植物生态学报 ›› 2014, Vol. 38 ›› Issue (7): 757-766.DOI: 10.3724/SP.J.1258.2014.00071
郭增江1, 于振文1,*(), 石玉1, 赵俊晔2, 张永丽1
收稿日期:
2013-10-30
接受日期:
2014-04-30
出版日期:
2014-10-30
发布日期:
2014-07-10
通讯作者:
于振文
作者简介:
* E-mail: yuzw@sdau.edu.cn基金资助:
GUO Zeng-Jiang1, YU Zhen-Wen1,*(), SHI Yu1, ZHAO Jun-Ye2, ZHANG Yong-Li1
Received:
2013-10-30
Accepted:
2014-04-30
Online:
2014-10-30
Published:
2014-07-10
Contact:
YU Zhen-Wen
摘要:
为研究依据不同土层的土壤质量含水量进行测墒补灌对小麦(Triticum aestivum)拔节期与开花期旗叶荧光特性和水分利用效率的影响, 2011-2012和2012-2013年度两个小麦生长季, 设置0-20 (D1)、0-40 (D2)、0-60 (D3)和0-140 cm (D4) 4个土层进行处理, 测定土壤质量含水量, 以各土层平均土壤相对含水量在拔节期为65%和在开花期为70%为目标相对含水量进行补灌, 全生育期不灌溉为对照(D0)。结果表明: (1) D2处理拔节至开花期40-100 cm土层和开花至成熟期40-140 cm土层的土壤贮水消耗量高于其他处理, 开花至成熟期是小麦贮水消耗的最大时期。(2)开花后旗叶水分利用效率、PSII潜在活性(Fv/Fo)、PSII电子传输活性(Fm/Fo)、相对电子传递速率(ETR)和光化学猝灭系数(qP) D2处理最高, D3次之, D0最低。(3)两个小麦生长季, 各处理的籽粒产量为D2 > D3 > D1 > D4 > D0, D2的水分利用效率分别为20.19 kg·hm-2·mm-1和21.92 kg·hm-2·mm-1, 高于D0、D3和D4处理, 与D1处理间无显著差异。综合分析, 小麦拔节期和开花期依据0-40 cm土层的土壤质量含水量进行测墒补灌可兼顾高产和高水分利用效率。
郭增江, 于振文, 石玉, 赵俊晔, 张永丽. 拔节期与开花期测墒补灌对小麦旗叶荧光特性和水分利用效率的影响. 植物生态学报, 2014, 38(7): 757-766. DOI: 10.3724/SP.J.1258.2014.00071
GUO Zeng-Jiang, YU Zhen-Wen, SHI Yu, ZHAO Jun-Ye, ZHANG Yong-Li. Effects of supplemental irrigation by measuring the moisture content at jointing and anthesis on fluorescence characteristics and water use efficiency in flag leaves of wheat. Chinese Journal of Plant Ecology, 2014, 38(7): 757-766. DOI: 10.3724/SP.J.1258.2014.00071
生长季 Growing season | 有机质 Organic matter (%) | 全氮 Total nitrogen (g·kg-1) | 碱解氮 Hydrolysable nitrogen (mg·kg-1) | 速效磷 Available phosphorus (mg·kg-1) | 速效钾 Available potassium (mg·kg-1) |
---|---|---|---|---|---|
2011-2012 | 1.39 | 1.23 | 142.29 | 31.01 | 112.60 |
2012-2013 | 1.35 | 1.17 | 143.63 | 34.51 | 118.48 |
表1 播种前试验田0-20 cm土层的土壤养分含量
Table 1 Soil nutrient concentrations in the 0-20 cm soil layer in the experimental field before sowing
生长季 Growing season | 有机质 Organic matter (%) | 全氮 Total nitrogen (g·kg-1) | 碱解氮 Hydrolysable nitrogen (mg·kg-1) | 速效磷 Available phosphorus (mg·kg-1) | 速效钾 Available potassium (mg·kg-1) |
---|---|---|---|---|---|
2011-2012 | 1.39 | 1.23 | 142.29 | 31.01 | 112.60 |
2012-2013 | 1.35 | 1.17 | 143.63 | 34.51 | 118.48 |
生长季 Growing season | 项目名称 Project name | 土层 Soil layer (cm) | ||||||
---|---|---|---|---|---|---|---|---|
0-20 | 20-40 | 40-60 | 60-80 | 80-100 | 100-120 | 120-140 | ||
