植物生态学报 ›› 2011, Vol. 35 ›› Issue (12): 1245-1255.DOI: 10.3724/SP.J.1258.2011.01245
收稿日期:
2011-06-17
接受日期:
2011-09-09
出版日期:
2011-06-17
发布日期:
2011-12-15
通讯作者:
王传宽
作者简介:
*(E-mail:wangck-cf@nefu.edu.cn)
YU Li-Min, WANG Chuan-Kuan*(), WANG Xing-Chang
Received:
2011-06-17
Accepted:
2011-09-09
Online:
2011-06-17
Published:
2011-12-15
Contact:
WANG Chuan-Kuan
摘要:
树体中的非结构性碳水化合物(NSC)浓度、含量及其分配反映了树木整体的碳供应状况, 是决定树木生长和存活的关键因子, 也是构建树木碳平衡模型的关键参数。温带树种的NSC尚缺乏系统研究。该文测定了特性各异的3种温带树种在生长盛期的NSC及其组分的浓度和含量以及分配格局的种间种内变异。结果表明, NSC及其组分的浓度在树种和组织之间差异显著, 可溶性糖、淀粉和总NSC浓度分别在0.65-8.45、1.96-5.95和3.00-13.90 g·100 g-1 DM之间波动。NSC及其组分含量的大小依次为: 兴安落叶松(Larix gmelinii) >蒙古栎( Quercus mongolica) >红松( Pinus koraiensis), 其中叶和根中的浓度较高。树干中的NSC及其组分浓度的纵向变化不显著, 但其心材与边材之间的浓度差异却随树种和NSC组分而异, 表现为心边材的可溶性糖浓度差异不显著, 但其淀粉和总NSC浓度差异显著。不同直径根系的NSC及其组分浓度在2种针叶树种中差异不显著, 但在蒙古栎中差异显著。蒙古栎将可溶性糖主要投资到地上生长, 而2种针叶树将更多的可溶性糖投资到根系生长。淀粉的主要储存库为树干, 其在树体内的分布格局与可溶性糖正相反, 因而使总NSC在树根和树枝中的分配趋于较平衡状态。在树干中, 除了2种针叶树的可溶性糖库以边材为主外, 心材是淀粉和总NSC的主要储存库。在树根中, 粗根是NSC及其组分的优势储存库。该研究中3种温带树种的NSC及其组分的浓度和含量的种间和种内变化, 反映了这些树种的生长对策和体内碳源汇强度的差异。
于丽敏, 王传宽, 王兴昌. 三种温带树种非结构性碳水化合物的分配. 植物生态学报, 2011, 35(12): 1245-1255. DOI: 10.3724/SP.J.1258.2011.01245
YU Li-Min, WANG Chuan-Kuan, WANG Xing-Chang. Allocation of nonstructural carbohydrates for three temperate tree species in Northeast China. Chinese Journal of Plant Ecology, 2011, 35(12): 1245-1255. DOI: 10.3724/SP.J.1258.2011.01245
树种 Species | 叶性状 Leaf trait | 林分密度 Stand density (tree·hm-2) | 坡度 Slope (°) | 坡向 Slope aspect | 平均胸径 Mean DBH (cm) | 平均树高 Mean tree height (m) | ||||
---|---|---|---|---|---|---|---|---|---|---|
蒙古栎 Quercus mongolica | 落叶阔叶 Deciduous broadleaved | 2495 | 23 | 南 South | 41.2 | 17.0 | ||||
兴安落叶松 Larix gmelinii | 落叶针叶 Deciduous coniferous | 1823 | 2 | 西南 Southwest | 35.6 | 27.7 | ||||
红松 Pinus koraiensis | 常绿针叶 Evergreen coniferous | 2683 | 8 | 西 West | 31.2 | 18.4 |
表1 样木及其所在林分的基本特征
Table 1 Basic characteristics of the sampled trees and stands
树种 Species | 叶性状 Leaf trait | 林分密度 Stand density (tree·hm-2) | 坡度 Slope (°) | 坡向 Slope aspect | 平均胸径 Mean DBH (cm) | 平均树高 Mean tree height (m) | ||||
---|---|---|---|---|---|---|---|---|---|---|
蒙古栎 Quercus mongolica | 落叶阔叶 Deciduous broadleaved | 2495 | 23 | 南 South | 41.2 | 17.0 | ||||
兴安落叶松 Larix gmelinii | 落叶针叶 Deciduous coniferous | 1823 | 2 | 西南 Southwest | 35.6 | 27.7 | ||||
红松 Pinus koraiensis | 常绿针叶 Evergreen coniferous | 2683 | 8 | 西 West | 31.2 | 18.4 |
