植物生态学报 ›› 2010, Vol. 34 ›› Issue (10): 1196-1203.DOI: 10.3773/j.issn.1005-264x.2010.10.008
收稿日期:
2009-11-09
接受日期:
2010-01-07
出版日期:
2010-11-09
发布日期:
2010-10-31
通讯作者:
高世铭
作者简介:
* E-mail: gszhangxuch@163.com
ZHANG Xu-Cheng1,2,3, YU Xian-Feng1, GAO Shi-Ming1,*()
Received:
2009-11-09
Accepted:
2010-01-07
Online:
2010-11-09
Published:
2010-10-31
Contact:
GAO Shi-Ming
摘要:
关于氮素对高大气CO2浓度下C3植物光合作用适应现象的调节机理已有较为深入的研究, 但对其光合作用适应现象的光合能量转化和分配机制缺乏系统分析。该文以大气CO2浓度和施氮量为处理手段, 通过测定小麦(Triticum aestivum)抽穗期叶片的光合作用-胞间CO2浓度响应曲线以及荧光动力学参数来测算光合电子传递速率和分配去向, 研究了长期高大气CO2浓度下小麦叶片光合电子传递和分配对施氮量的响应。结果表明, 与正常大气CO2浓度处理相比, 高大气CO2浓度下小麦叶片较多的激发能以热量的形式耗散, 增施氮素可使更多的激发能向光化学反应方向的分配, 降低光合能量的热耗散速率; 大气CO2浓度升高后小麦叶片光化学淬灭系数无明显变化, 高氮叶片的非光化学猝灭降低而低氮叶片明显升高, 施氮促进PSII反应中心的开放比例, 降低光能的热耗散; 高大气CO2浓度下高氮叶片通过PSII反应中心的光合电子传递速率(JF)较高, 而且参与光呼吸的非环式电子流速率(J0)显著降低, 较正常大气CO2浓度处理的高氮叶片下降了88.40%, 光合速率增加46.47%; 高大气CO2浓度下小麦叶片JF-J0升高而J0/JF显著下降, 光呼吸耗能被抑制, 更多的光合电子分配至光合还原过程。因此, 大气CO2浓度增高条件下, 小麦叶片激发能的热耗散速率增加, 但增施氮素后小麦叶片PSII反应中心开放比例提高, 光化学速率增加, 进入PSII反应中心的电子流速率明显升高, 光呼吸作用被抑制, 光合电子较多地进入光化学过程, 这可能是高氮条件下光合作用适应性下调被缓解的一个原因。
张绪成, 于显枫, 高世铭. 高大气CO2浓度下氮素对小麦叶片光能利用的影响. 植物生态学报, 2010, 34(10): 1196-1203. DOI: 10.3773/j.issn.1005-264x.2010.10.008
ZHANG Xu-Cheng, YU Xian-Feng, GAO Shi-Ming. Effects of nitrogen application rates on photosynthetic energy utilization in wheat leaves under elevated atmospheric CO2 concentration. Chinese Journal of Plant Ecology, 2010, 34(10): 1196-1203. DOI: 10.3773/j.issn.1005-264x.2010.10.008
图1 不同大气CO2浓度和施氮量对小麦叶片光化学速率(A)和热耗散速率(B)的影响(平均值±标准误差)。 A[CO2], 正常大气CO2浓度(400 μmol·mol-1); E[CO2], 高大气CO2浓度(760 μmol·mol-1)。*, p < 0.05; **, p < 0.01。
Fig. 1 Effects of different atmospheric CO2 concentrations and nitrogen application rates on photochemical rates (A) and heat dissipative rates (B) of wheat leaves (mean ± SE). A[CO2], ambient atmospheric CO2 concentration (400 μmol·mol-1); E[CO2], elevated atmospheric CO2 concentration (760 μmol·mol-1). *, p < 0.05; **, p < 0.01.
图2 不同大气CO2浓度和施氮量对小麦叶片光化学淬灭系数(qP) (A)和非光化学淬灭系数(NPQ) (B)的影响(平均值±标准误差)。 图注同图1。
Fig. 2 Effects of different atmospheric CO2 concentrations and nitrogen application rates on photochemical quenching coefficient (qP) (A) and non-photochemical quenching coefficient (NPQ) (B) of wheat leaves (mean ± SE). Notes see Fig. 1.
