植物生态学报 ›› 2014, Vol. 38 ›› Issue (2): 116-124.DOI: 10.3724/SP.J.1258.2013.00038
所属专题: 稳定同位素生态学; 青藏高原植物生态学:群落生态学
邓建明2*, 姚步青1*, 周华坤1,(), 赵新全1, 魏晴3, 陈哲1,4, 王文颖3
收稿日期:
2013-01-04
接受日期:
2013-04-07
出版日期:
2014-01-04
发布日期:
2014-02-12
通讯作者:
周华坤
作者简介:
* (E-mail: qhzhhk@yahoo.com)* 并列第一作者Equally contributing author (E-mail: dengjm@lzu.edu.cn; bqyao@nwipb.cas.cn)
基金资助:
DENG Jian-Ming2*, YAO Bu-Qing1*, ZHOU Hua-Kun1,**(), ZHAO Xin-Quan1, WEI Qing3, CHEN Zhe1,4, WANG Wen-Ying3
Received:
2013-01-04
Accepted:
2013-04-07
Online:
2014-01-04
Published:
2014-02-12
Contact:
ZHOU Hua-Kun
摘要:
资源利用方式的分化可以减小物种间对相同资源的竞争, 是群落物种多样性维持的主要机制。在全球变化背景下, 土壤温度和水分条件的变化可能影响高寒草甸生态系统植物的氮素(N)营养。该实验在经N、水处理3年的高寒草甸开展, 通过15NH415NO3的15N稳定性同位素注射, 比较高寒草甸主要植物种对N、水处理的响应方式, 以及N吸收能力、分配和根冠比特点, 研究其营养吸收和资源分配方式的分化。结果发现不同植物种对N、水处理响应差异显著, N吸收能力、根N含量和根冠比等功能性状种间差异显著; 回归分析发现植物种N吸收能力和根N含量之间的关系不显著, 和根冠比之间呈显著线性负相关。说明高寒草甸生态系统不同植物种间N吸收具有生态位分化, 并且存在N营养吸收能力和资源分配策略的权衡。
邓建明, 姚步青, 周华坤, 赵新全, 魏晴, 陈哲, 王文颖. 水氮添加条件下高寒草甸主要植物种氮素吸收分配的同位素示踪研究. 植物生态学报, 2014, 38(2): 116-124. DOI: 10.3724/SP.J.1258.2013.00038
DENG Jian-Ming, YAO Bu-Qing, ZHOU Hua-Kun, ZHAO Xin-Quan, WEI Qing, CHEN Zhe, WANG Wen-Ying. Nitrogen uptake and allocation characteristics of alpine meadow main species under water and nitrogen additions based on 15N isotope. Chinese Journal of Plant Ecology, 2014, 38(2): 116-124. DOI: 10.3724/SP.J.1258.2013.00038
地上部分生物量 Aboveground biomass | 根冠比 Root shoot ratio | δ15N地上部分 δ15NAboveground | δ15N地下部分 δ15NBelo-wground | 15N分配(δ15N地上部分/δ15N地下部分) 15N allocation (δ15NBelowground/δ15NAboveground) | 15N吸收能力 15N absorption capability | |
---|---|---|---|---|---|---|
物种 Species (S) | 430.407*** | 516.956*** | 824.440*** | 679.706*** | 226.575*** | 414.199*** |
N处理 N treatment (N) | 53.854*** | 0.020 | 79.763*** | 1.073 | 49.848*** | 63.005*** |
水分处理 Water treatment (W) | 6.410** | 10.558*** | 161.192*** | 87.222*** | 4.365* | 102.997*** |
物种×N处理 S × N | 14.586*** | 0.849 | 33.536*** | 8.971*** | 6.907*** | 12.010*** |
物种×水分处理 S × W | 11.515*** | 8.600*** | 30.235*** | 19.966*** | 6.173*** | 16.559*** |
物种×N处理×水分处理 S × N × W | 8.483*** | 22.194*** | 66.099*** | 64.992*** | 9.027*** | 32.964*** |
表1 地上部分生物量、根冠比、δ15N地上部分、δ15N地下部分,、15N分配和15N吸收能力的方差分析结果
Table 1 Results of ANOVA for aboveground biomass, root to shoot ratio, δ15NAboveground, δ15NBelowground, 15N allocation, and 15N absorption capability
地上部分生物量 Aboveground biomass | 根冠比 Root shoot ratio | δ15N地上部分 δ15NAboveground | δ15N地下部分 δ15NBelo-wground | 15N分配(δ15N地上部分/δ15N地下部分) 15N allocation (δ15NBelowground/δ15NAboveground) | 15N吸收能力 15N absorption capability | |
---|---|---|---|---|---|---|
物种 Species (S) | 430.407*** | 516.956*** | 824.440*** | 679.706*** | 226.575*** | 414.199*** |
N处理 N treatment (N) | 53.854*** | 0.020 | 79.763*** | 1.073 | 49.848*** | 63.005*** |
