植物生态学报 ›› 2017, Vol. 41 ›› Issue (12): 1273-1288.DOI: 10.17521/cjpe.2017.0231
所属专题: 生态遥感及应用
高林1,2,*, 王晓菲1,2,3, 顾行发4, 田庆久1,2,3,**(), 焦俊男1,2, 王培燕1,2, 李丹4
出版日期:
2017-12-10
发布日期:
2018-02-23
通讯作者:
田庆久
基金资助:
GAO Lin1,2,*, WANG Xiao-Fei1,2,3, GU Xing-Fa4, TIAN Qing-Jiu1,2,3,**(), JIAO Jun-Nan1,2, WANG Pei-Yan1,2, LI Dan4
Online:
2017-12-10
Published:
2018-02-23
Contact:
TIAN Qing-Jiu
摘要:
遥感是从田块到区域乃至全球范围无损探测叶面积指数(LAI)的有效方法。土壤背景是LAI遥感研究的重要制约因素之一, 而土壤类型是组成土壤背景的主要部分, 对植被冠层-土壤的光学性质有重要影响, 但目前植冠下土壤类型背景对遥感LAI估算的影响尚不明确。该文通过分析归一化差异植被指数、修正型土壤调节植被指数、修正的叶绿素吸收比率指数、红边拐点、红边振幅、红边面积、红边对数指数和归一化差异光谱指数在不同土壤类型下对LAI的敏感性, 挖掘最不敏感的光谱参数; 通过比较两种回归模型(偏最小二乘回归和随机森林回归)在单一土壤类型和多种土壤类型区对LAI的预测精度, 探究将单一土壤类型下发展的LAI估算模型应用到复杂土壤类型地区时可能出现的问题。结果表明: (1)虽然8种光谱指数对LAI的敏感性因土壤类型不同而差异明显, 但红边拐点受植冠下土壤类型影响最小; “lambda-by-lambda”波段优选算法不仅可以提供对LAI最敏感的光谱区间, 而且可在一定程度上为抵抗植冠下土壤类型差异影响的光谱指数构建提供可行思路; (2)回归模型的LAI预测精度因是否考虑土壤类型而不同, 但在小区域尤其是田块尺度研究时, 对变量的解释能力是选择模型的第一考虑, 而偏最小二乘回归在此方面优于随机森林回归; 在未知地表先验知识的前提下, 随机森林回归对大区域LAI估算比偏最小二乘回归适合, 但地表先验知识的获取对LAI遥感估算仍然十分必要。
高林, 王晓菲, 顾行发, 田庆久, 焦俊男, 王培燕, 李丹. 植冠下土壤类型差异对遥感估算冬小麦叶面积指数的影响. 植物生态学报, 2017, 41(12): 1273-1288. DOI: 10.17521/cjpe.2017.0231
GAO Lin, WANG Xiao-Fei, GU Xing-Fa, TIAN Qing-Jiu, JIAO Jun-Nan, WANG Pei-Yan, LI Dan. Exploring the influence of soil types underneath the canopy in winter wheat leaf area index remote estimating. Chinese Journal of Plant Ecology, 2017, 41(12): 1273-1288. DOI: 10.17521/cjpe.2017.0231
图1 研究区地理位置及土壤类型分布。研究区位于济宁、曲阜和邹城。
Fig. 1 Geographic location of the study area and soil types distribution. The study area is located in Jining, Qufu and Zoucheng.
土壤类型 Soil type | LAI | p | ||||
---|---|---|---|---|---|---|
最小值 Min | 最大值 Max | 平均值 Mean | 标准差 SD | 变异系数 CV (%) | ||
潮土 Fluvo-aquic soil | 1.970 | 5.870 | 3.650 | 1.031 | 28.24 | 0.105 |
水稻土 Paddy soil | 2.240 | 5.880 | 4.114 | 0.962 | 23.39 | 0.593 |
棕壤 Brown soil | 1.100 | 6.710 | 3.482 | 1.557 | 44.71 | 0.610 |
砂姜黑土 Lime concretion black soil | 1.700 | 5.500 | 3.463 | 1.018 | 29.39 | 0.536 |
褐土 Cinnamon soil | 1.320 | 5.860 | 4.483 | 1.235 | 27.54 | < 0.005 |
5种土壤 Five type soils | 1.100 | 6.710 | 3.838 | 1.232 | 32.09 | 0.242 |
表1 冬小麦叶面积指数(LAI)统计分析(5种土壤类型)
Table 1 Descriptive statistics of winter wheat leaf area index (LAI) values (five soil types)
土壤类型 Soil type | LAI | p | ||||
---|---|---|---|---|---|---|
最小值 Min | 最大值 Max | 平均值 Mean | 标准差 SD | 变异系数 CV (%) | ||
潮土 Fluvo-aquic soil | 1.970 | 5.870 | 3.650 | 1.031 | 28.24 | 0.105 |
水稻土 Paddy soil | 2.240 | 5.880 | 4.114 | 0.962 | 23.39 | 0.593 |
棕壤 Brown soil | 1.100 | 6.710 | 3.482 | 1.557 | 44.71 | 0.610 |
砂姜黑土 Lime concretion black soil | 1.700 | 5.500 | 3.463 | 1.018 | 29.39 | 0.536 |
褐土 Cinnamon soil | 1.320 | 5.860 | 4.483 | 1.235 | 27.54 | < 0.005 |
5种土壤 Five type soils | 1.100 | 6.710 | 3.838 | 1.232 | 32.09 | 0.242 |
光谱指数 Spectral indices | 公式 Equation | 来源 Reference |
---|---|---|