图3 不同大气CO2浓度和施氮量对小麦叶片通过PSII反应中心的光合总电子流传递速率(JF) (A)和用于光呼吸的非环式光合电子传递速率(J0) (B)的影响(平均值±标准误差)。 图注同图1。
Fig. 3 Effects of different atmospheric CO2 concentrations and nitrogen application rates on photosynthetic electron rate of PSII (JF) (A) and noncyclic electron transport rate involved in photorespiration (J0) (B) of wheat leaves (mean ± SE). Notes see Fig. 1.
图4 不同大气CO2浓度和氮素处理水平对小麦叶片光合电子分配的影响(平均值±标准误差)。 JF, 通过PSII反应中心的光合总电子流传递速率; J0, 用于光呼吸的非环式光合电子传递速率。其他图注同图1。
Fig. 4 Effects of different atmospheric CO2 concentrations and nitrogen application rates on photosynthetic electron allocation of wheat leaves (mean ± SE). JF, photosynthetic electron rate of PSII; J0, noncyclic electron transport rate involved in photorespiration. Other notes see Fig. 1.
图5 不同大气CO2浓度和施氮量对小麦叶片光合速率(Pn)的影响。 E[CO2]400, 高大气CO2浓度(760 μmol·mol-1)下生长的小麦叶片在400 μmol·mol-1 CO2测定浓度下的测定结果(平均值±标准误差)。其他图注同图1。
Fig. 5 Effects of different atmospheric CO2 concentrations and nitrogen application rates on photosynthetic rate (Pn) of wheat leaves. E[CO2]400, photosynthetic rate of wheat leaves which grown under elevated atmospheric CO2 concentration (760 μmol·mol-1) but measured under 400 μmol·mol-1 CO2 concentration (mean ± SE). Other notes see Fig. 1.
[1] |
Ainsworth EA, Long SP (2005). What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta- analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytologist, 165, 351-372.
DOI URL |
[2] |
Biehler K, Fock H (1996). Evidence for the contribution of the Mehler-peroxidase reaction in dissipation excess electrons in drought-stressed wheat. Plant Physiology, 112, 265-272.
DOI URL PMID |
[3] |
Bloom AJ, Smart DR, Nguyen DT, Searles PS (2002). Nitrogen assimilation and growth of wheat under elevated carbon dioxide. Proceedings of the National Academy of Sciences of the United States of America, 99, 1730-1735.
URL PMID |
[4] | Chen GP (陈改苹), Zhu JG (朱建国), Pang J (庞静) , Cheng L (程磊), Xie ZB (谢祖彬), Zeng Q (曾青) (2006). Effects of free-air carbon dioxide enrichment (FACE) on some traits and C/N ratio of rice root at the heading stage. Chinese Journal of Rice Sciences (中国水稻科学), 20, 53-57. (in Chinese with English abstract) |
[5] |
Chen HX, Gao HY, An SZ, Li WJ (2004). Dissipation of excess energy in Mehler-peroxidase reaction in Rumex leaves during salt shock. Photosynthetica, 42, 117-122.
DOI URL |
[6] |
Christian K (2006). Plant CO2 responses: an issue of definition, time and resource supply. New Phytologist, 172, 393-411.
DOI URL |
[7] |
Daepp M, Nsberger J, Locher A (2001). Nitrogen fertilization and developmental stage alter the response of Lolium perenne to elevated CO2. New Phytologist, 150, 347-358.
DOI URL |
[8] |
Demmig-Adams B, Adams WW III (1996). Xanthophyll cycle and light stress in nature: uniform response to excess direct sunlight among higher plant species. Planta, 198, 460-470.
DOI URL |
[9] | Epron D, Godard D, Cornic G, Genty B (1995). Limitation of net CO2 assimilation rate by internal resistance to CO2 transfer in the leaves of two tree species (Fagus sylvatica L. and Castanea sativa Mill.). Plant, Cell & Environment, 18, 43-51. |
[10] |
Farquhar GD, von Caemmerer S, Berry JA (1980). A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta, 149, 78-90.
DOI URL PMID |
[11] | Foyer CH, Ferrario-Mery S, Noctor G (2001). Interactions between carbon and nitrogen metabolism. In: Lea P, Morot-Gaudry JF eds. Plant Nitrogen Springer-Verlag, Berlin. 237-254. |
[12] | Genty B, Briantais JM, Baker NR (1989). The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta, 990, 87-92. |
[13] |
Karpinski S, Karpinska B, Wingsle G, Creissen G, Mullineaux P, Reynolds H (1999). Systemic signaling and acclimation in response to excess exciation energy in Arabidopsis. Science, 284, 654-657.