非结构性碳水化合物组分 NSC component | 变异来源 Source of variation | 自由度 df | F值 F-value | 概率 p |
---|---|---|---|---|
可溶性糖 Soluble sugar | 树种 Species | 2 | 20.7 | <0.01 |
组织 Tissue | 3 | 110.5 | <0.01 | |
树种×组织 Species × Tissue | 6 | 8.4 | <0.01 | |
淀粉 Starch | 树种 Species | 2 | 6.4 | <0.01 |
组织 Tissue | 3 | 29.9 | <0.01 | |
树种×组织 Species × Tissue | 6 | 9.1 | <0.01 | |
总量 Total | 树种 Species | 2 | 16.5 | <0.01 |
组织 Tissue | 3 | 90.0 | <0.01 | |
树种×组织 Species × Tissue | 6 | 4.7 | <0.01 |
表2 非结构性碳水化合物及其组分浓度影响因子的方差分析
Table 2 ANOVA of factors influencing concentrations of nonstructural carbohydrate (NSC) and its components
非结构性碳水化合物组分 NSC component | 变异来源 Source of variation | 自由度 df | F值 F-value | 概率 p |
---|---|---|---|---|
可溶性糖 Soluble sugar | 树种 Species | 2 | 20.7 | <0.01 |
组织 Tissue | 3 | 110.5 | <0.01 | |
树种×组织 Species × Tissue | 6 | 8.4 | <0.01 | |
淀粉 Starch | 树种 Species | 2 | 6.4 | <0.01 |
组织 Tissue | 3 | 29.9 | <0.01 | |
树种×组织 Species × Tissue | 6 | 9.1 | <0.01 | |
总量 Total | 树种 Species | 2 | 16.5 | <0.01 |
组织 Tissue | 3 | 90.0 | <0.01 | |
树种×组织 Species × Tissue | 6 | 4.7 | <0.01 |
图1 三种树种各组织中非结构性碳水化合物及其组分的浓度(平均值±标准误差)。图中a、b表示显著性差异组别(α = 0.05)。
Fig. 1 Concentrations of nonstructural carbohydrate (NSC) and its components in the tissues of the three tree species (mean ± SE). Larch, Larix gmelinii; Oak, Quercus mongolica; Pine, Pinus koraiensis. a and b in the figures stand for the significant difference groups (α = 0.05).
图2 三种树种各组织中非结构性碳水化合物及其组分的含量。三种树种的树木胸径均标准化为30 cm。图中a、b表示显著性差异组别(α = 0.05)。
Fig. 2 Contents of nonstructural carbohydrate (NSC) and its components in the tissues of the three tree species. The diameters at breast height of all trees for the three species are normalized to 30 cm. Larch, Larix gmelinii; Oak, Quercus mongolica; Pine, Pinus koraiensis. a and b in the figure stand for the significant difference groups (α = 0.05).
图3 三种树种非结构性碳水化合物及其组分在组织中的分配。
Fig. 3 Allocation of nonstructural carbohydrates (NSC) and its components within the tissues for the three tree species. Larch, Larix gmelinii; Oak, Quercus mongolica; Pine, Pinus koraiensis.
图4 三种树种根系中非结构性水化合物及其组分的浓度(平均值±标准误差)。图中a、b表示显著性差异组别(α = 0.05)。
Fig. 4 Concentrations of nonstructural carbohydrate (NSC) and its components in the roots of the three tree species (mean ± SE). a and b in the figures stand for the significant difference groups (α = 0.05). Larch, Larix gmelinii; Oak, Quercus mongolica; Pine, Pinus koraiensis.