归一化差异植被指数 Normalized difference vegetation index (NDVI) | $NDVI=\frac{{{R}_{800}}-{{R}_{680}}}{{{R}_{800}}+{{R}_{680}}}$ | Rouse et al., 1974 |
修正型土壤调节植被指数 Modified soil-adjusted vegetation index (MSAVI) | $MSAVI=\frac{1}{2}\times \left[ 2\times {{R}_{800}}+1-\sqrt{{{\left( 2\times {{R}_{800}}+1 \right)}^{2}}-8\times \left( {{R}_{800}}-{{R}_{670}} \right)} \right]$ | Qi et al., 1994 |
修正的叶绿素吸收比率指数 Modified chlorophyll absorption ratio index 2 (MCARI2) | $MCAR{{I}_{2}}=\frac{1.5\times \left[ 2.5\times \left( {{R}_{800}}-{{R}_{670}} \right)-1.3\times \left( {{R}_{800}}-{{R}_{550}} \right) \right]}{\sqrt{{{\left( 2\times {{R}_{800}}+1 \right)}^{2}}-\left( 6\times {{R}_{800}}-5\times \sqrt{{{R}_{670}}} \right)-0.5}}$ | Haboudane et al., 2004 |
红边拐点 Red edge inflection point (REIP) | $REIP=700+40\times \frac{\left( {{R}_{670}}+{{R}_{780}} \right)\text{/2}-{{R}_{700}}}{{{R}_{\text{740}}}-{{R}_{\text{700}}}}$ | Danson & Plummer, 1995 |
红边振幅 Red edge amplitude (Dr) | $d{{\lambda }_{\text{red-edge}}}$ | Feng et al., 2009 |
红边面积 Red edge area (SDr) | $\sum{d{{\lambda }_{\left( 680\text{-}750 \right)}}}$ | Filella & Penuelas, 1994 |
红边对称指数 Red edge symmetry (RES) | $RES=\frac{{{R}_{718}}-{{R}_{675}}}{{{R}_{755}}-{{R}_{675}}}$ | Ju et al., 2010 |
归一化差异光谱指数 Normalized difference spectral index (NDSI) | $NDS{{I}_{(i,j)}}=\frac{{{R}_{i}}-{{R}_{j}}}{{{R}_{\text{i}}}+{{R}_{j}}}$ | Li et al., 2013 |
表2 本文估算冬小麦叶面积指数的光谱指数
Table 2 Spectral indices for winter wheat leaf area index estimating in this paper
光谱指数 Spectral indices | 公式 Equation | 来源 Reference |
---|---|---|
归一化差异植被指数 Normalized difference vegetation index (NDVI) | $NDVI=\frac{{{R}_{800}}-{{R}_{680}}}{{{R}_{800}}+{{R}_{680}}}$ | Rouse et al., 1974 |
修正型土壤调节植被指数 Modified soil-adjusted vegetation index (MSAVI) | $MSAVI=\frac{1}{2}\times \left[ 2\times {{R}_{800}}+1-\sqrt{{{\left( 2\times {{R}_{800}}+1 \right)}^{2}}-8\times \left( {{R}_{800}}-{{R}_{670}} \right)} \right]$ | Qi et al., 1994 |
修正的叶绿素吸收比率指数 Modified chlorophyll absorption ratio index 2 (MCARI2) | $MCAR{{I}_{2}}=\frac{1.5\times \left[ 2.5\times \left( {{R}_{800}}-{{R}_{670}} \right)-1.3\times \left( {{R}_{800}}-{{R}_{550}} \right) \right]}{\sqrt{{{\left( 2\times {{R}_{800}}+1 \right)}^{2}}-\left( 6\times {{R}_{800}}-5\times \sqrt{{{R}_{670}}} \right)-0.5}}$ | Haboudane et al., 2004 |
红边拐点 Red edge inflection point (REIP) | $REIP=700+40\times \frac{\left( {{R}_{670}}+{{R}_{780}} \right)\text{/2}-{{R}_{700}}}{{{R}_{\text{740}}}-{{R}_{\text{700}}}}$ | Danson & Plummer, 1995 |
红边振幅 Red edge amplitude (Dr) | $d{{\lambda }_{\text{red-edge}}}$ | Feng et al., 2009 |
红边面积 Red edge area (SDr) | $\sum{d{{\lambda }_{\left( 680\text{-}750 \right)}}}$ | Filella & Penuelas, 1994 |
红边对称指数 Red edge symmetry (RES) | $RES=\frac{{{R}_{718}}-{{R}_{675}}}{{{R}_{755}}-{{R}_{675}}}$ | Ju et al., 2010 |