水分处理 Water treatment (W) | 6.410** | 10.558*** | 161.192*** | 87.222*** | 4.365* | 102.997*** |
物种×N处理 S × N | 14.586*** | 0.849 | 33.536*** | 8.971*** | 6.907*** | 12.010*** |
物种×水分处理 S × W | 11.515*** | 8.600*** | 30.235*** | 19.966*** | 6.173*** | 16.559*** |
物种×N处理×水分处理 S × N × W | 8.483*** | 22.194*** | 66.099*** | 64.992*** | 9.027*** | 32.964*** |
N0W0 | N0W1 | N0W2 | N1W0 | N1W1 | N1W2 | ||
---|---|---|---|---|---|---|---|
地上部分生物量 Aboveground biomass (g) | 22.871±2.561bcd | 16.609±1.197d | 18.110±2.431cd | 24.105±3.730bcd | 27.091±1.442bc | 38.850±5.745a | |
相对 丰度 Relative abundance | 垂穗披碱草 Elymus nutans | 0.600±0.039c | 0.704±0.016ab | 0.728±0.041ab | 0.632±0.049bc | 0.542±0.035c | 0.704±0.034ab |
矮生嵩草 Kobresia humilis | 0.040±0.009a | 0.030±0.007ab | 0.018±0.003bc | 0.032±0.006ab | 0.035±0.005a | 0.042±0.010a | |
异叶米口袋 Gueldenstaedtia diversiffolia | 0.061±0.015cde | 0.073±0.009cd | 0.064±0.015cde | 0.092±0.017bc | 0.173±0.025a | 0.025±0.006e | |
美丽风毛菊 Saussurea superba | 0.057±0.025bcd | 0.068±0.011ab | 0.027±0.003d | 0.056±0.005bcd | 0.098±0.010a | 0.075±0.008ab | |
鹅绒委陵菜 Potentilla anserina | 0.099±0.007a | 0.026±0.004e | 0.047±0.001cde | 0.085±0.019ab | 0.064±0.003bc | 0.057±0.004cd | |
其他植物 Other plants | 0.074±0.003ab | 0.022±0.005d | 0.077±0.006ab | 0.064±0.009bc | 0.040±0.002cd | 0.083±0.008ab |
表2 不同处理下单个微区内总地上部分生物量和5种植物的相对丰度(平均值±标准偏差)
Table 2 Total aboveground biomass of single micro-regions and relative abundances of five plants under different treatments (mean ± SD)
N0W0 | N0W1 | N0W2 | N1W0 | N1W1 | N1W2 | ||
---|---|---|---|---|---|---|---|
地上部分生物量 Aboveground biomass (g) | 22.871±2.561bcd | 16.609±1.197d | 18.110±2.431cd | 24.105±3.730bcd | 27.091±1.442bc | 38.850±5.745a | |
相对 丰度 Relative abundance | 垂穗披碱草 Elymus nutans | 0.600±0.039c | 0.704±0.016ab | 0.728±0.041ab | 0.632±0.049bc | 0.542±0.035c | 0.704±0.034ab |
矮生嵩草 Kobresia humilis | 0.040±0.009a | 0.030±0.007ab | 0.018±0.003bc | 0.032±0.006ab | 0.035±0.005a | 0.042±0.010a | |
异叶米口袋 Gueldenstaedtia diversiffolia | 0.061±0.015cde | 0.073±0.009cd | 0.064±0.015cde | 0.092±0.017bc | 0.173±0.025a | 0.025±0.006e | |
美丽风毛菊 Saussurea superba | 0.057±0.025bcd | 0.068±0.011ab | 0.027±0.003d | 0.056±0.005bcd | 0.098±0.010a | 0.075±0.008ab | |
鹅绒委陵菜 Potentilla anserina | 0.099±0.007a | 0.026±0.004e | 0.047±0.001cde | 0.085±0.019ab | 0.064±0.003bc | 0.057±0.004cd | |
其他植物 Other plants | 0.074±0.003ab | 0.022±0.005d | 0.077±0.006ab | 0.064±0.009bc | 0.040±0.002cd | 0.083±0.008ab |
N0W0 | N0W1 | N0W2 | N1W0 | N1W1 | N1W2 | |
---|---|---|---|---|---|---|
垂穗披碱草 Elymus nutans | 0.495±0.026Ca | 0.515±0.029CDa | 0.519±0.016Ba | 0.573±0.093Ca | 0.475±0.049Ca | 0.554±0.034Ca |