图5 三种树种非结构性水化合物及其组分在根系中的分配。
Fig. 5 Allocation of nonstructural carbohydrate (NSC) and its components within the roots of the three tree species. Larch, Larix gmelinii; Oak, Quercus mongolica; Pine, Pinus koraiensis.
图6 三种树种边材和心材中非结构性水化合物及其组分的浓度(平均值±标准误差)。图中a、b表示显著性差异组别(α = 0.05)。
Fig. 6 Concentrations of nonstructural carbohydrate (NSC) and its components in the sapwood and heartwood of the three tree species (mean ± SE). a and b in the figures stand for the significant difference groups (α = 0.05). Larch, Larix gmelinii; Oak, Quercus mongolica; Pine, Pinus koraiensis.
图7 三种树种非结构性水化合物及其组分在边材和心材的分配。
Fig. 7 Allocation of nonstructural carbohydrate (NSC) and its components in the sapwood and heartwood of the three tree species. Larch, Larix gmelinii; Oak, Quercus mongolica; Pine, Pinus koraiensis.
[1] | Bao CS (鲍春生), Bai Y (白艳), Chen GW (陈高娃), Zhang QL (张秋良), Qing M (青梅), Wang LM (王立明) (2010). Study on the Larix gmelinii natural forest biomass carbon storage. Journal of Inner Mongolia Agricultural University (Natural Science Edition) (内蒙古农业大学学报(自然科学版)), 31(2),77-82. (in Chinese with English abstract) |
[2] | Barbaroux C, Bréda N, Dufrêne E (2003). Distribution of above-ground and below-ground carbohydrate reserves in adult trees of two contrasting broad-leaved species (Quercus petraea and Fagus sylvatica). New Phytologist, 157,605-615. |
[3] | Bonicel A, Haddad G, Gagnaire J (1987). Seasonal variations of starch and major soluble sugars in the different organs of young poplars. Plant Physiology and Biochemistry, 25,451-459. |
[4] | Bucci SJ, Scholz FG, Goldstein G, Meinzer FC, Sternberg LDSL (2003). Dynamic changes in hydraulic conductivity in petioles of two savanna tree species: factors and mechanisms contributing to the refilling of embolized vessels. Plant, Cell & Environment, 26,1633-1645. |
[5] | Buysse J, Merckx R (1993). An improved colorimetric method to quantify sugar content of plant tissue. Journal of Experimental Botany, 44,1627-1629. |
[6] | Cannell MGR, Dewar RC (1994). Carbon allocation in trees―a review of concepts for modelling. Advances in Ecological Research, 25,59-104. |
[7] | Chapin FS III, Schulze ED, Mooney HA (1990). The ecology and economics of storage in plants. Annual Review of Ecology and Systematics, 21,423-447. |
[8] | Dickson RE (1989). Carbon and nitrogen allocation in trees. Annales Des Sciences Forestières, 46,613s-647s. |
[9] | Ericsson T, Rytter L, Vapaavuori E (1996). Physiology of carbon allocation in trees. Biomass and Bioenergy, 11,115-127. |
[10] |
Gaucher C, Gougeon S, Mauffette Y, Messier C (2005). Seasonal variation in biomass and carbohydrate partitioning of understory sugar maple ( Acer saccharum) and yellow birch ( Betula alleghaniensis) seedlings. Tree Physiology, 25,93-100.
URL PMID |
[11] | Gholz HL, Cropper WP Jr (1991). Carbohydrate dynamics in mature Pinus elliottii var. elliottii trees. Canadian Journal of Forest Research, 21,1742-1747. |
[12] | Hoch G, Popp M, Körner C (2002). Altitudinal increase of mobile carbon pools in Pinus cembra suggests sink limitation of growth at the Swiss treeline. Oikos, 98,361-374. |
[13] | Hoch G, Richter A, Körner C (2003). Non-structural carbon compounds in temperate forest trees. Plant, Cell & Environment, 26,1067-1081. |
[14] | Hu HQ (胡海清), Guo FT (郭福涛) (2008). Estimation of total carbon-containing gas emission from main tree species in Daxing’an Mountains. China Journal of Applied Ecology(应用生态学报), 19,1884-1890. (in Chinese with English abstract) |
[15] |
Imaji A, Seiwa K (2010a). Carbon allocation to defense, storage and growth in seedlings of two temperate broad- leaved tree species. Oecologia, 162,273-281.
