植物生态学报 ›› 2014, Vol. 38 ›› Issue (7): 767-775.DOI: 10.3724/SP.J.1258.2014.00072
熊淑萍1,*(), 王静1, 王小纯2, 丁世杰1, 马新明1,**()
收稿日期:
2013-09-27
接受日期:
2014-03-18
出版日期:
2014-09-27
发布日期:
2014-07-10
通讯作者:
熊淑萍,马新明
作者简介:
** E-mail: xinmingma@126.com基金资助:
XIONG Shu-Ping1,*(), WANG Jing1, WANG Xiao-Chun2, DING Shi-Jie1, MA Xin-Ming1,**()
Received:
2013-09-27
Accepted:
2014-03-18
Online:
2014-09-27
Published:
2014-07-10
Contact:
XIONG Shu-Ping,MA Xin-Ming
摘要:
为明确砂姜黑土区小麦(Triticum aestivum)产量和品质形成的耕作方式及施氮量最优组合, 在大田试验条件下, 以深松、旋耕和常规耕作3种耕作方式为主区, 0、120、225、330 kg·hm-2 4个施氮量为副区, 研究了不同耕作方式及施氮量组合对小麦拔节后氮代谢、籽粒产量和蛋白质含量的影响。结果表明, 随着生育期的推进, 叶片谷氨酰胺合成酶活性、游离氨基酸含量和可溶性蛋白含量均呈先升后降的趋势, 深松方式配合中高氮处理的峰值在花后10天, 而常规耕作和旋耕的4个施氮处理以及深松的低氮处理峰值多在开花期。与常规耕作和旋耕相比, 深松耕作显著降低了10-40 cm的土壤容重, 提高了土壤总空隙度和根干质量, 有利于中后期根系氮素吸收。耕作方式和施氮量对籽粒产量和蛋白质含量影响显著, 均以深松方式最高。3种耕作方式下小麦产量和蛋白质含量均随施氮量增加而增加, 籽粒产量以深松方式配合330 kg·hm-2施氮量最高, 而常规耕作和旋耕方式的产量在施氮量为225 kg·hm-2时达到最大。3种耕作方式下籽粒蛋白质含量均以施氮225 kg·hm-2最高。因此, 在砂姜黑土区宜采用深松耕作方式配合适宜的施氮量, 以改善土壤条件, 促进根系氮素吸收, 延长叶片功能期, 达到产量与蛋白品质提升之目的。
熊淑萍, 王静, 王小纯, 丁世杰, 马新明. 耕作方式及施氮量对砂姜黑土区小麦氮代谢及籽粒产量和蛋白质含量的影响. 植物生态学报, 2014, 38(7): 767-775. DOI: 10.3724/SP.J.1258.2014.00072
XIONG Shu-Ping, WANG Jing, WANG Xiao-Chun, DING Shi-Jie, MA Xin-Ming. Effects of tillage and nitrogen addition rate on nitrogen metabolism, grain yield and protein content in wheat in lime concretion black soil region. Chinese Journal of Plant Ecology, 2014, 38(7): 767-775. DOI: 10.3724/SP.J.1258.2014.00072
图1 不同耕作方式及施氮处理小麦功能叶的谷氨酰胺合成酶(GS)活性(平均值±标准误差)。AF1, 花后10天; AF2, 花后20天; AF3, 花后30天; FS, 开花期; JS, 拔节期。CT, 常规耕作; RT, 旋耕; ST, 深松。N0, 不施氮; N120, 施氮120 kg·hm-2; N225, 施氮225 kg·hm-2; N330, 施氮330 kg·hm-2。
Fig. 1 Glutamine synthetase (GS) activity in functional leaves of wheat plants under different tillage methods and N application rates (mean ± SE). AF1, 10 days after flowering; AF2, 20 days after flowering; AF3, 30 days after flowering; FS, flowering stage; JS, jointing stage. CT, conventional tillage; RT, rotary tillage; ST, subsoiling. N0, no nitrogen addition; N120, 120 kg·hm-2 nitrogen addition; N225, 225 kg·hm-2 nitrogen addition; N330, 330 kg·hm-2 nitrogen addition.
图2 不同耕作方式及施氮处理小麦功能叶的游离氨基酸含量(平均值±标准误差)。AF1, 花后10天; AF2, 花后20天; AF3, 花后30天; FS, 开花期; JS, 拔节期。CT, 常规耕作; RT, 旋耕; ST, 深松。N0、N120、N225、N330同图1。
Fig. 2 Free amino acid content in functional leaves of wheat plants under different tillage methods and N application rates (mean ± SE). AF1, 10 days after flowering; AF2, 20 days after flowering; AF3, 30 days after flowering; FS, flowering stage; JS, jointing stage. CT, conventional tillage; RT, rotary tillage; ST, subsoiling. N0, N120, N225, N330, see Fig. 1.