矮生嵩草 Kobresia humilis | 3.021±0.227Abc | 3.737±0.200Ab | 3.616±0.254Ab | 4.770±0.395Aa | 2.191±0.139Bc | 3.009±0.284Bbc |
异叶米口袋 Gueldenstaedtia diversiffolia | 3.881±0.591Ab | 3.346±0.156Bb | 3.392±0.461Ab | 2.530±0.326Bb | 3.424±0.298Ab | 5.136±1.093Aa |
美丽风毛菊 Saussurea superba | 1.001±0.173Ba | 0.957±0.058Cab | 0.766±0.072Bb | 1.152±0.001Ca | 0.641±0.194Cb | 0.622±0.115Cb |
鹅绒委陵菜 Potentilla anserina | 0.558±0.028Cc | 0.358±0.001Dd | 0.939±0.099Ba | 0.911±0.097Cab | 0.496±0.001Ccd | 0.746±0.078Cb |
表3 不同处理下5种植物根冠比(平均值±标准偏差)
Table 3 Root and shoot ratios of five plants under different treatments (mean ± SD)
N0W0 | N0W1 | N0W2 | N1W0 | N1W1 | N1W2 | |
---|---|---|---|---|---|---|
垂穗披碱草 Elymus nutans | 0.495±0.026Ca | 0.515±0.029CDa | 0.519±0.016Ba | 0.573±0.093Ca | 0.475±0.049Ca | 0.554±0.034Ca |
矮生嵩草 Kobresia humilis | 3.021±0.227Abc | 3.737±0.200Ab | 3.616±0.254Ab | 4.770±0.395Aa | 2.191±0.139Bc | 3.009±0.284Bbc |
异叶米口袋 Gueldenstaedtia diversiffolia | 3.881±0.591Ab | 3.346±0.156Bb | 3.392±0.461Ab | 2.530±0.326Bb | 3.424±0.298Ab | 5.136±1.093Aa |
美丽风毛菊 Saussurea superba | 1.001±0.173Ba | 0.957±0.058Cab | 0.766±0.072Bb | 1.152±0.001Ca | 0.641±0.194Cb | 0.622±0.115Cb |
鹅绒委陵菜 Potentilla anserina | 0.558±0.028Cc | 0.358±0.001Dd | 0.939±0.099Ba | 0.911±0.097Cab | 0.496±0.001Ccd | 0.746±0.078Cb |
N0W0 | N0W1 | N0W2 | N1W0 | N1W1 | N1W2 | |
---|---|---|---|---|---|---|
垂穗披碱草 Elymus nutans | 0.971±0.099Abcd | 0.992±0.068Bbc | 0.808±0.033Ad | 0.919±0.099Acd | 1.395±0.122ABa | 1.103±0.048Ab |
矮生嵩草 Kobresia humilis | 0.132±0.005Dd | 0.178±0.008Dc | 0.198±0.011Db | 0.134±0.006Dd | 0.234±0.007Ca | 0.150±0.007Dd |
异叶米口袋 Gueldenstaedtia diversiffolia | 0.179±0.010Db | 0.224±0.010Da | 0.174±0.005Db | 0.222±0.014Da | 0.237±0.005Ca | 0.163±0.011Db |
美丽风毛菊 Saussurea superba | 0.593±0.053Cbc | 0.580±0.049Cbc | 0.726±0.069Bb | 0.375±0.001Cc | 1.678±0.390Aa | 0.668±0.077Cb |
鹅绒委陵菜 Potentilla anserina | 0.740±0.029Bc | 1.308±0.000Aa | 0.463±0.038Cd | 0.749±0.048Bc | 1.001±0.001Bb | 0.933±0.063Bb |
表4 不同处理下5种植物15N吸收能力(平均值±标准偏差)
Table 4 15N absorption capability of five plants under different treatments (mean ± SD)
N0W0 | N0W1 | N0W2 | N1W0 | N1W1 | N1W2 | |
---|---|---|---|---|---|---|
垂穗披碱草 Elymus nutans | 0.971±0.099Abcd | 0.992±0.068Bbc | 0.808±0.033Ad | 0.919±0.099Acd | 1.395±0.122ABa | 1.103±0.048Ab |
矮生嵩草 Kobresia humilis | 0.132±0.005Dd | 0.178±0.008Dc | 0.198±0.011Db | 0.134±0.006Dd | 0.234±0.007Ca | 0.150±0.007Dd |
异叶米口袋 Gueldenstaedtia diversiffolia | 0.179±0.010Db | 0.224±0.010Da | 0.174±0.005Db | 0.222±0.014Da | 0.237±0.005Ca | 0.163±0.011Db |
美丽风毛菊 Saussurea superba | 0.593±0.053Cbc | 0.580±0.049Cbc | 0.726±0.069Bb | 0.375±0.001Cc | 1.678±0.390Aa | 0.668±0.077Cb |
鹅绒委陵菜 Potentilla anserina | 0.740±0.029Bc | 1.308±0.000Aa | 0.463±0.038Cd | 0.749±0.048Bc | 1.001±0.001Bb | 0.933±0.063Bb |