URL PMID |
[16] | Imaji A, Seiwa K (2010b). Carbon allocation and growth- survival trade-offs in temperate tree species. Jamaica Institute of Financial Services, 7,9-13. |
[17] | Kobe RK (1997). Carbohydrate allocation to storage as a basis of interspecific variation in sapling survivorship and growth. Oikos, 80,226-233. |
[18] |
Koch KE (1996). Carbohydrate-modulated gene expression in plants. Annual Review of Plant Physiology and Plant Molecular Biology, 47,509-540.
DOI URL PMID |
[19] | Körner C (2003). Carbon limitation in trees. Journal of Ecology, 91,4-17. |
[20] | Kozlowski TT (1992). Carbohydrate sources and sinks in woody plants. The Botanical Review, 58,107-222. |
[21] | Kozlowski TT, Pallardy SG (1997). Physiology of Woody Plants 2nd edn. Academic Press, San Diego. |
[22] | Lacointe A, Kajji A, Daudet FA, Archer P, Frossard JS (1993). Mobilization of carbon reserves in young walnut trees. Acta Botanica Gallica, 140,435-441. |
[23] | Landhäusser SM, Lieffers VJ (2003). Seasonal changes in carbohydrate reserves in mature northern Populus tremuloides clones. Trees, 17,471-476. |
[24] | Latt CR, Nair PKR, Kang BT (2001). Reserve carbohydrate levels in the boles and structural roots of five multipurpose tree species in a seasonally dry tropical climate. Forest Ecology and Management, 146,145-158. |
[25] | Li XY (李雪莹) (2005). The Study on Dynamic Features of Several Metabolites of Larch (Larix gmelinii) (兴安落叶松几种代谢产物动态变化的研究). Master’s Degree Dissertation, Northeast Forestry University, Harbin.14-22. (in Chinese with English abstract) |
[26] | Litton CM, Ryan MG, Knight DH (2004). Effects of tree density and stand age on carbon allocation patterns in postfire lodgepole pine. Ecological Applications, 14,460-475. |
[27] | Liu SR (刘世荣), Wang WZ (王文章), Wang MQ (王明启) (1992). The characteristics of energy in the formative process of net primary productivity of larch artificial forest ecosystem. Acta Phytoecologica et Geobotanica Sinica(植物生态学与地植物学学报), 16,209-219. (in Chinese with English abstract) |
[28] | Liu ZG (刘志刚), Ma QY (马钦彦), Pan XL (潘向丽) (1994). A study on the biomass and productivity of the natural Larix gmelinii forests. Acta Phytoecologica Sinica(植物生态学报), 18,328-337. (in Chinese with English abstract) |
[29] | Magel E, Jay-Allemand C, Ziegler H (1994). Formation of heartwood substances in the stemwood of Robinia pseudoacacia L. II. Distribution of nonstructural carbohydrates and wood extractives across the trunk. Trees, 8,165-171. |
[30] | Merchant A, Arndt SK, Rowell DM, Posch S, Callister A, Tausz M, Adams MA (2010). Seasonal changes in carbohydrates, cyclitols, and water relations of 3 field grown Eucalyptus species from contrasting taxonomy on a common site. Annals of Forest Science,67, 104.doi: 10.1051/forest/2009085. |
[31] | Mooney HA, Hays RI (1973). Carbohydrate storage cycles in two Californian Mediterranean-climate trees. Flora, 162,295-304. |
[32] | Myers JA, Kitajima K (2007). Carbohydrate storage enhances seedling shade and stress tolerance in a neotropical forest. Journal of Ecology, 95,383-395. |
[33] |
Newell EA, Mulkey SS, Wright SJ (2002). Seasonal patterns of carbohydrate storage in four tropical tree species. Oecologia, 131,333-342.