图3 不同耕作方式及施氮处理小麦功能叶的可溶性蛋白含量(平均值±标准误差)。AF1, 花后10天; AF2, 花后20天; AF3, 花后30天; FS, 开花期; JS, 拔节期。CT, 常规耕作; RT, 旋耕; ST, 深松。N0、N120、N225、N330同图1。
Fig. 3 Soluble protein content in functional leaves of wheat plants under different tillage methods and N application rates (mean ± SE). AF1, 10 days after flowering; AF2, 20 days after flowering; AF3, 30 days after flowering; FS, flowering stage; JS, jointing stage. CT, conventional tillage; RT, rotary tillage; ST, subsoiling. N0, N120, N225, N330, see Fig. 1.
图4 不同耕作方式及施氮处理小麦功能叶的全氮含量(平均值±标准误差)。AF1, 花后10天; AF2, 花后20天; AF3, 花后30天; FS, 开花期; JS, 拔节期。CT, 常规耕作; RT, 旋耕; ST, 深松。N0、N120、N225、N330同图1。
Fig. 4 Total nitrogen content in functional leaves of wheat plants under different tillage methods and N application rates (mean ± SE). AF1, 10 days after flowering; AF2, 20 days after flowering; AF3, 30 days after flowering; FS, flowering stage; JS, jointing stage. CT, conventional tillage; RT, rotary tillage; ST, subsoiling. N0, N120, N225, N330, see Fig. 1.
土层 Soil layer (cm) | 耕作方式 Tillage method | 土壤容重 Soil bulk density (g·cm-3) | 土壤含水量 Soil water content (%) | 总孔隙度 Soil total porosity (%) | 根干质量 Root dry weight (g·10-4·cm-3) |
---|---|---|---|---|---|
0-10 | 常规 CT | 1.25a | 27.34a | 47.19c | 15.45c |
深松 ST | 1.16b | 25.63b | 52.14b | 22.05b | |
旋耕 RT | 1.08c | 27.99a | 55.95a | 25.48a | |
10-20 | 常规 CT | 1.43b | 25.88b | 37.24b | 4.80b |
深松 ST | 1.36c | 26.71a | 42.26a | 11.05a | |
旋耕 RT | 1.51a | 25.72b | 31.31c | 3.50c | |
20-40 | 常规 CT | 1.44a | 30.17b | 36.29b | 4.71b |
深松 ST | 1.35bc | 30.65a | 41.33a | 7.14a | |
旋耕 RT | 1.38ab | 30.38ab | 38.63b | 2.85c |
表1 不同耕作方式下不同土层的土壤含水量、容重、总孔隙度及根干质量
Table 1 Soil water content, soil bulk density, soil total porosity and root dry mass in different soil layers under different tillage patterns
土层 Soil layer (cm) | 耕作方式 Tillage method | 土壤容重 Soil bulk density (g·cm-3) | 土壤含水量 Soil water content (%) | 总孔隙度 Soil total porosity (%) | 根干质量 Root dry weight (g·10-4·cm-3) |
---|---|---|---|---|---|
0-10 | 常规 CT | 1.25a | 27.34a | 47.19c | 15.45c |
深松 ST | 1.16b | 25.63b | 52.14b | 22.05b | |
旋耕 RT | 1.08c | 27.99a | 55.95a | 25.48a | |
10-20 | 常规 CT | 1.43b | 25.88b | 37.24b | 4.80b |
深松 ST | 1.36c | 26.71a | 42.26a | 11.05a | |
旋耕 RT | 1.51a | 25.72b | 31.31c | 3.50c | |
20-40 | 常规 CT | 1.44a | 30.17b | 36.29b | 4.71b |
深松 ST | 1.35bc | 30.65a | 41.33a | 7.14a | |
旋耕 RT | 1.38ab | 30.38ab | 38.63b | 2.85c |
耕作方式 Tillage method | 施氮量 Nitrogen rate | 穗数 Spike (×104·hm-2) | 穗粒数 Number of kernels per ear | 千粒重 103 grain weight (g) | 产量 Yield (103 kg·hm-2) | 籽粒蛋白含量 Grain protein content (%) |
---|---|---|---|---|---|---|
常规 CT | N0 | 367d | 26.6b | 39.93c | 3.31d | 10.68c |
N120 | 434c | 40.4a | 44.72b | 6.66c | 12.16b | |
N225 | 490a | 41.6a | 45.51a | 7.89a | 13.52a | |
N330 | 467b | 42.1a | 44.88b | 7.48b | 13.34a | |
平均值 Average | 439.5Bb | 37.7Bb | 43.76Aab | 6.34Bb | 12.43ABb | |
深松 ST | N0 | 380b | 27.9c | 40.38d | 3.64d | 10.98c |
N120 | 481a | 42.2b | 43.86c | 7.57c | 13.26b | |
N225 | 489a | 43.1ab | 46.16b | 8.27b | 14.00a | |
N330 | 499a | 43.9a | 47.64a | 8.87a | 13.26b | |