归一化差异光谱指数 Normalized difference spectral index (NDSI) | $NDS{{I}_{(i,j)}}=\frac{{{R}_{i}}-{{R}_{j}}}{{{R}_{\text{i}}}+{{R}_{j}}}$ | Li et al., 2013 |
图3 不同类型土壤的光谱反射率曲线和土壤线。ρL(λNIR)和ρL(λRed)分别表示砂姜黑土的近红外波段反射率和红波段反射率; ρF(λNIR)和ρF(λRed)分别表示潮土的近红外波段反射率和红波段反射率; ρB(λNIR)和ρB(λRed)分别表示棕壤的近红外波段反射率和红波段反射率; ρP(λNIR)和ρP(λRed)分别表示水稻土的近红外波段反射率和红波段反射率; ρC(λNIR)和ρC(λRed)分别表示褐土的近红外波段反射率和红波段反射率。
Fig. 3 Different soil spectral reflectance curves and soil lines. ρL(λNIR) and ρL(λRed) are spectral reflectance of lime concretion back soil in near infrared band and red band, respectively; ρF(λNIR) and ρF(λRed) are spectral reflectance of fluvo-aquic soil in near infrared band and red band, respectively; ρB(λNIR) and ρB(λRed) are spectral reflectance of brown soil in near infrared band and red band, respectively; ρP(λNIR) and ρP(λRed) are spectral reflectance of paddy soil in near infrared band and red band, respectively; ρC(λNIR) and ρC(λRed) are spectral reflectance of cinnamon soil in near infrared band and red band, respectively.
光谱指数 Spectral indices | LAI | ||||||||
---|---|---|---|---|---|---|---|---|---|
1-1.5 | 1.5-2 | 2-2.5 | 2.5-3 | 3-3.5 | 3.5-4 | 4-4.5 | 4.5-5 | >5 | |
NDVI | 6.32 | 10.91 | 7.18 | 7.94 | 4.37 | 1.95 | 1.9 | 2.01 | 1.44 |
MSAVI | 13.86 | 24.48 | 18.57 | 24.42 | 12.77 | 8.72 | 10.01 | 8.02 | 4.25 |
MCARI2 | 15.72 | 25.98 | 20.51 | 26.03 | 13.95 | 8.94 | 9.97 | 8.28 | 4.84 |
RES | 20.54 | 25.8 | 24.06 | 18.15 | 16.26 | 8.36 | 8.49 | 11.69 | 7.8 |
REIP | 0.44 | 0.45 | 0.53 | 0.39 | 0.41 | 0.23 | 0.25 | 0.29 | 0.24 |
NDSI | 100.97 | 206.38 | 187.41 | 139.56 | 154.61 | 155.92 | 114.89 | 158.33 | 150.22 |
Dr | 19.51 | 28.93 | 20.25 | 31.48 | 15.98 | 15.68 | 12.38 | 13.61 | 7.38 |
SDr | 17.01 | 23.61 | 14.44 | 27.18 | 12.2 | 16.32 | 11.07 | 11.35 | 6.68 |
表3 不同叶面积指数(LAI)区间下光谱指数的变异系数(%)
Table 3 Coefficient of variation (%) of spectral indices in different leaf area index (LAI) intervals
光谱指数 Spectral indices | LAI | ||||||||
---|---|---|---|---|---|---|---|---|---|
1-1.5 | 1.5-2 | 2-2.5 | 2.5-3 | 3-3.5 | 3.5-4 | 4-4.5 | 4.5-5 | >5 | |
NDVI | 6.32 | 10.91 | 7.18 | 7.94 | 4.37 | 1.95 | 1.9 | 2.01 | 1.44 |
MSAVI | 13.86 | 24.48 | 18.57 | 24.42 | 12.77 | 8.72 | 10.01 | 8.02 | 4.25 |
MCARI2 | 15.72 | 25.98 | 20.51 | 26.03 | 13.95 | 8.94 | 9.97 | 8.28 | 4.84 |
RES | 20.54 | 25.8 | 24.06 | 18.15 | 16.26 | 8.36 | 8.49 | 11.69 | 7.8 |
REIP | 0.44 | 0.45 | 0.53 | 0.39 | 0.41 | 0.23 | 0.25 | 0.29 | 0.24 |
NDSI | 100.97 | 206.38 | 187.41 | 139.56 | 154.61 | 155.92 | 114.89 | 158.33 | 150.22 |
Dr | 19.51 | 28.93 | 20.25 | 31.48 | 15.98 | 15.68 | 12.38 | 13.61 | 7.38 |
SDr | 17.01 | 23.61 | 14.44 | 27.18 | 12.2 | 16.32 | 11.07 | 11.35 | 6.68 |
光谱指数 Spectral indices | 不同土壤类型区的冬小麦LAI/相关系数 Winter wheat LAI in different soil types/Correlation coefficient (r) | |||||
---|---|---|---|---|---|---|
水稻土 Paddy soil (n = 30) | 潮土 Fluvo-aquic soil (n = 30) | 棕壤 Brown soil (n = 30) | 砂姜黑土 Lime concretion black soil (n = 30) | 褐土 Cinnamon soil (n = 30) | 5种土壤 Five type soils (n = 150) | |