URL PMID |
[34] | Pan QM (潘庆民), Han XG (韩兴国), Bai YF (白永飞), Yang JC (杨景成) (2002). Advances in physiology and ecology studies on stored non-structure carbohydrates in plants. Chinese Bulletin of Botany (植物学通报), 19,30-38. (in Chinese with English abstract) |
[35] | Piispanen R, Saranpää P (2001). Variation of non-structural carbohydrates in silver birch (Betula pendula Roth) wood. Trees, 15,444-451. |
[36] | Ping XY (平晓燕), Zhou GS (周广胜), Sun JS (孙敬松) (2010). Advances in the study of photosynthate allocation and its controls. Chinese Journal of Plant Ecology (植物生态学报), 34,100-111. (in Chinese with English abstract) |
[37] |
Poorter L, Kitajima K (2007) Carohydrate storage and light requirements of tropical moist and dry forest tree species. Ecology, 88,1000-1011.
DOI URL PMID |
[38] | Quan XK, Wang CK, Zhang QZ, Wang XC, Luo YQ, Bond-Lamberty B (2010). Dynamics of fine roots in five Chinese temperate forests. Journal of Plant Research, 123,497-507. |
[39] | Rachmilevitch S, Huang BR, Lambers H (2006). Assimilation and allocation of carbon and nitrogen of thermal and nonthermal Agrostis species in response to high soil temperature. New Phytologist, 170,479-490. |
[40] |
Salleo S, Trifilò P, Esposito S, Nardini A,Lo Gullo MA (2009). Starch-to-sugar conversion in wood parenchyma of field-growing Laurus nobilis plants: a component of the signal pathway for embolism repair? Functional Plant Biology, 36,815-825.
URL PMID |
[41] | Sauter JJ, van Cleve B (1994). Storage, mobilization and interrelations of starch, sugars, protein and fat in the ray storage tissue of poplar trees. Trees, 8,297-304. |
[42] | Schulze ED (1982). Plant life forms and their carbon, water and nutrient relations. In: Lange OL, Nobel PS, Osmond CB, Ziegler H eds. Encyclopedia of Plant Physiology. Springer-Verlag, Berlin. 12B,616-676. |
[43] |
Taneda H, Sperry JS (2008). A case-study of water transport in co-occurring ring-versus diffuse-porous trees: contrasts in water-status, conducting capacity, cavitation and vessel refilling. Tree Physiology, 28,1641-1651.
URL PMID |
[44] | Tromp J (1983). Nutrient reserves in roots of fruit trees, in particular carbohydrates and nitrogen. Plant and Soil, 71,401-413. |
[45] | Wang CK (2006). Biomass allometric equations for 10 co-occurring tree species in Chinese temperate forests. Forest Ecology and Management, 222,9-16. |
[46] | Wang DY (王德义), Cai WB (蔡万波), Li DY (李东义), Feng XQ (冯学全), Feng TJ (冯天杰), Li YN (李永宁) (1998). Study of biomass and production of the forest Quercus mongolica in Wuling Mountain. Chinese Journal of Ecology(生态学杂志), 17,9-15. (in Chinese with English abstract) |
[47] |
Wang XC, Wang CK, Zhang QZ, Quan XK (2010). Heartwood and sapwood allometry of seven Chinese temperate tree species. Annals of Forest Science, 67,410. .
DOI |
[48] | Witt W, Sauter JJ (1994). Starch metabolism in poplar wood ray cells during spring mobilization and summer deposition. Physiologia Plantarum, 92,9-16. |
[49] |
Würth MKR, Peláez-Riedl S, Wright SJ, Körner C (2005). Non-structural carbohydrate pools in a tropical forest. Oecologia, 143,11-24.