平均值 Average | 462.25Aa | 39.3Aa | 44.51Aa | 7.09Aa | 12.88Aa | |
旋耕 RT | N0 | 313c | 23.5c | 40.12c | 2.51d | 10.46c |
N120 | 437b | 34.4b | 43.94b | 5.61c | 11.33b | |
N225 | 458a | 42.2a | 44.99a | 7.39a | 12.13a | |
N330 | 438b | 42.9a | 43.36b | 6.93b | 11.91ab | |
平均值 Average | 412Cc | 35.75Cc | 43.10Bb | 5.61Cc | 11.46Cc | |
耕作方式 Tillage method | F值 F-value | 41.25** | 20.99** | 117.21** | 43.44** | 111.40** |
施氮水平 Nitrogen level | F值 F-value | 267.88** | 353.68** | 496.89** | 942.79** | 330.49** |
耕作×施氮 Tillage × Nitrogen | F值 F-value | 19.72** | 11.07** | 45.10** | 11.06** | 22.08** |
表2 不同耕作方式及施氮处理小麦的产量及蛋白质含量
Table 2 Grain yield and protein content in wheat plants under different tillage patterns and N application rates
耕作方式 Tillage method | 施氮量 Nitrogen rate | 穗数 Spike (×104·hm-2) | 穗粒数 Number of kernels per ear | 千粒重 103 grain weight (g) | 产量 Yield (103 kg·hm-2) | 籽粒蛋白含量 Grain protein content (%) |
---|---|---|---|---|---|---|
常规 CT | N0 | 367d | 26.6b | 39.93c | 3.31d | 10.68c |
N120 | 434c | 40.4a | 44.72b | 6.66c | 12.16b | |
N225 | 490a | 41.6a | 45.51a | 7.89a | 13.52a | |
N330 | 467b | 42.1a | 44.88b | 7.48b | 13.34a | |
平均值 Average | 439.5Bb | 37.7Bb | 43.76Aab | 6.34Bb | 12.43ABb | |
深松 ST | N0 | 380b | 27.9c | 40.38d | 3.64d | 10.98c |
N120 | 481a | 42.2b | 43.86c | 7.57c | 13.26b | |
N225 | 489a | 43.1ab | 46.16b | 8.27b | 14.00a | |
N330 | 499a | 43.9a | 47.64a | 8.87a | 13.26b | |
平均值 Average | 462.25Aa | 39.3Aa | 44.51Aa | 7.09Aa | 12.88Aa | |
旋耕 RT | N0 | 313c | 23.5c | 40.12c | 2.51d | 10.46c |
N120 | 437b | 34.4b | 43.94b | 5.61c | 11.33b | |
N225 | 458a | 42.2a | 44.99a | 7.39a | 12.13a | |
N330 | 438b | 42.9a | 43.36b | 6.93b | 11.91ab | |
平均值 Average | 412Cc | 35.75Cc | 43.10Bb | 5.61Cc | 11.46Cc | |
耕作方式 Tillage method | F值 F-value | 41.25** | 20.99** | 117.21** | 43.44** | 111.40** |
施氮水平 Nitrogen level | F值 F-value | 267.88** | 353.68** | 496.89** | 942.79** | 330.49** |
耕作×施氮 Tillage × Nitrogen | F值 F-value | 19.72** | 11.07** | 45.10** | 11.06** | 22.08** |
[1] | Cai BY, Ge JP, Zu W (2007). Soluble protein content in leaves and seeds of different soybean genotypes as affected by different phosphorus supplies. Plant Nutrition and Fertilizer Science, 13, 1185-1188. (in Chinese with English abstract) |
[蔡柏岩, 葛菁萍, 祖伟 (2007). 施磷水平对不同基因型大豆叶片及籽粒可溶性蛋白含量的影响. 植物营养与肥料学报, 13, 1185-1188.] | |
[2] | Chu PF, Yu ZW, Wang D, Zhang YL, Shi Y (2012). Effect of tillage mode on diurnal variations of water potential and chlorophyll fluorescence characteristics of flag leaf after anthesis and water use efficiency in wheat. Acta Agronomica Sinica, 38, 1051-1061. (in Chinese with English abstract) |
[褚鹏飞, 于振文, 王东, 张永丽, 石玉 (2012). 耕作方式对小麦开花后旗叶水势与叶绿素荧光参数日变化和水分利用效率的影响. 作物学报, 38, 1051-1061.] | |
[3] |
Cui ZL, Shi LW, Xu JF, Li JL, Zhang FS, Chen XP (2005). Effects of N fertilization on winter wheat grain yield and its crude protein content and apparent N losses. Chinese Journal of Applied Ecology, 16, 2071-2075. (in Chinese with English abstract)
URL PMID |
[崔振岭, 石立委, 徐久飞, 李俊良, 张福锁, 陈新平 (2005). 氮肥施用对冬小麦产量, 品质和氮素表观损失的影响研究. 应用生态学报, 16, 2071-2075.]