N0W0 | N0W1 | N0W2 | N1W0 | N1W1 | N1W2 | |
---|---|---|---|---|---|---|
地上部分δ15N Aboveground δ15N | ||||||
垂穗披碱草 Elymus nutans | 4069±244Abc | 4425±150Aab | 3952±112Abc | 3845±326Abc | 5023±418Ba | 4321±173Aab |
矮生嵩草 Kobresia humilis | 2396±119Cbc | 3268±39Ca | 3181±275Ba | 2599±72Bb | 3200±110Da | 2100±181Cc |
异叶米口袋 Gueldenstaedtia diversiffolia | 850±174Dab | 958±180Dab | 657±84Dbc | 1145±213Da | 909±90Eab | 947±166Dab |
美丽风毛菊 Saussurea superba | 3431±332Bb | 3446±350Cb | 3108±225Bb | 2140±214Cc | 6407±641Aa | 3252±130Bb |
鹅绒委陵菜 Potentilla anserina | 3235±285Bb | 4044±120Ba | 1982±200Cc | 4006±191Aa | 3963±400Ca | 4593±333Aa |
地下部分δ15N Belowground δ15N | ||||||
垂穗披碱草 Elymus nutans | 2980±210Bab | 3548±308Aa | 2638±207Aab | 2818±565Aab | 2893±547Bab | 3151±246Aab |
矮生嵩草 Kobresia humilis | 646±117Cab | 1034±47Ca | 1138±199Ca | 475±74Cc | 1011±299Cab | 514±66Cc |
异叶米口袋 Gueldenstaedtia diversiffolia | 479±144Cabc | 564±156Dab | 416±35Dbcd | 354±47Cbcd | 702±70Da | 376±45Cbcd |
美丽风毛菊 Saussurea superba | 3246±169Ab | 2427±98Bc | 2451±112Ac | 1649±165Be | 5849±585Aa | 2211±168Bcd |
鹅绒委陵菜 Potentilla anserina | 3389±342Abc | 3842±380Aa | 1871±190Be | 2867±182Ad | 2979±300Bcd | 3515±244Aab |
15N分配 15N allocation | ||||||
垂穗披碱草 Elymus nutans | 1.369±0.121Bb | 1.251±0.073BCb | 1.506±0.165Bb | 1.392±0.216Cb | 2.236±0.419Ba | 1.375±0.092Cb |
矮生嵩草 Kobresia humilis | 3.774±0.556Abc | 3.166±0.182Abc | 2.825±0.257Abc | 5.564±0.935Aa | 3.719±0.760Abc | 4.099±0.185Ab |
异叶米口袋 Gueldenstaedtia diversiffolia | 1.914±0.452Bab | 1.750±0.354Bb | 1.578±0.097Bb | 3.312±1.006Ba | 1.296±0.130Cb | 2.509±0.148Bab |
美丽风毛菊 Saussurea superba | 1.055±0.052Cd | 1.422±0.080Bab | 1.267±0.035BCc | 1.297±0.130Cbc | 1.095±0.110Cd | 1.473±0.057Ca |
鹅绒委陵菜 Potentilla anserina | 0.956±0.020Ce | 1.052±0.021Cde | 1.059±0.100Ccde | 1.398±0.122Cab | 1.330±0.150Cbc | 1.315±0.186Cbcd |
表5 不同处理下5种植物地上部分、地下部分δ15N (‰)和15N分配(地上部分δ15N /地下部分δ15N) (平均值±标准偏差)
Table 5 δ15N (‰) of aboveground and belowground, and 15N allocation (aboveground δ15N / underground δ15N) of five plants under different treatments (mean ± SD)
N0W0 | N0W1 | N0W2 | N1W0 | N1W1 | N1W2 | |
---|---|---|---|---|---|---|
地上部分δ15N Aboveground δ15N | ||||||
垂穗披碱草 Elymus nutans | 4069±244Abc | 4425±150Aab | 3952±112Abc | 3845±326Abc | 5023±418Ba | 4321±173Aab |
矮生嵩草 Kobresia humilis | 2396±119Cbc | 3268±39Ca | 3181±275Ba | 2599±72Bb | 3200±110Da | 2100±181Cc |
异叶米口袋 Gueldenstaedtia diversiffolia | 850±174Dab | 958±180Dab | 657±84Dbc | 1145±213Da | 909±90Eab | 947±166Dab |
美丽风毛菊 Saussurea superba | 3431±332Bb | 3446±350Cb | 3108±225Bb | 2140±214Cc | 6407±641Aa | 3252±130Bb |
鹅绒委陵菜 Potentilla anserina | 3235±285Bb | 4044±120Ba | 1982±200Cc | 4006±191Aa | 3963±400Ca | 4593±333Aa |