NDVI | 0.789 | 0.655 | 0.079 | 0.145 | 0.630 | 0.379 |
MSAVI | 0.753 | 0.724 | 0.037 | 0.283 | 0.313 | 0.383 |
MCARI2 | 0.769 | 0.722 | -0.008 | 0.258 | 0.401 | 0.386 |
NDSI(i, j) | 0.854/NDSI(727, 932) | 0.852/NDSI(416, 429) | 0.788/NDSI(781, 783) | 0.701/NDSI(669, 676) | 0.679/NDSI(629, 636) | 0.561/NDSI(628, 636) |
REIP | 0.836 | 0.735 | 0.500 | 0.208 | 0.426 | 0.408 |
Dr | 0.714 | 0.732 | 0.016 | 0.375 | 0.186 | 0.340 |
SDr | 0.624 | 0.704 | -0.086 | 0.371 | 0.008 | 0.265 |
RES | -0.834 | -0.675 | -0.368 | -0.176 | -0.477 | -0.404 |
表4 光谱指数与不同土壤类型背景的冬小麦叶面积指数(LAI)相关性
Table 4 Correlations between spectral indices and winter wheat leaf area index (LAI) in different soil types
光谱指数 Spectral indices | 不同土壤类型区的冬小麦LAI/相关系数 Winter wheat LAI in different soil types/Correlation coefficient (r) | |||||
---|---|---|---|---|---|---|
水稻土 Paddy soil (n = 30) | 潮土 Fluvo-aquic soil (n = 30) | 棕壤 Brown soil (n = 30) | 砂姜黑土 Lime concretion black soil (n = 30) | 褐土 Cinnamon soil (n = 30) | 5种土壤 Five type soils (n = 150) | |
NDVI | 0.789 | 0.655 | 0.079 | 0.145 | 0.630 | 0.379 |
MSAVI | 0.753 | 0.724 | 0.037 | 0.283 | 0.313 | 0.383 |
MCARI2 | 0.769 | 0.722 | -0.008 | 0.258 | 0.401 | 0.386 |
NDSI(i, j) | 0.854/NDSI(727, 932) | 0.852/NDSI(416, 429) | 0.788/NDSI(781, 783) | 0.701/NDSI(669, 676) | 0.679/NDSI(629, 636) | 0.561/NDSI(628, 636) |
REIP | 0.836 | 0.735 | 0.500 | 0.208 | 0.426 | 0.408 |
Dr | 0.714 | 0.732 | 0.016 | 0.375 | 0.186 | 0.340 |
SDr | 0.624 | 0.704 | -0.086 | 0.371 | 0.008 | 0.265 |
RES | -0.834 | -0.675 | -0.368 | -0.176 | -0.477 | -0.404 |
土壤类型 Soil type | PLSR模型 PLSR models | 潜变量个数 Number of latent variables | 建模 Calibration | 交叉验证 Cross validation | |||
---|---|---|---|---|---|---|---|
R2 | RMSEC | R2 | RMSECV | RPDCV | |||
水稻土 Paddy soil (n = 30) | RES + NDSI | 2 | 0.733 | 0.489 | 0.684 | 0.533 | 1.805 |
潮土 Fluvo-aquic soil (n = 30) | RES + REIP + NDSI | 3 | 0.803 | 0.450 | 0.743 | 0.518 | 1.990 |
棕壤 Brown soil (n = 30) | REIP + Dr + SDr + NDSI | 4 | 0.837 | 0.617 | 0.771 | 0.735 | 2.118 |
砂姜黑土 Lime concretion black soil (n = 30) | REIP + NDSI | 2 | 0.579 | 0.649 | 0.490 | 0.721 | 1.412 |
褐土 Cinnamon soil (n = 30) | NDVI + NDSI | 1 | 0.466 | 0.887 | 0.385 | 0.954 | 1.295 |
5种土壤 Five type soils (n = 150) | RES + REIP + Dr + NDSI | 4 | 0.378 | 0.968 | 0.341 | 0.997 | 1.236 |
表5 优选的偏最小二乘回归(PLSR)模型估测冬小麦叶面积指数(LAI)结果
Table 5 Results of estimating winter wheat leaf area index (LAI) by optimal partial least squares regression (PLSR) models
土壤类型 Soil type | PLSR模型 PLSR models | 潜变量个数 Number of latent variables | 建模 Calibration | 交叉验证 Cross validation | |||
---|---|---|---|---|---|---|---|
R2 | RMSEC | R2 | RMSECV | RPDCV | |||
水稻土 Paddy soil (n = 30) | RES + NDSI | 2 | 0.733 | 0.489 | 0.684 | 0.533 | 1.805 |