PMID |
|
[4] | Gao EM, Zhao QZ, Liu HS, Yang QH, Liu WD, Liang JJ, Wang CL (2001). Regulation of tillering of wheat grown in Shajiang black soil. Chinese Journal of Soil Science, 32(3), 140-142. (in Chinese with English abstract) |
[高尔明, 赵全志, 刘华山, 杨青华, 刘万代, 梁静静, 王春丽 (2001). 砂姜黑土小麦分蘖成穗及其调控研究. 土壤通报, 32(3), 140-142.] | |
[5] | Guo L, Jia XL, Zhang FL, Ma RK, Yao YR, Zhang LH (2010). Effects of water and nitrogen location study on leave NRA, soluble protein content and yield of winter wheat. Acta Agriculturae Boreali-Sinica, 25, 180-184. (in Chinese with English abstract) |
[郭丽, 贾秀领, 张凤路, 马瑞昆, 姚艳荣, 张丽华 (2010). 定位水氮组合对冀5265小麦叶片硝酸还原酶、可溶性蛋白及产量的影响. 华北农学报, 25, 180-184.] | |
[6] | He J, Li HW, Wang XY, McHugh AD, Li WY, Gao HW, Kuhn NJ (2007). The adoption of annual subsoiling as conservation tillage in dryland maize and wheat cultivation in northern China. Soil and Tillage Research, 94, 493-502. |
[7] | Hou XQ, Li R, Jia ZK, Han QF, Wang W, Yang BQ (2012). Effects of rotational tillage practices on soil properties, winter wheat yields and water-use efficiency in semi-arid areas of north-west China. Field Crops Research, 129, 7-13. |
[8] | Huang M, Wu JZ, Li YJ, Yao YQ, Zhang CJ, Cai DX, Jin K (2009). Effects of different tillage management on production and yield of winter wheat in dryland. Transactions of the Chinese Society of Agricultural Engineering, 25, 50-54. (in Chinese with English abstract) |
[黄明, 吴金芝, 李友军, 姚宇卿, 张灿军, 蔡典雄, 金轲 (2009). 不同耕作方式对旱作区冬小麦生产和产量的影响. 农业工程学报, 25, 50-54.] | |
[9] |
Lea PJ, Miflin BJ (1974). Alternative route for nitrogen assimilation in higher plants. Nature, 251, 614-616.