2011-2012 | 土壤相对含水量 Relative soil water content (%) | 73.29 | 91.26 | 84.74 | 92.63 | 94.85 | 90.78 | 92.10 |
田间持水量 Field water-holding capacity (%) | 29.68 | 23.50 | 25.65 | 25.90 | 25.29 | 23.69 | 23.55 | |
土壤容重 Soil bulk density (g·cm-3) | 1.40 | 1.59 | 1.52 | 1.53 | 1.56 | 1.60 | 1.61 | |
2012-2013 | 土壤相对含水量 Relative soil water content (%) | 45.03 | 58.21 | 55.06 | 68.70 | 64.75 | 74.30 | 79.98 |
田间持水量 Field water-holding capacity (%) | 30.90 | 23.86 | 27.17 | 27.20 | 26.74 | 24.26 | 24.20 | |
土壤容重 Soil bulk density (g·cm-3) | 1.39 | 1.58 | 1.50 | 1.51 | 1.54 | 1.61 | 1.62 |
表2 播种前试验田各土层的土壤相对含水量、田间持水量和土壤容重
Table 2 Relative soil water content, field water-holding capacity, and soil bulk density in each soil layer in the experimental field before sowing
生长季 Growing season | 项目名称 Project name | 土层 Soil layer (cm) | ||||||
---|---|---|---|---|---|---|---|---|
0-20 | 20-40 | 40-60 | 60-80 | 80-100 | 100-120 | 120-140 | ||
2011-2012 | 土壤相对含水量 Relative soil water content (%) | 73.29 | 91.26 | 84.74 | 92.63 | 94.85 | 90.78 | 92.10 |
田间持水量 Field water-holding capacity (%) | 29.68 | 23.50 | 25.65 | 25.90 | 25.29 | 23.69 | 23.55 | |
土壤容重 Soil bulk density (g·cm-3) | 1.40 | 1.59 | 1.52 | 1.53 | 1.56 | 1.60 | 1.61 | |
2012-2013 | 土壤相对含水量 Relative soil water content (%) | 45.03 | 58.21 | 55.06 | 68.70 | 64.75 | 74.30 | 79.98 |
田间持水量 Field water-holding capacity (%) | 30.90 | 23.86 | 27.17 | 27.20 | 26.74 | 24.26 | 24.20 | |
土壤容重 Soil bulk density (g·cm-3) | 1.39 | 1.58 | 1.50 | 1.51 | 1.54 | 1.61 | 1.62 |
生长季 Growing season | 播种期至拔节期 Sowing to jointing | 拔节期至开花期 Jointing to anthesis | 开花期至成熟期 Anthesis to maturity | 总降水量 Total precipitation |
---|---|---|---|---|
2011-2012 | 152.0 | 31.0 | 0.0 | 183.0 |
2012-2013 | 92.0 | 32.5 | 113.5 | 238.0 |
表3 小麦各生育阶段降水量 (mm)
Table 3 Precipitation at different growing stages (mm)
生长季 Growing season | 播种期至拔节期 Sowing to jointing | 拔节期至开花期 Jointing to anthesis | 开花期至成熟期 Anthesis to maturity | 总降水量 Total precipitation |
---|---|---|---|---|
2011-2012 | 152.0 | 31.0 | 0.0 | 183.0 |
2012-2013 | 92.0 | 32.5 | 113.5 | 238.0 |
处理 Treatment | 土层 Soil layer (cm) | 拔节水 Irrigated water at jointing | 开花水 Irrigated water at anthesis | |||||
---|---|---|---|---|---|---|---|---|
目标/实际土壤相对含水量 Target and actual relative soil water content (%) | 相对偏差 Relative deviation (%) | 灌水量 Amount of irrigated water (mm) | 目标/实际土壤相对含水量 Target and actual relative soil water content (%) | 相对偏差 Relative deviation (%) | 灌水量 Amount of irrigated water (mm) | |||