URL PMID |
[14] |
Kim SH, Sicher RC, Bae H, Gitz DC, Baker JT, Timlin DJ, Reddy VR (2006). Canopy photosynthesis, evapotranspiration, leaf nitrogen, and transpiration profiles of maize in response to CO2 enrichment. Global Change Biology, 12, 588-600.
DOI URL |
[15] | Kimball BA, Kobayashi K, Bindi M (2002). Responses of agricultural crops to free-air CO2 enrichment. Advance in Agronomy, 77, 293-368. |
[16] | Krall JP, Edward GE (1992). Relationship between photosystem II activity and CO2 fixation in leaves. Plant Physiology, 86, 180-187. |
[17] | Krause GH, Weis E (1991). Chlorophyll fluorescence and photosynthesis: the basics. Annual Review of Plant Physiology and Plant Molecular Biology, 42, 313-349. |
[18] | Kruse J, Hetzger I, Mai C, Polle A, Rennenberg H (2003). Elevated CO2 affects N-metabolism of young poplar plants (Populus tremula × P. alba) differently at deficient and sufficient N-supply. New Phytologist, 157, 65-81. |
[19] | Li FS (李伏生), Kang SZ (康绍忠), Zhang FC (张富仓) (2003). Effects of CO2 enrichment, nitrogen and water on photosynthesis, evapotranspiration and water use efficiency of spring wheat. Chinese Journal of Applied Ecology (应用生态学报), 14, 387-393. (in Chinese with English abstract) |
[20] | Li HD (李海东), Gao HY (高辉远) (2007). Effects of different nitrogen application rate on allocation of photosynthetic electron flux in Rumex K-1 leaves. Journal of Plant Physiology and Molecular Biology (植物生理与分子生物学学报), 33, 417-424. (in Chinese with English abstract) |
[21] | Liao Y (廖轶), Chen GY (陈根云), Zhang DY (张道允), Xiao YZ (肖元珍), Zhu JG (朱建国), Xu DQ (许大全) (2003). Non-stomatal acclimation of leaf photosynthesis to free- air CO2 enrichment (FACE) in winter wheat. Journal of Plant Physiology and Molecular Biology (植物生理与分子生物学学报), 29, 479-486. (in Chinese with English abstract) |
[22] | Lin WH (林伟宏) (1998). Response of photosynthesis to elevated atmospheric CO2. Acta Ecologica Sinica (生态学报), 18, 529-537. (in Chinese with English abstract) |
[23] | Lin ZF (林植芳), Peng CL (彭长连), Sun ZJ (孙梓健) (2000). The effects of light intensity on the photorespiratory allocation of photosynthetic electron transports of four subtropical forest plant. Science in China (Series C) ((中国科学(C辑)), 30, 72-77. (in Chinese with English abstract). |
[24] | Maroco JP, Breia E, Faria T, Pereira JS, Chaves MM (2002). Effects of long-term exposure to elevated CO2 and N fertilization on the development of photosynthetic capacity and biomass accumulation in Quercus suber L. Plant, Cell & Environment, 25, 105-113. |
[25] | Onoda Y, Hirose T, Hikosaka K (2007). Effect of elevated CO2 levels on leaf starch, nitrogen and photosynthesis of plants growing at three natural CO2 springs in Japan. Ecology Research, 22, 475-484. |
[26] |
Paul MJ, Pellny TK (2003). Carbon metabolite feedback regulation of leaf photosynthesis and development. Journal of Experimental Botany, 54, 539-547.
URL PMID |
[27] | Polle A (1996). Mehler reaction: friend or foe in photosynthesis? Botanica Acta, 109, 84-89. |
[28] | Reich PB, Hobbie SE, Lee T, Ellsworth DS, West JB, Tilman D, Knops JM, Naeem S, Trost J (2006). Nitrogen limitation constrains sustainability of ecosystem response to CO2. Nature, 440, 708-922. |
[29] |
Sawada S, Kuninaka M, Watanabe K (2001). The mechanism to suppress photosynthesis through end product inhibition in single rooted soybean leaves during acclimation to CO2 enrichment. Plant Cell Physiology, 42, 1093-1102.
URL PMID |
[30] |
Shapiro JB, Griffin KL, Lewis JD, Tissue DT (2004). Response of Xanthium strumarium leaf respiration in the light to elevated CO2 concentration, nitrogen availability and temperature. New Phytologist, 162, 377-386.
DOI URL |
[31] |
Sharkey TD, Bernacchi C, Farquhar GD, Singsaas EL (2007). Fitting photosynthetic carbon dioxide response curves for C3 leaves. Plant, Cell & Environment, 30, 1035-1040.