URL PMID |
[10] | Li DC, Zhang GL, Gong ZT (2011). On taxonomy of Shajiang black soils in China. Soil, 43, 623-629. (in Chinese with English abstract) |
[李德成, 张甘霖, 龚子同 (2011). 我国砂姜黑土土种的系统分类归属研究. 土壤, 43, 623-629.] | |
[11] | Li HS (2000). Principle and Technology of Plant Physiological and Biochemical Experiments. Higher Education Press, Beijing. (in Chinese) |
[李合生 (2000). 植物生理生化实验原理和技术. 高等教育出版社, 北京.] | |
[12] | Lü MR, Li ZJ, Zhang T, Ning TY, Li HJ (2010). Effects of minimum or no-tillage system and straw returning on extreme soil moisture and yield of winter wheat. Transactions of the Chinese Society of Agricultural Engineering, 26, 41-46. (in Chinese with English abstract) |
[吕美蓉, 李增嘉, 张涛, 宁堂原, 李洪杰 (2010). 少免耕与秸秆还田对极端土壤水分及冬小麦产量的影响. 农业工程学报, 26, 41-46.] | |
[13] |
Lu ZG, Dai TB, Jiang D, Jing Q, Qin XD, Cao WX (2006). Effects of different nitrogen rates and dressing ratios on grain yield and quality in weak-gluten wheat. Journal of Triticeae Crops, 26(6), 75-80. (in Chinese with English abstract)
DOI URL |
[陆增根, 戴廷波, 姜东, 荆奇, 秦晓东, 曹卫星 (2006). 不同施氮水平和基追比对弱筋小麦籽粒产量和品质的影响. 麦类作物学报, 26(6), 75-80.] | |
[14] | Ma XM, Li L, Zhao P, Xiong SP, Guo F (2005). Effect of water control on activities of nitrogen assimilation enzymes and quality in winter wheat. Acta Phytoecologica Sinica, 29, 48-53. (in Chinese with English abstract) |
[马新明, 李琳, 赵鹏, 熊淑萍, 郭飞 (2005). 土壤水分对强筋小麦‘豫麦34’氮素同化酶活性和籽粒品质的影响. 植物生态学报, 29, 48-53.] | |
[15] | Mohanty M, Bandyopadhyay KK, Painuli DK, Ghosh PK, Misra AK, Hati KM (2007). Water transmission characteristics of a vertisol and water use efficiency of rainfed soybean ( Glycine max (L.) Merr.) under subsoiling and manuring. Soil and Tillage Research, 93, 420-428. |
[16] | Shen XS, Qu HJ, Li JC, Huang G, Chen SH, Liu DH (2012). Effects of the maize straw returned to the field and tillage patterns on nutrition accumulation and translocation of winter wheat. Acta Botanica Boreali-Occidentalia Sinica, 32, 143-149. (in Chinese with English abstract) |
[沈学善, 屈会娟, 李金才, 黄钢, 陈尚洪, 刘定辉 (2012). 玉米秸秆还田和耕作方式对小麦养分积累与转运的影响. 西北植物学报, 32, 143-149.] | |
[17] | Sivasankar S, Oaks A (1996). Nitrate assimilation in higher plants: the effect of metabolites and light. Plant Physiology and Biochemistry, 34, 609-620. |
[18] | Wang DZ, Guo XS, He CL, Liu F (2007). Effect of long-term fertilization on wheat growth and soil nutrition status in Shajiang black soil. Chinese Journal of Soil Science, 38, 55-57. (in Chinese with English abstract) |
[王道中, 郭熙胜, 何传龙, 刘枫 (2007). 砂姜黑土长期定位施肥对小麦生长及土壤养分含量的影响. 土壤通报, 38, 55-57.] | |
[19] | Wang J, Lin Q, Ni YJ, Liu YG (2009). Effects of different conservation tillage patterns on grain quality of winter wheat. Journal of Triticeae Crops, 29, 881-884. (in Chinese with English abstract) |
[王靖, 林琪, 倪永君, 刘义国 (2009). 不同保护性耕作模式对冬小麦籽粒品质的影响. 麦类作物学报, 29, 881-884.] | |