潮土 Fluvo-aquic soil (n = 30) | RES + REIP + NDSI | 3 | 0.803 | 0.450 | 0.743 | 0.518 | 1.990 |
棕壤 Brown soil (n = 30) | REIP + Dr + SDr + NDSI | 4 | 0.837 | 0.617 | 0.771 | 0.735 | 2.118 |
砂姜黑土 Lime concretion black soil (n = 30) | REIP + NDSI | 2 | 0.579 | 0.649 | 0.490 | 0.721 | 1.412 |
褐土 Cinnamon soil (n = 30) | NDVI + NDSI | 1 | 0.466 | 0.887 | 0.385 | 0.954 | 1.295 |
5种土壤 Five type soils (n = 150) | RES + REIP + Dr + NDSI | 4 | 0.378 | 0.968 | 0.341 | 0.997 | 1.236 |
土壤类型 Soil type | 随机森林回归模型的优化参数 The optimized parameters in RFR | 模型精度 Model precision | ||||
---|---|---|---|---|---|---|
ntree | mtry | 变量解释 Variable explained (%) | R2 | RMSE | RPD | |
水稻土 Paddy soil (n = 30) | 1 000 | 2 | 60.08 | 0.604 | 0.598 | 1.609 |
潮土 Fluvo-aquic soil (n = 30) | 1 000 | 8 | 72.86 | 0.733 | 0.528 | 1.953 |
棕壤 Brown soil (n = 30) | 2 000 | 6 | 43.07 | 0.441 | 1.155 | 1.348 |
砂姜黑土 Lime concretion black soil (n = 30) | 1 000 | 6 | 48.65 | 0.488 | 0.717 | 1.420 |
褐土 Cinnamon soil (n = 30) | 1 000 | 3 | 24.58 | 0.258 | 1.054 | 1.172 |
5种土壤 Five type soils (n = 150) | 2 000 | 4 | 42.61 | 0.427 | 0.930 | 1.325 |
表6 优选的随机森林回归(RFR)模型估测冬小麦叶面积指数(LAI)结果
Table 6 Results of estimating winter wheat leaf area index (LAI) by optimal random forest regression (RFR) models
土壤类型 Soil type | 随机森林回归模型的优化参数 The optimized parameters in RFR | 模型精度 Model precision | ||||
---|---|---|---|---|---|---|
ntree | mtry | 变量解释 Variable explained (%) | R2 | RMSE | RPD | |
水稻土 Paddy soil (n = 30) | 1 000 | 2 | 60.08 | 0.604 | 0.598 | 1.609 |
潮土 Fluvo-aquic soil (n = 30) | 1 000 | 8 | 72.86 | 0.733 | 0.528 | 1.953 |
棕壤 Brown soil (n = 30) | 2 000 | 6 | 43.07 | 0.441 | 1.155 | 1.348 |
砂姜黑土 Lime concretion black soil (n = 30) | 1 000 | 6 | 48.65 | 0.488 | 0.717 | 1.420 |
褐土 Cinnamon soil (n = 30) | 1 000 | 3 | 24.58 | 0.258 | 1.054 | 1.172 |
5种土壤 Five type soils (n = 150) | 2 000 | 4 | 42.61 | 0.427 | 0.930 | 1.325 |
图5 不同组合的偏最小二乘回归模型估测叶面积指数(LAI)结果。NDVI、MSAVI、MCARI2、RES、REIP、Dr、SDr、NDSI同表2。RMSE, 均方根误差。
Fig. 5 Results of different groups of partial least squares regression model for estimating leaf area index (LAI). NDVI, MSAVI, MCARI2, RES, REIP, Dr, SDr, NDSI see Table 2. RMSE, root mean square error.
图6 优选的随机森林回归(RFR)模型中各变量的重要性。NDVI、MSAVI、MCARI2、RES、REIP、Dr、SDr、NDSI同表2。
Fig. 6 Variable importance values in optimal random forest regression (RFR) models. NDVI, MSAVI, MCARI2, RES, REIP, Dr, SDr, NDSI see Table 2.
图7 冬小麦叶面积指数(LAI)测量值与预测值的拟合精度。A, 水稻土。B, 潮土。C, 棕壤。D, 砂姜黑土。E, 褐土。F, 5种土壤类型。虚线为预测区间线。PLSR, 偏最小二乘回归; RFR, 随机森林回归; RMSE, 均方根误差; RPD, 相对分析误差。
Fig. 7 Measured vs. predicted leaf area index (LAI). A, Paddy soil. B, Fluvo-aquic soil. C, Brown soil. D, Lime concretion black soil. E, Cinnamon soil. F, Five soil types. Dash lines indicate the confidence intervals of prediction. PLSR, partial least squares regression; RFR, random forest regression; RMSE, root mean square error; RPD, relative percent deviation.