2011-2012 | ||||||||
D1 | 0-20 | 65 / 64.16 | 1.31 | 22.74 | 70 / 69.44 | 0.80 | 14.46 | |
D2 | 0-40 | 65 / 63.83 | 1.83 | 33.90 | 70 / 72.40 | 3.31 | 32.32 | |
D3 | 0-60 | 65 / 64.38 | 0.97 | 34.86 | 70 / 68.76 | 1.81 | 41.74 | |
D4 | 0-140 | 65 / 67.49 | 3.69 | 0.00 | 70 / 68.24 | 2.58 | 53.06 | |
2012-2013 | ||||||||
D1 | 0-20 | 65 / 64.31 | 1.07 | 32.97 | 70 / 66.97 | 4.52 | 32.87 | |
D2 | 0-40 | 65 / 63.00 | 3.18 | 43.64 | 70 / 67.83 | 3.20 | 64.81 | |
D3 | 0-60 | 65 / 66.99 | 2.97 | 65.56 | 70 / 71.60 | 2.23 | 63.73 | |
D4 | 0-140 | 65 / 64.50 | 0.77 | 24.52 | 70 / 70.39 | 0.55 | 69.66 |
表4 不同处理的目标土壤相对含水量、灌溉后实际土壤相对含水量、相对偏差和灌水量
Table 4 Target relative soil water content, actual relative soil water content after irrigation, relative deviation, and amount of irrigated water in the different treatments
处理 Treatment | 土层 Soil layer (cm) | 拔节水 Irrigated water at jointing | 开花水 Irrigated water at anthesis | |||||
---|---|---|---|---|---|---|---|---|
目标/实际土壤相对含水量 Target and actual relative soil water content (%) | 相对偏差 Relative deviation (%) | 灌水量 Amount of irrigated water (mm) | 目标/实际土壤相对含水量 Target and actual relative soil water content (%) | 相对偏差 Relative deviation (%) | 灌水量 Amount of irrigated water (mm) | |||
2011-2012 | ||||||||
D1 | 0-20 | 65 / 64.16 | 1.31 | 22.74 | 70 / 69.44 | 0.80 | 14.46 | |
D2 | 0-40 | 65 / 63.83 | 1.83 | 33.90 | 70 / 72.40 | 3.31 | 32.32 | |
D3 | 0-60 | 65 / 64.38 | 0.97 | 34.86 | 70 / 68.76 | 1.81 | 41.74 | |
D4 | 0-140 | 65 / 67.49 | 3.69 | 0.00 | 70 / 68.24 | 2.58 | 53.06 | |
2012-2013 | ||||||||
D1 | 0-20 | 65 / 64.31 | 1.07 | 32.97 | 70 / 66.97 | 4.52 | 32.87 | |
D2 | 0-40 | 65 / 63.00 | 3.18 | 43.64 | 70 / 67.83 | 3.20 | 64.81 | |
D3 | 0-60 | 65 / 66.99 | 2.97 | 65.56 | 70 / 71.60 | 2.23 | 63.73 | |
D4 | 0-140 | 65 / 64.50 | 0.77 | 24.52 | 70 / 70.39 | 0.55 | 69.66 |
图1 拔节期(A, C)和开花期(B, D)灌溉后0-200 cm的土壤相对含水量(平均值±标准偏差)。D1、D2、D3和D4, 同表4。
Fig. 1 Relative soil water content in the 0-200 cm soil layers after irrigation at jointing (A, C) and anthesis (B, D) (mean ± SD). D1, D2, D3 and D4, see Table 4.
图2 小麦拔节至开花期(A、C)和开花至成熟期(B、D) 0-200 cm土层的土壤贮水消耗量(平均值±标准偏差)。D1、D2、D3和D4, 同表4。
Fig. 2 Soil water consumption in the 0-200 cm soil layers from jointing to anthesis (A, C) and from anthesis to maturity (B, D) in wheat (mean ± SD). D1, D2, D3 and D4, see Table 4.