[20] | Wang YF, Yu ZW, Li SX, Yu SL (2002). Effect of nitrogen nutrition on the change of key enzyme activity during the nitrogen metabolism and kernel protein content in winter wheat. Acta Agronomica Sinica, 28, 743-748. (in Chinese with English abstract) |
[王月福, 于振文, 李尚霞, 余松烈 (2002). 氮素营养水平对冬小麦氮代谢关键酶活性变化和籽粒蛋白质含量的影响. 作物学报, 28, 743-748.] | |
[21] | Wang YF, Yu ZW, Li SX, Yu SL (2003). Effect of soil fertility on change of free amino acid content and protein content in different organs. Journal of Triticeae Crops, 23, 41-43. (in Chinese with English abstract) |
[王月福, 于振文, 李尚霞, 余松烈 (2003). 土壤肥力对小麦开花后各器官游离氨基酸和籽粒蛋白质含量变化的影响. 麦类作物学报, 23, 41-43.] | |
[22] | Zhao CX, Ma DH, Wang YF, Lin Q, Wu G, Shao HB (2008). Effects of nitrogen fertilizer rate and post-anthesis soil water content on yield and quality of high-quality strong gluten wheat. Acta Ecologica Sinica, 28, 4396-4404. (in Chinese with English abstract) |
[赵长星, 马东辉, 王月福, 林琪, 吴钢, 邵宏波 (2008). 施氮量和花后土壤含水量对优质强筋小麦产量和品质的影响. 生态学报, 28, 4396-4404.] | |
[23] | Zhao JY, Yu ZW (2006). Effects of nitrogen rate on nitrogen fertilizer use of winter wheat and content of soil nitrate-N under different fertility condition. Acta Ecologica Sinica, 26, 815-822. (in Chinese with English abstract) |
[赵俊晔, 于振文 (2006). 不同土壤肥力条件下施氮量对小麦氮肥利用和土壤硝态氮含量的影响. 生态学报, 26, 815-822.] |
[1] | 刘建新, 刘瑞瑞, 刘秀丽, 贾海燕, 卜婷, 李娜. 外源硫化氢对盐碱胁迫下裸燕麦光合碳代谢的调控[J]. 植物生态学报, 2023, 47(3): 374-388. |
[2] | 熊淑萍, 曹文博, 曹锐, 张志勇, 付新露, 徐赛俊, 潘虎强, 王小纯, 马新明. 水平结构配置对冬小麦冠层垂直结构、微环境及产量的影响[J]. 植物生态学报, 2022, 46(2): 188-196. |
[3] | 孙浩哲, 王襄平, 张树斌, 吴鹏, 杨蕾. 阔叶红松林不同演替阶段凋落物产量及其稳定性的影响因素[J]. 植物生态学报, 2021, 45(6): 594-605. |
[4] | 刘雪飞, 吴林, 王涵, 洪柳, 熊莉军. 鄂西南亚高山湿地泥炭藓的生长与分解[J]. 植物生态学报, 2020, 44(3): 228-235. |
[5] | 刘璐, 赵常明, 徐文婷, 申国珍, 谢宗强. 神农架常绿落叶阔叶混交林凋落物动态及影响因素[J]. 植物生态学报, 2018, 42(6): 619-628. |
[6] | 张鑫, 邢亚娟, 闫国永, 王庆贵. 细根对降水变化响应的meta分析[J]. 植物生态学报, 2018, 42(2): 164-172. |
[7] | 郭瑞, 周际, 杨帆, 李峰. 小麦根系在碱胁迫下的生理代谢反应[J]. 植物生态学报, 2017, 41(6): 683-692. |
[8] | 徐静馨, 郑有飞, 麦博儒, 赵辉, 储仲芳, 黄积庆, 袁月. 基于涡度相关法的麦田O3干沉降及不同沉降通道分配的特征[J]. 植物生态学报, 2017, 41(6): 670-682. |
[9] | 高林, 王晓菲, 顾行发, 田庆久, 焦俊男, 王培燕, 李丹. 植冠下土壤类型差异对遥感估算冬小麦叶面积指数的影响[J]. 植物生态学报, 2017, 41(12): 1273-1288. |
[10] | 郑成岩, 邓艾兴, LATIFMANESHHojatollah, 宋振伟, 张俊, 王利, 张卫建. 增温对青藏高原冬小麦干物质积累转运及氮吸收利用的影响[J]. 植物生态学报, 2017, 41(10): 1060-1068. |
[11] | 王丹, 乔匀周, 董宝娣, 葛静, 杨萍果, 刘孟雨. 昼夜不对称性与对称性升温对大豆产量和水分利用的影响[J]. 植物生态学报, 2016, 40(8): 827-833. |
[12] | 郭瑞, 周际, 杨帆, 李峰, 李昊如, 夏旭, 刘琪. 拔节孕穗期小麦干旱胁迫下生长代谢变化规律[J]. 植物生态学报, 2016, 40(12): 1319-1327. |
[13] | 邹长明, 王允青, 刘英, 张晓红, 唐杉. 四种豆科作物的光合生理和生长发育对弱光的响应[J]. 植物生态学报, 2015, 39(9): 909-916. |
[14] | 金皖豫, 李铭, 何杨辉, 杜正刚, 邵钧炯, 张国栋, 周灵燕, 周旭辉. 不同施氮水平对冬小麦生长期土壤呼吸的影响[J]. 植物生态学报, 2015, 39(3): 249-257. |
[15] | 孟德云, 侯林琳, 杨莎, 孟静静, 郭峰, 李新国, 万书波. 外源多胺对盆栽花生盐胁迫的缓解作用[J]. 植物生态学报, 2015, 39(12): 1209-1215. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19