URL PMID |
[50] | Yin SD (尹守东) (2004). Compare Study on Nutrient Ecology of Pinus koraiensis and Larix olgensis Plantation Ecosystems(红松和落叶松人工林养分生态学比较研究). PhD dissertation, Northeast Forestry University, Harbin.24-28. (in Chinese with English abstract) |
[51] | Zhan HZ (詹鸿振), Liu CZ (刘传照), Liu JC (刘吉春) (1990). A study on biomass and nutrient content of hardwood-Korean pine forest. Scientia Silvae Sinicae(林业科学), 26(1),80-85. (in Chinese with English abstract) |
[52] | Zhang QZ, Wang CK (2010). Carbon density and distribution of six Chinese temperate forests. Science China: Life Science, 53,831-840. |
[53] | Zhou YB (周永斌), Wu DD (吴栋栋), Yu DP (于大炮), Sui CY (隋琛莹) (2009). Variations of nonstructural carbohydrate content in Betula ermanii at different elevations of Changbai Mountain, China. Chinese Journal of Plant Ecology (植物生态学报), 33,118-124. (in Chinese with English abstract) |
[1] | 李文博 孙龙 娄虎 于澄 韩宇 胡同欣. 火干扰对兴安落叶松种子萌发的影响[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 蔡慧颖 李兰慧 林阳 梁亚涛 杨光 孙龙. 白桦叶片和细根非结构性碳水化合物对火后时间的响应[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[3] | 吴晨, 陈心怡, 刘源豪, 黄锦学, 熊德成. 增温对森林细根生长、死亡及周转特征影响的研究进展[J]. 植物生态学报, 2023, 47(8): 1043-1054. |
[4] | 胡同欣, 李蓓, 李光新, 任玥霄, 丁海磊, 孙龙. 火烧黑碳对生长季兴安落叶松林外生菌根真菌群落物种组成的影响[J]. 植物生态学报, 2023, 47(6): 792-803. |
[5] | 陈心怡, 吴晨, 黄锦学, 熊德成. 增温对林木细根物候影响的研究进展[J]. 植物生态学报, 2023, 47(11): 1471-1482. |
[6] | 董涵君, 王兴昌, 苑丹阳, 柳荻, 刘玉龙, 桑英, 王晓春. 温带不同材性树种树干非结构性碳水化合物的径向分配差异[J]. 植物生态学报, 2022, 46(6): 722-734. |
[7] | 魏龙鑫, 耿燕, 崔可达, 乔雪涛, 岳庆敏, 范春雨, 张春雨, 赵秀海. 阔叶红松林不同林层和生长阶段树木生长对采伐强度的响应[J]. 植物生态学报, 2022, 46(6): 642-655. |
[8] | 张敏, 朱教君. 光温条件对不同种源红松种子萌发的影响[J]. 植物生态学报, 2022, 46(6): 613-623. |
[9] | 张金峰, 葛树森, 梁金花, 李俊清. 长白山阔叶红松林红松种群年龄结构与数量动态特征[J]. 植物生态学报, 2022, 46(6): 667-677. |
[10] | 韩广轩, 王法明, 马俊, 肖雷雷, 初小静, 赵明亮. 滨海盐沼湿地蓝色碳汇功能、形成机制及其增汇潜力[J]. 植物生态学报, 2022, 46(4): 373-382. |
[11] | 宋语涵, 张鹏, 金光泽. 阔叶红松林不同演替阶段灌木叶片碳氮磷化学计量特征及其影响因素[J]. 植物生态学报, 2021, 45(9): 952-960. |
[12] | 吴秋霞, 吴福忠, 胡仪, 康自佳, 张耀艺, 杨静, 岳楷, 倪祥银, 杨玉盛. 亚热带同质园11个树种新老叶非结构性碳水化合物含量比较[J]. 植物生态学报, 2021, 45(7): 771-779. |
[13] | 孙浩哲, 王襄平, 张树斌, 吴鹏, 杨蕾. 阔叶红松林不同演替阶段凋落物产量及其稳定性的影响因素[J]. 植物生态学报, 2021, 45(6): 594-605. |
[14] | 韩广轩, 李隽永, 屈文笛. 氮输入对滨海盐沼湿地碳循环关键过程的影响及机制[J]. 植物生态学报, 2021, 45(4): 321-333. |
[15] | 张自琰, 金光泽, 刘志理. 不同区域针叶年龄对红松叶性状及相关关系的影响[J]. 植物生态学报, 2021, 45(3): 253-264. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19