土壤类型 Soil type | 考虑土壤类型因素 Considering the soil background | 不考虑土壤类型因素 Neglecting the soil background | ||||||
---|---|---|---|---|---|---|---|---|
PLSR | RFR | PLSR | RFR | |||||
R2 | RMSECV | R2 | RMSE | R2 | RMSECV | R2 | RMSE | |
水稻土 Paddy soil | 0.684 | 0.533 | 0.604 | 0.598 | 0.529 | 0.689 | 0.722 | 0.553 |
潮土 Fluvo-aquic soil | 0.743 | 0.518 | 0.733 | 0.528 | 0.559 | 0.682 | 0.635 | 0.632 |
棕壤 Brown soil | 0.771 | 0.735 | 0.441 | 1.155 | 0.098 | 1.467 | 0.244 | 1.387 |
砂姜黑土 Lime concretion black soil | 0.490 | 0.721 | 0.488 | 0.717 | 0.173 | 0.953 | 0.413 | 0.768 |
褐土 Cinnamon soil | 0.385 | 0.954 | 0.258 | 1.054 | 0.349 | 0.986 | 0.287 | 1.052 |
表7 叶面积指数(LAI)估算精度
Table 7 Leaf area index (LAI) predicted accuracy
土壤类型 Soil type | 考虑土壤类型因素 Considering the soil background | 不考虑土壤类型因素 Neglecting the soil background | ||||||
---|---|---|---|---|---|---|---|---|
PLSR | RFR | PLSR | RFR | |||||
R2 | RMSECV | R2 | RMSE | R2 | RMSECV | R2 | RMSE | |
水稻土 Paddy soil | 0.684 | 0.533 | 0.604 | 0.598 | 0.529 | 0.689 | 0.722 | 0.553 |
潮土 Fluvo-aquic soil | 0.743 | 0.518 | 0.733 | 0.528 | 0.559 | 0.682 | 0.635 | 0.632 |
棕壤 Brown soil | 0.771 | 0.735 | 0.441 | 1.155 | 0.098 | 1.467 | 0.244 | 1.387 |
砂姜黑土 Lime concretion black soil | 0.490 | 0.721 | 0.488 | 0.717 | 0.173 | 0.953 | 0.413 | 0.768 |
褐土 Cinnamon soil | 0.385 | 0.954 | 0.258 | 1.054 | 0.349 | 0.986 | 0.287 | 1.052 |
图8 估算叶面积指数(LAI)与实测LAI的箱线图比较。PLSR, 偏最小二乘回归; RFR, 随机森林回归。RMSE, 均方根误差。箱线图从上到下依次表示一组数据的最大值、上四分位数、中位数、下四分位数和最小值。
Fig. 8 Comparison of measured leaf area index (LAI) and predicted LAI in box plots. PLSR, partial least squares regression; RFR, random forest regression. RMSE, root mean square error. From top to bottom, the box plot represents the maximum, upper quartile, median, lower quartile, and minimum of a set data, respectively.
1 | Abdi H (2003). Partial least square regression (PLS regression). In: Salkind N ed. Encyclopedia of Measurement and Statistics. Thousand Oaks, Sage, USA. |
2 |
Allen WA, Gausman HW, Richardson AJ (1973). Willst?tter- Stoll theory of leaf reflectance evaluated by ray tracing.Applied Optics, 12, 2448-2453.
DOI URL |
3 |
Atzberger C, Guérif M, Baret F, Werner W (2010). Comparative analysis of three chemometric techniques for the spectroradiometric assessment of canopy chlorophyll content in winter wheat. Computers and Electronics in Agriculture, 73, 165-173.
DOI URL |
4 |
Baret F, Guyot G (1991). Potentials and limits of vegetation indices for LAI and APAR assessment.Remote Sensing of Environment, 35, 161-173.
DOI URL |
5 |
Bausch WC (1993). Soil background effects on reflectance- based crop coefficients for corn.Remote Sensing of Environment, 46, 213-222.
DOI URL |
6 |
Bolton DK, Friedl MA (2013). Forecasting crop yield using remotely sensed vegetation indices and crop phenology metrics.Agricultural and Forest Meteorology, 173, 74-84.
DOI URL |
7 |
Breiman L (2001). Random forests.Machine Learning, 45, 5-32.
DOI URL |
8 |
Broge NH, Leblanc E (2001). Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density.Remote Sensing of Environment, 76, 156-172.
DOI URL |
9 |
Chen JM, Black TA (1992). Defining leaf area index for non-flat leaves. Plant, Cell & Environment, 15, 421-429.
DOI URL |
10 |
Cho MA, Skidmore A, Corsi F, van Wieren SE, Sobhan I (2007). Estimation of green grass/herb biomass from airborne hyperspectral imagery using spectral indices and partial least squares regression.International Journal of Applied Earth Observation and Geoinformation, 9, 414-424.
DOI URL |
11 |
Danson FM, Plummer SE (1995). Red-edge response to forest leaf area index.Remote Sensing, 16, 183-188.