地下部分δ15N Belowground δ15N | ||||||
垂穗披碱草 Elymus nutans | 2980±210Bab | 3548±308Aa | 2638±207Aab | 2818±565Aab | 2893±547Bab | 3151±246Aab |
矮生嵩草 Kobresia humilis | 646±117Cab | 1034±47Ca | 1138±199Ca | 475±74Cc | 1011±299Cab | 514±66Cc |
异叶米口袋 Gueldenstaedtia diversiffolia | 479±144Cabc | 564±156Dab | 416±35Dbcd | 354±47Cbcd | 702±70Da | 376±45Cbcd |
美丽风毛菊 Saussurea superba | 3246±169Ab | 2427±98Bc | 2451±112Ac | 1649±165Be | 5849±585Aa | 2211±168Bcd |
鹅绒委陵菜 Potentilla anserina | 3389±342Abc | 3842±380Aa | 1871±190Be | 2867±182Ad | 2979±300Bcd | 3515±244Aab |
15N分配 15N allocation | ||||||
垂穗披碱草 Elymus nutans | 1.369±0.121Bb | 1.251±0.073BCb | 1.506±0.165Bb | 1.392±0.216Cb | 2.236±0.419Ba | 1.375±0.092Cb |
矮生嵩草 Kobresia humilis | 3.774±0.556Abc | 3.166±0.182Abc | 2.825±0.257Abc | 5.564±0.935Aa | 3.719±0.760Abc | 4.099±0.185Ab |
异叶米口袋 Gueldenstaedtia diversiffolia | 1.914±0.452Bab | 1.750±0.354Bb | 1.578±0.097Bb | 3.312±1.006Ba | 1.296±0.130Cb | 2.509±0.148Bab |
美丽风毛菊 Saussurea superba | 1.055±0.052Cd | 1.422±0.080Bab | 1.267±0.035BCc | 1.297±0.130Cbc | 1.095±0.110Cd | 1.473±0.057Ca |
鹅绒委陵菜 Potentilla anserina | 0.956±0.020Ce | 1.052±0.021Cde | 1.059±0.100Ccde | 1.398±0.122Cab | 1.330±0.150Cbc | 1.315±0.186Cbcd |
[1] | Aarssen LW (1989). Competitive ability and species coexistence: a “plants eye” view. Oikos, 56, 386-401. |
[2] |
Adler PB (2004). Neutral models fail to reproduce observed species-area and species-time relationships in Kansas grasslands. Ecology, 85, 1265-1272.
DOI URL |
[3] |
Berendse F (1981). Competition between plant populations with different rooting depths. II. Pot experiments. Oecologia, 48, 334-341.
URL PMID |
[4] | Caldeira MC, Ryel RJ, Lawton JH, Pereira JS (2001). Mechanisms of positive biodiversity-production relationships: insights provided by δ13C analysis in experimental Mediterranean grassland plots. Ecology Letters, 4, 439-443. |
[5] | Caldwell MM (1987). Competition between root systems in natural communities. In: Gregory PJ, Lake JV, Rose DA eds. Root Development and Function. Cambridge University Press, Cambridge, UK. |
[6] | Caldwell MM, Richards JH (1986). Competing root systems: morphology and models of absorption. In: Givnish TJ ed. On the Economy of Plant Form and Function. Cambridge University Press, Cambridge, UK. |
[7] | Chapin FS III (1980). The mineral nutrition of wild plants. Annual Review of Ecological System, 11, 233-260. |
[8] | Chave J (2004). Neutral theory and community ecology. Ecology Letters, 7, 241-253. |
[9] |
Chu CJ, Wang YS, Du GZ, Maestre F, Luo YJ, Wang G (2007). On the balance between niche and neutral processes as drivers of community structure along a successional gradient: insights from alpine and sub-alpine meadow communities. Annals of Botany, 100, 807-812.