DOI URL PMID |
[32] | Strasser RJ, Srivastava A, Govindjee (1995). Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria. Photochemistry and Photobiology, 61, 32-42. |
[33] | Teng N, Wang J, Chen T, Wu X, Wang Y, Lin J (2006). Elevated CO2 induces physiological, biochemical and structural changes in leaves of Arabidopsis thaliana. New Phytologist, 172, 92-103. |
[1] | 熊淑萍, 曹文博, 曹锐, 张志勇, 付新露, 徐赛俊, 潘虎强, 王小纯, 马新明. 水平结构配置对冬小麦冠层垂直结构、微环境及产量的影响[J]. 植物生态学报, 2022, 46(2): 188-196. |
[2] | 郭瑞, 周际, 杨帆, 李峰. 小麦根系在碱胁迫下的生理代谢反应[J]. 植物生态学报, 2017, 41(6): 683-692. |
[3] | 徐静馨, 郑有飞, 麦博儒, 赵辉, 储仲芳, 黄积庆, 袁月. 基于涡度相关法的麦田O3干沉降及不同沉降通道分配的特征[J]. 植物生态学报, 2017, 41(6): 670-682. |
[4] | 高林, 王晓菲, 顾行发, 田庆久, 焦俊男, 王培燕, 李丹. 植冠下土壤类型差异对遥感估算冬小麦叶面积指数的影响[J]. 植物生态学报, 2017, 41(12): 1273-1288. |
[5] | 郑成岩, 邓艾兴, LATIFMANESHHojatollah, 宋振伟, 张俊, 王利, 张卫建. 增温对青藏高原冬小麦干物质积累转运及氮吸收利用的影响[J]. 植物生态学报, 2017, 41(10): 1060-1068. |
[6] | 郭瑞, 周际, 杨帆, 李峰, 李昊如, 夏旭, 刘琪. 拔节孕穗期小麦干旱胁迫下生长代谢变化规律[J]. 植物生态学报, 2016, 40(12): 1319-1327. |
[7] | 金皖豫, 李铭, 何杨辉, 杜正刚, 邵钧炯, 张国栋, 周灵燕, 周旭辉. 不同施氮水平对冬小麦生长期土壤呼吸的影响[J]. 植物生态学报, 2015, 39(3): 249-257. |
[8] | 朱婉芮, 汪其同, 刘梦玲, 王华田, 王延平, 张光灿, 李传荣. 酚酸和氮素交互作用下欧美杨107细根形态特征[J]. 植物生态学报, 2015, 39(12): 1198-1208. |
[9] | 杨春, 谭太龙, 余佳玲, 廖琼, 张晓龙, 张振华, 宋海星, 官春云. 大气CO2浓度倍增对油菜韧皮部汁液成分及根部氮素积累的影响[J]. 植物生态学报, 2014, 38(7): 776-784. |
[10] | 郭增江, 于振文, 石玉, 赵俊晔, 张永丽. 拔节期与开花期测墒补灌对小麦旗叶荧光特性和水分利用效率的影响[J]. 植物生态学报, 2014, 38(7): 757-766. |
[11] | 熊淑萍, 王静, 王小纯, 丁世杰, 马新明. 耕作方式及施氮量对砂姜黑土区小麦氮代谢及籽粒产量和蛋白质含量的影响[J]. 植物生态学报, 2014, 38(7): 767-775. |
[12] | 张翠萍,孟平,张劲松,万贤崇. 固氮植物绿豆对核桃幼苗生长、叶片气孔气体交换及水力特征的作用[J]. 植物生态学报, 2014, 38(5): 499-506. |
[13] | 师生波, 张怀刚, 师瑞, 李妙, 陈文杰, 孙亚男. 青藏高原春小麦叶片光合作用的光抑制及PSII反应中心光化学效率的恢复分析[J]. 植物生态学报, 2014, 38(4): 375-386. |
[14] | 邓建明, 姚步青, 周华坤, 赵新全, 魏晴, 陈哲, 王文颖. 水氮添加条件下高寒草甸主要植物种氮素吸收分配的同位素示踪研究[J]. 植物生态学报, 2014, 38(2): 116-124. |
[15] | 毛伟, 李玉霖, 崔夺, 赵学勇, 张铜会, 李玉强. 沙质草地不同生活史植物的生物量分配对氮素和水分添加的响应[J]. 植物生态学报, 2014, 38(2): 125-133. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19