DOI URL |
12 |
Delegido J, Verrelst J, Meza CM, Rivera JP, Alonso L, Moreno J (2013). A red-edge spectral index for remote sensing estimation of green LAI over agroecosystems.European Journal of Agronomy, 46, 42-52.
DOI URL |
13 | Darmawan A, Nadirah, Wibowo A, Evri M, Mulyono S, Nugroho AS, Sadly M, Hendiarti N, Kashimura O, Kobayashi C, Uchida A, Uraguchi A, Sekine H (2009). Quantitative analysis from unifying field and airborne hyperspectral in prediction biophysical parameters by using partial least square (PLSR) and Normalized Difference Spectral Index (NDSI). . Cited: 2017-9-1. |
14 | Elsayed S, Elhoweity M, Schmidhalter U (2015). Normalized difference spectral indices and partial least squares regression to assess the yield and yield components of peanut.Australian Journal of Crop Science, 9, 976. |
15 |
Fang HL, Liang SL, Hoogenboom G (2011). Integration of MODIS LAI and vegetation index products with the CSM-CERES-Maize model for corn yield estimation.International Journal of Remote Sensing, 32, 1039-1065.
DOI URL |
16 |
Farrar TJ, Nicholson SE, Lare AR (1994). The influence of soil type on the relationships between NDVI, rainfall, and soil moisture in semiarid Botswana. II. NDVI response to soil moisture.Remote Sensing of Environment, 50, 121-133.
DOI URL |
17 |
Feng W, Zhu Y, Yao X, Tian YC, Guo TC, Cao WX (2009). Monitoring nitrogen accumulation in wheat leaf with red edge characteristics parameters.Transaction of the Chinese Society of Agricultural Engineering, 25, 194-201.(in Chinese with English abstract) [冯伟, 朱艳, 姚霞, 田永超, 郭天财, 曹卫星 (2009). 利用红边特征参数监测小麦叶片氮素积累状况 . 农业工程学报,25, 194-201.]
DOI URL |
18 |
Filella I, Penuelas J (1994). The red edge position and shape as indicators of plant chlorophyll content, biomass and hydric status.International Journal of Remote Sensing, 15, 1459-1470.
DOI URL |
19 | Gao L, Yang GJ, Li CC, Feng HK, Xu B, Wang L, Dong JH, Fu K (2017). Application of an improved method in retrieving leaf area index combined spectral index with PLSR in hyperspectral data generated by unmanned aerial vehicle snapshot camera.Acta Agronomica Sinica, 43, 549-557.(in Chinese with English abstract) [高林, 杨贵军, 李长春, 冯海宽, 徐波, 王磊, 董锦绘, 付奎 (2017). 基于光谱特征与PLSR结合的叶面积指数拟合方法的无人机画幅高光谱遥感应用. 作物学报, 43, 549-557.] |
20 | Gausman HW, Allen WA, Myers V, Cardenas R (1969). Reflectance and internal structure of cotton leaves,Gossypium hirsutum L. Agronomy Journal, 61, 374-376. |
21 |
Haboudane D, Miller JR, Pattey E, Zarco-Tejada PJ, Strachan IB (2004). Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture.Remote Sensing of Environment, 90, 337-352.
DOI URL |
22 |
Hansen PM, Schjoerring JK (2003). Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression.Remote Sensing of Environment, 86, 542-553.
DOI URL |
23 |
Herrmann I, Pimstein A, Karnieli A, Cohen Y, Alchanatis V, Bonfil DJ (2011). LAI assessment of wheat and potato crops by VENμS and Sentinel-2 bands.Remote Sensing of Environment, 115, 2141-2151.
DOI URL |
24 |
Horler DNH, Dockray M, Barber J (1983). The red edge of plant leaf reflectance.International Journal of Remote Sensing, 4, 273-288.
DOI URL |
25 |
Huete AR (1988). A soil-adjusted vegetation index (SAVI).Remote Sensing of Environment, 25, 295-309.
DOI URL |
26 |
Huete AR, Jackson RD, Post DF (1985). Spectral response of a plant canopy with different soil backgrounds.Remote Sensing of Environment, 17, 37-53.
DOI URL |
27 |
Jasinski MF, Eagleson PS (1989). The structure of red-infrared scattergrams of semivegetated landscapes.IEEE Transactions on Geoscience and Remote Sensing, 27, 441-451.
DOI URL |
28 |
Ju CH, Tian YC, Yao X, Cao WX, Zhu Y, Hannaway D (2010). Estimating leaf chlorophyll content using red edge parameters.Pedosphere, 20, 633-644.
DOI URL |
29 |
Lee KS, Cohen WB, Kennedy RE, Maiersperger TK, Gower ST (2004). Hyperspectral versus multispectral data for estimating leaf area index in four different biomes.Remote Sensing of Environment, 91, 508-520.