DOI URL PMID |
[10] | Clarkson DT (1985). Factors affecting mineral nutrient acquisition by plants. Annual Review of Plant Physiology, 36, 77-115. |
[11] |
Connell JH (1978). Diversity in tropical rain forests and coral reefs. Science, 199, 1302-1310.
URL PMID |
[12] |
Fargione J, Brown CS, Tilman D (2003). Community assembly and invasion: an experimental test of neutral versus niche processes. Proceedings of the National Academy of Sciences of the United States of America, 100, 8916-8920.
DOI URL PMID |
[13] |
Fridley JD (2001). The influence of species diversity on ecosystem productivity: How, where and why? Oikos, 93, 514-526.
DOI URL |
[14] |
Gao YZ, Chen Q, Lin S, Giese M, Brueck H (2011). Resource manipulation effects on net primary production, biomass allocation and rain-use efficiency of two semiarid grassland sites in Inner Mongolia, China. Oecologia, 165, 855-864.
DOI URL PMID |
[15] |
Gioseffi E, de Neergaard A, Schjoerring JK (2012). Interactions between uptake of amino acids and inorganic nitrogen in wheat plants. Biogeosciences, 9, 1509-1518.
DOI URL |
[16] |
Gong XY, Chen Q, Lin S, Brueck H, Dittert K, Taube F, Schnyder H (2011). Tradeoffs between nitrogen- and water-use efficiency in dominant species of the semiarid steppe of Inner Mongolia. Plant and Soil, 340, 227-238.
DOI URL |
[17] |
Gordon DR, Menke JW, Rice KJ (1989). Competition for soil water between annual plants and blue oak (Quercus douglasii) seedlings. Oecologia, 79, 533-541.
DOI URL |
[18] |
Harpole WS, Tilman D (2006). Non-neutral patterns of species abundance in grassland communities. Ecology Letters, 9, 15-23.
URL PMID |
[19] |
Harpole WY, Potts D, Suding KN (2007). Ecosystem responses to water and nitrogen amendment in a California grassland. Global Change Biology, 13, 2341-2348.
DOI URL |
[20] |
Harrisona KA, Bolb R, Bardgett RD (2008). Do plant species with different growth strategies vary in their ability to compete with soil microbes for chemical forms of nitrogen? Soil Biology & Biochemistry, 40, 228-237.
DOI URL |
[21] |
Hooper DU (1998). The role of complementarity and competition in ecosystem responses to variation in plant diversity. Ecology, 79, 704-719.
DOI URL |
[22] |
Hubbell SP (2006). The neutral theory and the evolution of ecological equivalence. Ecology, 87, 1387-1398.
DOI URL PMID |
[23] |
Hutchinson GE (1959). Homage to Santa Rosalia or why are there so many kinds of animals? The American Naturalist, 93, 145-159.
DOI URL |
[24] |
Jones DL, Healey JR, Willett VB, Farrar JF, Hodge A (2005). Dissolved organic nitrogen uptake by plants―an important N uptake pathway? Soil Biology & Biochemistry, 37, 413-423.
DOI URL |
[25] |
Kelly CK, Bowler MG, Pybus O, Harvey PH (2008). Phylogeny, niches, and relative abundance in natural communities. Ecology, 89, 962-970.
DOI URL PMID |
[26] |
Kraft NJB, Valencia R, Ackerly DD (2008). Functional traits and niche-based tree community assembly in an Amazonian forest. Science, 322, 580-582.
DOI URL PMID |
[27] |
Lambers JSR, Harpole WS, Tilman D, Knops J, Reich PB (2004). Mechanisms responsible for the positive diversity- productivity relationship in Minnesota grasslands. Ecology Letters, 7, 661-668.
DOI URL |
[28] |
Lü XT, Kong DL, Pan QM, Simmons ME, Han XG (2012). Nitrogen and water availability interact to affect leaf stoichiometry in a semi-arid grassland. Oecologia, 168, 301-310.