图3 小麦开花后7天(A)和14天(B)的旗叶水分利用效率(WUEflag leaf) (2012-2013) (平均值±标准偏差)。不同小写字母表示差异显著(p < 0.05)。D1、D2、D3和D4, 同表4。
Fig. 3 Water use efficiency of flag leaves (WUEflag leaf) after 7 days (A) and 14 days (B) of anthesis in wheat (2012-2013) (mean ± SD). Different lowercase letters indicate significant differences (p < 0.05). D1, D2, D3 and D4, see Table 4.
图4 小麦开花后14天的PSII潜在最大光化学量子效率(Fv/Fm) (A)、潜在活性(Fv/Fo) (B)和电子传输活性(Fm/Fo) (C) (2012-2013) (平均值±标准偏差)。不同小写字母表示差异显著(p < 0.05)。D1、D2、D3和D4, 同表4。
Fig. 4 Maximum photochemical efficiency (Fv/Fm) (A), potential photosynthesis activity (Fv/Fo) (B) and electronic transpiration activity (Fm/Fo) (C) of PSII in wheat after 14 days of anthesis (2012-2013) (mean ± SD). Different lowercase letters indicate significant differences (p < 0.05). D1, D2, D3 and D4, see Table 4.
图5 小麦开花后7天(A、C)和14天(B、D)的相对电子传递速率(ETR)和光化学猝灭系数(qP) (2012-2013) (平均值±标准偏差)。不同小写字母表示差异显著(p < 0.05)。D1、D2、D3和D4, 同表4。
Fig. 5 Relative electron transport rate (ETR) and photochemistry quenching index (qP) after 7 days (A, C) and 14 days (B, D) of anthesis in wheat (2012-2013) (mean ± SD). Different lowercase letters indicate significant differences (p < 0.05). D1, D2, D3 and D4, see Table 4.
处理 Treatment | 籽粒产量 Grain yield (kg·hm-2) | 水分利用效率 Water use efficiency (kg·hm-2·mm-1) | 降水利用效率 Water use efficiency of precipitation (kg·hm-2·mm-1) | 土壤水利用效率 Water use efficiency of soil water (kg·hm-2·mm-1) | 灌水利用效率 Water use efficiency of irrigation water (kg·hm-2·mm-1) | 灌水生产效率 Irrigation water productivity (kg·hm-2·mm-1) |
---|---|---|---|---|---|---|
2011-2012 | ||||||
D0 | 6 495.18e | 18.47c | 35.50e | 38.50d | - | - |
D1 | 8 452.75c | 20.35a | 46.19c | 44.44b | 227.17a | 31.09a |
D2 | 9 367.35a | 20.19a | 51.19a | 43.63b | 141.46c | 27.14b |
D3 | 8 806.90b | 19.71b | 48.13b | 47.01a | 114.96d | 25.44b |
D4 | 7 847.02d | 18.65c | 42.88d | 42.50c | 147.90b | 19.88c |
2012-2013 | ||||||
D0 | 6 563.43e | 19.44c | 27.58e | 65.93d | - | - |
D1 | 8 685.67c | 22.14a | 36.49c | 98.11c | 131.92a | 37.57a |
D2 | 9 727.48a | 21.92a | 40.87a | 100.01c | 89.69b | 30.08b |
D3 | 9 299.75b | 20.41b | 39.07b | 105.35b | 71.93d | 22.99c |
D4 | 7 578.38d | 19.19c | 31.84d | 120.98a | 80.47c | 18.04d |
表5 小麦的籽粒产量、水分利用效率和灌水生产效率
Table 5 Grain yield, water use efficiency and irrigation water productivity of wheat
处理 Treatment | 籽粒产量 Grain yield (kg·hm-2) | 水分利用效率 Water use efficiency (kg·hm-2·mm-1) | 降水利用效率 Water use efficiency of precipitation (kg·hm-2·mm-1) | 土壤水利用效率 Water use efficiency of soil water (kg·hm-2·mm-1) | 灌水利用效率 Water use efficiency of irrigation water (kg·hm-2·mm-1) | 灌水生产效率 Irrigation water productivity (kg·hm-2·mm-1) |
---|---|---|---|---|---|---|
2011-2012 | ||||||
D0 | 6 495.18e | 18.47c | 35.50e | 38.50d | - | - |
D1 | 8 452.75c | 20.35a | 46.19c | 44.44b | 227.17a | 31.09a |
D2 | 9 367.35a | 20.19a | 51.19a | 43.63b | 141.46c | 27.14b |
D3 | 8 806.90b | 19.71b | 48.13b | 47.01a | 114.96d | 25.44b |
D4 | 7 847.02d | 18.65c | 42.88d | 42.50c | 147.90b | 19.88c |
2012-2013 | ||||||
D0 | 6 563.43e | 19.44c | 27.58e | 65.93d | - | - |
D1 | 8 685.67c | 22.14a | 36.49c | 98.11c | 131.92a | 37.57a |
D2 | 9 727.48a | 21.92a | 40.87a | 100.01c | 89.69b | 30.08b |
D3 | 9 299.75b | 20.41b | 39.07b | 105.35b | 71.93d | 22.99c |
D4 | 7 578.38d | 19.19c | 31.84d | 120.98a | 80.47c | 18.04d |
WUEflag leaf | Fv/Fm | Fv/Fo | Fm/Fo | ETR | qP | |
