树干径向生长与微变化季节动态特征[J]. 植物生态学报, 2023, 47(2): 227-237. |
[9] | 安凡, 李宝银, 钟全林, 程栋梁, 徐朝斌, 邹宇星, 张雪, 邓兴宇, 林秋燕. 不同种源刨花楠苗木生长与主要功能性状对氮添加的响应[J]. 植物生态学报, 2023, 47(12): 1693-1707. |
[10] | 刘艳杰, 刘玉龙, 王传宽, 王兴昌. 东北温带森林5个羽状复叶树种叶成本-效益关系比较[J]. 植物生态学报, 2023, 47(11): 1540-1550. |
[11] | 朱明阳, 林琳, 佘雨龙, 肖城材, 赵通兴, 胡春相, 赵昌佑, 王文礼. 云南轿子山不同海拔急尖长苞冷杉径向生长动态及其低温阈值[J]. 植物生态学报, 2022, 46(9): 1038-1049. |
[12] | 李一丁, 桑清田, 张灏, 刘龙昌, 潘庆民, 王宇, 刘伟, 袁文平. 内蒙古半干旱地区空气和土壤加湿对幼龄樟子松生长的影响[J]. 植物生态学报, 2022, 46(9): 1077-1085. |
[13] | 魏瑶, 马志远, 周佳颖, 张振华. 模拟增温改变青藏高原植物繁殖物候及植株高度[J]. 植物生态学报, 2022, 46(9): 995-1004. |
[14] | 李肖, PIALUANG Bounthong, 康文辉, 冀晓东, 张海江, 薛治国, 张志强. 近几十年来冀西北山地白桦次生林径向生长对气候变化的响应[J]. 植物生态学报, 2022, 46(8): 919-931. |
[15] | 魏龙鑫, 耿燕, 崔可达, 乔雪涛, 岳庆敏, 范春雨, 张春雨, 赵秀海. 阔叶红松林不同林层和生长阶段树木生长对采伐强度的响应[J]. 植物生态学报, 2022, 46(6): 642-655. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19