DOI URL PMID |
[29] | Ma YS, Lang BN, Li QY, Shi JJ, Dong QM (2003). Effect of fertilizing nitrogen rate and time on Kobresia pygmaea meadow grassland. Pratacultural Science, 20, 47-50. (in Chinese with English abstract) |
[ 马玉寿, 郎百宁, 李青云, 施建军, 董全民 (2003). 施氮量与施氮时间对小嵩草草甸草地的影响. 草业科学, 20, 47-50.] | |
[30] |
MacDougall AS, Gilbert B, Jonathan M, Levine JM (2009). Plant invasions and the niche. Journal of Ecology, 97, 609-615.
DOI URL |
[31] |
McKane RB, Johnson LC, Shaver GR, Nadelhoffer KJ, Rastetter EB, Fry B, Giblin AE, Kielland K, Kwiatkwski BL, Laundre JA, Murray G (2002). Resource-based niches provide a basis for plant species diversity and dominance in arctic tundra. Nature, 415, 68-71.
DOI URL PMID |
[32] | Menge DL, Field CB (2007). Simulated global changes alter phosphorus demand in annual grassland. Global Change Biology, 13, 2582-2591. |
[33] |
Niu KC, Liu YN, Shen ZH, He FL, Fang JY (2009). Community assembly: the relative importance of neutral theory and niche theory. Biodiversity Science, 17, 579-593. (in Chinese with English abstract)
DOI URL |
[ 牛克昌, 刘怿宁, 沈泽昊, 何芳良, 方精云 (2009). 群落构建的中性理论和生态位理论. 生物多样性, 17, 579-593.] | |
[34] |
Niu KC, Luo YJ, Choler P, Du GZ (2008). The role of biomass allocation strategy in diversity loss due to fertilization. Basic and Applied Ecology, 9, 485-493.
DOI URL |
[35] |
Parrish JAD, Bazzaz FA (1976). Underground niche separation in successional plants. Ecology, 57, 1281-1288.
DOI URL |
[36] | Shi SB, Li HM, Wang XY, Yue XG, Xu WH, Chen GC (2006). Comparative studies of photosynthetic characteristics in typical alpine plants of the Qinghai-Tibet Plateau. Journal of Plant Ecology (Chinese Version), 30, 40-46. (in Chinese with English abstract) |
[ 师生波, 李惠梅, 王学英, 岳向国, 徐文华, 陈桂琛 (2006). 青藏高原几种典型高山植物的光合特性比较. 植物生态学报, 30, 40-46.] | |
[37] |
Silvertown J (2004). Plant coexistence and the niche. Trends in Ecology and Evolution, 19, 605-611.
DOI URL |
[38] |
Silvertown J, Dodd ME, Gowing G, Mountford JO (1999). Hydrologically defined niches reveal a basis for species richness in plant communities. Nature, 400, 61-63.
DOI URL |
[39] | Su B, Han XG, Huang JH (1999). Application of 15N natural abundance method to the research on nitrogen cycling in natural ecosystems . Acta Ecologica Sinica, 19, 408-416. (in Chinese with English abstract) |
[ 苏波, 韩兴国, 黄建辉 (1999). 15N自然丰度法在生态系统氮素循环研究中的应用 . 生态学报, 19, 408-416.] | |
[40] |
van Ruijven J, Berendse F (2003). Positive effects of plant species diversity on productivity in the absence of legumes. Ecology Letters, 6, 170-175.
DOI URL |
[41] |
Vandermeer JH (1972). Niche theory. Annual Review of Ecology and Systematics, 3, 107-132.
DOI URL |
[42] |
Veresoglou DS, Fitter AH (1984). Spatial and temporal patterns of growth and nutrient uptake of five co-existing grasses. Journal of Ecology, 72, 259-272.