---|---|---|---|---|---|---|
籽粒产量 Grain yield (kg·hm-2) | 0.775** | 0.282 | 0.677** | 0.779** | 0.914** | 0.503* |
水分利用效率 Water use efficiency (kg·hm-2·mm-1) | 0.351 | 0.012 | 0.586* | 0.710** | 0.462 | 0.350 |
表6 开花后旗叶水分利用效率(WUEflag leaf)、荧光参数与产量及水分利用效率的相关系数(n = 15)
Table 6 The correlation coefficient between water use efficiency of flag leaf, parameters of fluorescence and grain yield, water use efficiency after anthesis (n = 15)
WUEflag leaf | Fv/Fm | Fv/Fo | Fm/Fo | ETR | qP | |
---|---|---|---|---|---|---|
籽粒产量 Grain yield (kg·hm-2) | 0.775** | 0.282 | 0.677** | 0.779** | 0.914** | 0.503* |
水分利用效率 Water use efficiency (kg·hm-2·mm-1) | 0.351 | 0.012 | 0.586* | 0.710** | 0.462 | 0.350 |
[1] | Bai ZY, Li CD, Zhao JF, Wu TY, Zheng JF, Bi CR (2011). Effect and preliminary analysis of chromosomal control on the chlorophyll fluorescence parameters of wheat substitution lines between synthetic hexaploid wheat and Chinese spring under drought stress. Scientia Agricultura Sinica, 44, 47-57. (in Chinese with English abstract) |
[白志英, 李存东, 赵金锋, 吴同彦, 郑金凤, 毕常锐 (2011). 干旱胁迫对小麦代换系叶绿素荧光参数的影响及染色体效应初步分析. 中国农业科学, 44, 47-57.] | |
[2] | Cossani CM, Slafer GA, Savin R (2012). Nitrogen and water use efficiencies of wheat and barley under a Mediterranean environment in Catalonia. Field Crops Research, 128, 109-118. |
[3] | Duan WX, Yu ZW, Zhang YL, Wang D (2010). Effects of supplemental irrigation on water consumption characteristics and dry matter accumulation and distribution in different spike-type wheat cultivars based on testing soil moisture. Chinese Journal of Plant Ecology, 34, 1424-1432. (in Chinese with English abstract) |
[段文学, 于振文, 张永丽, 王东 (2010). 测墒补灌对不同穗型小麦品种耗水特性和干物质积累与分配的影响. 植物生态学报, 34, 1424-1432.] | |
[4] | Guo SL, Zhu HH, Dang TH, Wu JS, Liu WZ, Hao MD, Li Y, Syers JK (2012). Winter wheat grain yield associated with precipitation distribution under long-term nitrogen fertilization in the semiarid Loess Plateau in China. Geoderma, 189- 190, 442-450. |
[5] | Guóth A, Tari I, Gallé Á, Csiszár J, Pécsváradi A, Cseuz L, Erdei L (2009). Comparison of the drought stress responses of tolerant and sensitive wheat cultivars during grain filling: changes in flag leaf photosynthetic activity, ABA levels, and grain yield. Journal of Plant Growth Regulation, 28, 167-176. |
[6] | Jia DY, Dai XL, He MR (2012). Polymerization of glutenin during grain development and quality expression in winter wheat in response to irrigation levels. Crop Science, 52, 1816-1827. |
[7] | Jongrungklang N, Toomsan B, Vorasoot N, Jogloy S, Boote KJ, Hoogenboom G, Patanothai A (2013). Drought tolerance mechanisms for yield responses to pre-flowering drought stress of peanut genotypes with different drought tolerant levels. Field Crops Research, 144, 34-42. |
[8] | Karrou M, Oweis T (2012). Water and land productivities of wheat and food legumes with deficit supplemental irrigation in a Mediterranean environment. Agricultural Water Management, 107, 94-103. |
[9] | Klughammer C, Schreiber U (2008). Complementary PSII quantum yields calculated from simple fluorescence parameters measured by PAM fluorometry and the saturation pulse method. PAM Application Notes, 1, 27-35. |
[10] |
Kramer DM, Johnson G, Kiirats O, Edwards GE (2004). New fluorescence parameters for the determination of QA redox state and excitation energy fluxes. Photosynthesis Research, 79, 209-218.
DOI URL PMID |
[11] | Li QQ, Dong BD, Qiao YZ, Liu MY, Zhang JW (2010). Root growth, available soil water, and water-use efficiency of winter wheat under different irrigation regimes applied at different growth stages in North China. Agricultural Water Management, 97, 1676-1682. |
[12] | Liao LJ, Zhang L, Bengtsson L (2008). Soil moisture variation and water consumption of spring wheat and their effects on crop yield under drip irrigation. Irrigation and Drainage Systems, 22, 253-270. |
[13] | Liu ZJ, Li BP, Li YH, Cui YL (2004). Research on the water use efficiency and optimal irrigation schedule of the winter wheat. Transactions of the Chinese Society of Agricultural Engineering, 20(4), 58-63. (in Chinese with English abstract) |
[刘增进, 李宝萍, 李远华, 崔远来 (2004). 冬小麦水分利用效率与最优灌溉制度的研究. 农业工程学报, 20(4), 58-63.] | |
[14] | Ma SC, Xu BC, Huang ZB, Liu L, Zhang XH, Liu WZ, Li FM (2006). Effects of partial root excision at the re-greening stage of winter wheat on root/shoot ratio, yield and water use efficiency in Loess Plateau Region, China. Journal of Plant Ecology (Chinese Version), 30, 976-982. (in Chinese with English abstract) |
[马守臣, 徐炳成, 黄占斌, 刘琳, 张小红, 刘文兆, 李凤民 (2006). 黄土旱塬冬小麦返青期断根对根冠比、水分利用及产量的影响. 植物生态学报, 30, 976-982.] | |
[15] | Ogaya R, Peñuelas J (2003). Comparative field study of Quercus ilex and Phillyrea latifolia: photosynthetic response to experimental drought conditions. Environmental and Experimental Botany, 50, 137-148. |
[16] | Oweis T, Hachum A (2006). Water harvesting and supplemental irrigation for improved water productivity of dry farming systems in West Asia and North Africa. Agricultural Water Management, 80, 57-73. |
[17] | Patanè C, Cosentino SL (2013). Yield, water use and radiation use efficiencies of kenaf ( Hibiscus cannabinus L.) under reduced water and nitrogen soil availability in a semi-arid Mediterranean area. European Journal of Agronomy, 46, 53-62. |
[18] | Qiao YZ, Zhang HZ, Dong BD, Shi CH, Li YX, Zhai HM, Liu MY (2010). Effects of elevated CO2 concentration on growth and water use efficiency of winter wheat under two soil water regimes. Agricultural Water Management, 97, 1742-1748. |
[19] | Qin HH, Sun A, Zhang BX, Zheng CM (2010). System dynamics analysis of water resource carrying capacity in Shandong Province of China. http://www.systemdynam-ics.org/conferences/2010/proceed/papers/P1078.pdf. Cited: 2013-10. |
[20] | Qiu GY, Wang LM, He XH, Zhang XY, Chen SY, Chen J, Yang YH (2008). Water use efficiency and evapotranspiration of winter wheat and its response to irrigation regime in the North China Plain. Agricultural and Forest Meteorology, 148, 1848-1859. |
[21] | Sadras VO, Lawson C (2013). Nitrogen and water-use efficiency of Australian wheat varieties released between 1958 and 2007. European Journal of Agronomy, 46, 34-41. |