DOI URL |
[43] | Zhao BB, Niu KC, Du GZ (2009). The effect of grazing on above-ground biomass allocation of 27 plant species in an alpine meadow plant community in Qinghai-Tibetan Plateau. Acta Ecologica Sinica, 29, 1596-1606. (in Chinese with English abstract) |
[ 赵彬彬, 牛克昌, 杜国祯 (2009). 放牧对青藏高原东缘高寒草甸群落27种植物地上生物量分配的影响. 生态学报, 29, 1596-1606.] | |
[44] | Zhao XQ (2009). Alpine Meadow Ecosystem and Global Climate Change. Science Press, Beijing. (in Chinese) |
[ 赵新全 (2009). 高寒草甸生态系统与全球变化. 科学出版社, 北京.] | |
[45] | Zhou HK, Zhou L, Zhao XQ, Liu W, Li YN, Yan ZL, Zhao XX (2002). A quantitative study on the plant population phenology in Kobresia humilis meadow. Acta Agrestia Sinica, 10, 279-286. (in Chinese with English abstract) |
[ 周华坤, 周立, 赵新全, 刘伟, 李英年, 严作良, 赵旭霞 (2002). 矮生嵩草草甸植物种群物候学定量研究. 草地学报, 10, 279-286.] | |
[46] | Zhou XM, Wu ZL (2006). Vegetation and Plant Keys in Haibei Alpine Meadow Ecosystem Research Station of Chinese Academy of Sciences. Qinghai People’s Press, Xining. (in Chinese) |
[ 周兴民, 吴珍兰 (2006). 中国科学院海北高寒草甸生态系统定位站植被与植物检索表. 青海人民出版社, 西宁.] |
[1] | 李红琴, 张法伟, 仪律北. 高寒草甸表层土壤和优势植物叶片的化学计量特征对降水改变和氮添加的响应[J]. 植物生态学报, 2023, 47(7): 922-931. |
[2] | 吕自立, 刘彬, 常凤, 马紫荆, 曹秋梅. 巴音布鲁克高寒草甸植物功能多样性与生态系统多功能性关系沿海拔梯度的变化[J]. 植物生态学报, 2023, 47(6): 822-832. |
[3] | 李伟, 张荣. 亚高寒草甸群落结构决定群落生产力实例验证[J]. 植物生态学报, 2023, 47(5): 713-723. |
[4] | 刘艳方, 王文颖, 索南吉, 周华坤, 毛旭锋, 王世雄, 陈哲. 青海海北植物群落类型与土壤线虫群落相互关系[J]. 植物生态学报, 2022, 46(1): 27-39. |
[5] | 王春成, 张云玲, 马松梅, 黄刚, 张丹, 闫涵. 中国扁桃亚属四种野生扁桃的系统发育与物种分化[J]. 植物生态学报, 2021, 45(9): 987-995. |
[6] | 李捷, 陈莹莹, 乔福云, 郅堤港, 郭正刚. 高原鼠兔干扰对高寒草甸β多样性的影响[J]. 植物生态学报, 2021, 45(5): 476-486. |
[7] | 董利军, 李金花, 陈珊, 张瑞, 孙建, 马妙君. 若尔盖湿地高寒草甸退化过程中土壤有机碳含量变化及成因分析[J]. 植物生态学报, 2021, 45(5): 507-515. |
[8] | 汪子微, 万松泽, 蒋洪毛, 胡扬, 马书琴, 陈有超, 鲁旭阳. 青藏高原不同高寒草地类型土壤酶活性及其影响因子[J]. 植物生态学报, 2021, 45(5): 528-538. |
[9] | 马书琴, 汪子微, 陈有超, 鲁旭阳. 藏北高寒草地土壤有机质化学组成对土壤蛋白酶和脲酶活性的影响[J]. 植物生态学报, 2021, 45(5): 516-527. |
[10] | 杨德春, 胡雷, 宋小艳, 王长庭. 降雨变化对高寒草甸不同植物功能群凋落物质量及其分解的影响[J]. 植物生态学报, 2021, 45(12): 1314-1328. |
[11] | 闫涵, 张云玲, 马松梅, 王春成, 张丹. 黑果枸杞在新疆的适宜分布模拟与局部环境适应性分化[J]. 植物生态学报, 2021, 45(11): 1221-1230. |
[12] | 方运霆, 刘冬伟, 朱飞飞, 图影, 李善龙, 黄韶楠, 全智, 王盎. 氮稳定同位素技术在陆地生态系统氮循环研究中的应用[J]. 植物生态学报, 2020, 44(4): 373-383. |
[13] | 敬洪霞,孙宁骁,Muhammad UMAIR,刘春江,杜红梅. 滇南喀斯特地区不同季节土壤和灌木叶片化学计量特征及对水分添加的响应[J]. 植物生态学报, 2020, 44(1): 56-69. |
[14] | 陈锦, 宋明华, 李以康. 13C脉冲标记揭示放牧对高寒草甸同化碳分配的影响[J]. 植物生态学报, 2019, 43(7): 576-584. |
[15] | 李全弟, 刘旻霞, 夏素娟, 南笑宁, 蒋晓轩. 甘南高寒草甸群落的物种-多度关系沿坡向的变化[J]. 植物生态学报, 2019, 43(5): 418-426. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19