[22] | Sagaram M, Burns JK (2009). Leaf chlorophyll fluorescence parameters and Huanglongbing. Journal of the American Society for Horticultural Science, 134, 194-201. |
[23] | Sayed OH (2003). Chlorophyll fluorescence as a tool in cereal crop research. Photosynthetica, 41, 321-330. |
[24] | Sepaskhah AR, Tafteh A (2012). Yield and nitrogen leaching in rapeseed field under different nitrogen rates and water saving irrigation. Agricultural Water Management, 112, 55-62. |
[25] | Shan L, Kang SZ, Wu PT (2004). Water Saving Agriculture in China. China Agriculture Press, Beijing. 229-230. (in Chinese) |
[山仑, 康绍忠, 吴普特 (2004). 中国节水农业. 中国农业出版社, 北京. 229-230.] | |
[26] | Shangguan ZP, Shao MA, Dyckmans J (2000). Effects of nitrogen nutrition and water deficit on net photosynthetic rate and chlorophyll fluorescence in winter wheat. Journal of Plant Physiology, 156, 46-51. |
[27] | Shao LW, Zhang XY, Chen SY, Sun HY, Wang ZH (2009). Effects of irrigation frequency under limited irrigation on root water uptake, yield and water use efficiency of winter wheat. Irrigation and Drainage, 58, 393-405. |
[28] | Shao LW, Zhang XY, Sun HY, Chen SY, Wang YM (2011). Yield and water use response of winter wheat to winter irrigation in the North China Plain. Journal of Soil and Water Conservation, 66, 104-113. |
[29] | Sharma DK, Andersen BS, Ottosen CO, Rosenqvist E (2012). Phenotyping of wheat cultivars for heat tolerance using chlorophyll a fluorescence. Functional Plant Biology, 39, 936-947. |
[30] | Stone L, Schlegel AJ (2006). Yield-water supply relationships of grain sorghum and winter wheat. Agronomy Journal, 98, 1359-1366. |
[31] | Sun HY, Liu CM, Zhang XY, Shen YJ, Zhang YQ (2006). Effects of irrigation on water balance, yield and WUE of winter wheat in the North China Plain. Agricultural Water Management, 85, 211-218. |
[32] |
Tambussi EA, Nogués S, Araus JL (2005). Ear of durum wheat under water stress: water relations and photosynthetic metabolism. Planta, 221, 446-458.
DOI URL PMID |
[33] | Walsh OS, Klatt AR, Solie JB, Godsey CB, Raum WR (2013). Use of soil moisture data for refined greenseeker sensor based nitrogen recommendations in winter wheat ( Triticum aestivum L.). Precision Agriculture, 14, 343-356. |
[34] | Wang D, Yu ZW, White PJ (2013). The effect of supplemental irrigation after jointing on leaf senescence and grain filling in wheat. Field Crops Research, 151, 35-44. |
[35] | Wu XL, Bao WK (2011). Leaf growth, gas exchange and chlorophyll fluorescence parameters in response to different water deficits in wheat cultivars. Plant Production Science, 14, 254-259. |
[36] |
Xu ZZ, Yu ZW, Zhao JY (2013). Theory and application for the promotion of wheat production in China: past, present and future. Journal of the Science of Food and Agriculture, 93, 2339-2350.
URL PMID |
[37] | Xue Q, Zhu Z, Musick JT, Stewart BA, Dusek DA (2003). Root growth and water uptake in winter wheat under deficit irrigation. Plant and Soil, 257, 151-161. |
[38] | Zhang BC, Li FM, Huang GB, Cheng ZY, Zhang YH (2006). Yield performance of spring wheat improved by regulated deficit irrigation in an arid area. Agricultural Water Management, 79, 28-42. |
[39] | Zhang XY, Wang YZ, Sun HY, Chen SY, Shao LW (2013). Optimizing the yield of winter wheat by regulating water consumption during vegetative and reproductive stages under limited water supply. Irrigation Science, 31, 1103-1112. |
[40] | Zhang YC, Shen YJ, Sun HY, Gates JB (2011). Evapotranspiration and its partitioning in an irrigated winter wheat field: a combined isotopic and micrometeorologic approach. Journal of Hydrology, 408, 203-211. |
[41] | Zlatev Z (2009). Drought-induced changes in chlorophyll fluorescence of young wheat plants. Biotechnology & Biotechnological Equipment, 23, 438-441. |
[1] | 李伟斌, 张红霞, 张玉书, 陈妮娜. 昼夜不对称增温对长白山阔叶红松林碳汇能力的影响[J]. 植物生态学报, 2023, 47(9): 1225-1233. |
[2] | 熊淑萍, 曹文博, 曹锐, 张志勇, 付新露, 徐赛俊, 潘虎强, 王小纯, 马新明. 水平结构配置对冬小麦冠层垂直结构、微环境及产量的影响[J]. 植物生态学报, 2022, 46(2): 188-196. |
[3] | 郑周涛, 张扬建. 1982-2018年青藏高原水分利用效率变化及归因分析[J]. 植物生态学报, 2022, 46(12): 1486-1496. |
[4] | 韩璐, 杨菲, 吴应明, 牛云明, 曾祎明, 陈立欣. 晋西黄土区典型乔灌木短期水分利用效率对环境因子的响应[J]. 植物生态学报, 2021, 45(12): 1350-1364. |
[5] | 周雄, 孙鹏森, 张明芳, 刘世荣. 西南高山亚高山区植被水分利用效率时空特征及其与气候因子的关系[J]. 植物生态学报, 2020, 44(6): 628-641. |
[6] | 冯兆忠, 李品, 张国友, 李征珍, 平琴, 彭金龙, 刘硕. 二氧化碳浓度升高对陆地生态系统的影响: 问题与展望[J]. 植物生态学报, 2020, 44(5): 461-474. |
[7] | 艾则孜提约麦尔·麦麦提, 玉素甫江·如素力, 何辉, 拜合提尼沙·阿不都克日木. 2000-2017年新疆天山植被水分利用效率时空特征及其与气候因子关系分析[J]. 植物生态学报, 2019, 43(6): 490-500. |
[8] | 李鑫豪, 闫慧娟, 卫腾宙, 周文君, 贾昕, 查天山. 油蒿资源利用效率在生长季的相对变化及对环境因子的响应[J]. 植物生态学报, 2019, 43(10): 889-898. |
[9] | 冯朝阳, 王鹤松, 孙建新. 中国北方植被水分利用效率的时间变化特征及其影响因子[J]. 植物生态学报, 2018, 42(4): 453-465. |
[10] | 徐婷, 赵成章, 韩玲, 冯威, 段贝贝, 郑慧玲. 张掖湿地旱柳叶脉密度与水分利用效率的关系[J]. 植物生态学报, 2017, 41(7): 761-769. |
[11] | 郭瑞, 周际, 杨帆, 李峰. 小麦根系在碱胁迫下的生理代谢反应[J]. 植物生态学报, 2017, 41(6): 683-692. |
[12] | 徐静馨, 郑有飞, 麦博儒, 赵辉, 储仲芳, 黄积庆, 袁月. 基于涡度相关法的麦田O3干沉降及不同沉降通道分配的特征[J]. 植物生态学报, 2017, 41(6): 670-682. |
[13] | 刘晓, 戚超, 闫艺兰, 袁国富. 不同生态系统水分利用效率指标在黄土高原半干旱草地应用的适宜性评价[J]. 植物生态学报, 2017, 41(5): 497-505. |
[14] | 黄小涛, 罗格平. 新疆草地蒸散与水分利用效率的时空特征[J]. 植物生态学报, 2017, 41(5): 506-518. |
[15] | 高林, 王晓菲, 顾行发, 田庆久, 焦俊男, 王培燕, 李丹. 植冠下土壤类型差异对遥感估算冬小麦叶面积指数的影响[J]. 植物生态学报, 2017, 41(12): 1273-1288. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 3087
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 1477
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19 51La