DOI URL |
30 |
Li F, Mistele B, Hu Y, Chen X, Schmidhalter U (2013). Comparing hyperspectral index optimization algorithms to estimate aerial N uptake using multi-temporal winter wheat datasets from contrasting climatic and geographic zones in China and Germany.Agricultural and Forest Meteorology, 180, 44–57.
DOI URL |
31 |
Li H, Chen ZX, Jiang ZW, Wu WB, Ren JQ, Liu B, Tuya H (2017). Comparative analysis of GF-1, HJ-1, and Landsat-8 data for estimating the leaf area index of winter wheat.Journal of Integrative Agriculture, 16, 266-285.
DOI URL |
32 |
Li XC, Zhang YJ, Bao YS, Luo JH, Jin XL, Xu XG, Song XY, Yang GJ (2014). Exploring the best hyperspectral features for LAI estimation using partial least squares regression.Remote Sensing, 6, 6221-6241.
DOI URL |
33 |
Liu L, Zhang R, Zuo Z (2016). The relationship between soil moisture and LAI in different types of soil in central eastern China.Journal of Hydrometeorology, 17, 2733-2742.
DOI URL |
34 | McLachlan G (2004). Discriminant Analysis and Statistical Pattern Recognition. John Wiley & Sons, Hoboken. |
35 |
Myneni RB, Hall FB, Sellers PJ, Marshak AL (1995). The interpretation of spectral vegetation indices.IEEE Transactions on Geoscience and Remote Sensing, 33, 481-486.
DOI URL |
36 |
Nolet C, Poortinga A, Roosjen P, Bartholomeus H, Ruessink G (2014). Measuring and modeling the effect of surface moisture on the spectral reflectance of coastal beach sand.PLOS ONE, , 9, e112151. doi: 10.1371/journal.pone.0112151.
DOI URL |
37 |
Qi J, Chehbouni A, Huete AR, Kerr YH, Sorooshian S (1994). A modified soil adjusted vegetation index.Remote Sensing of Environment, 48, 119-126.
DOI URL |
38 |
Rondeaux G, Steven M, Baret F (1996). Optimization of soil-adjusted vegetation indices.Remote Sensing of Environment, 55, 95-107.
DOI URL |
39 |
Rossel RA, Webster R (2012). Predicting soil properties from the Australian soil visible-near infrared spectroscopic database.European Journal of Soil Science, 63, 848-860.
DOI URL |
40 | Rouse JW, Haas RH, Schell JA, Deering DW, Harlan JC (1974). Monitoring the vernal advancements and retrogradation of natural vegetation, NASA/GSFC, Type III, Final Report. . Cited: 2017-9-1. |
41 |
Sadeghi M, Jones SB, Philpot WD (2015). A linear physically- based model for remote sensing of soil moisture using short wave infrared bands.Remote Sensing of Environment, 164, 66-76.
DOI URL |
42 |
Schlemmer M, Gitelson A, Schepers J, Ferguson R, Peng Y, Shanahan J, Rundquist D (2013). Remote estimation of nitrogen and chlorophyll contents in maize at leaf and canopy levels.International Journal of Applied Earth Observation and Geoinformation, 25, 47-54.
DOI URL |
43 |
Siegmann B, Jarmer T (2015). Comparison of different regression models and validation techniques for the assessment of wheat leaf area index from hyperspectral data.International Journal of Remote Sensing, 36, 4519-4534.
DOI URL |
44 | Thenkabail PS, Lyon JG, Huete A (2012). Hyperspectral Remote Sensing of Vegetation. CRC Press, New York. |
45 | Todd SW, Hoffer RM (1998). Responses of spectral indices to variations in vegetation cover and soil background.Photogrammetric Engineering and Remote Sensing, 64, 915-922. |
46 |
Vi?a A, Gitelson AA, Nguy-Robertson AL, Peng Y (2011). Comparison of different vegetation indices for the remote assessment of green leaf area index of crops.Remote Sensing of Environment, 115, 3468-3478.
DOI URL |
47 |
Vogelmann JE, Rock BN, Moss DM (1993). Red edge spectral measurements from sugar maple leaves.International Journal of Remote Sensing, 14, 1563-1575.
DOI URL |
48 |
Wang FM, Huang JF, Lou ZH (2011). A comparison of three methods for estimating leaf area index of paddy rice from optimal hyperspectral bands.Precision Agriculture, 12, 439-447.
DOI URL |
49 | Wang HW, Wu ZB, Meng J (2006). Partial Least Squares Regression-Linear and Nonlinear Methods. National Defense Industry Press, Beijing.(in Chinese) [王惠文, 吴载斌, 孟洁 (2006). 偏最小二乘回归的线性与非线性方法. 国防工业出版社, 北京.] |
50 |
Wold S, Sj?str?m M, Eriksson L (2001). PLS-regression: A basic tool of chemometrics.Chemometrics and Intelligent Laboratory Systems, 58, 109-130.
DOI URL |
51 |
Woolley JT (1971). Reflectance and transmittance of light by leaves.Plant Physiology, 47, 656-662.
DOI URL PMID |
52 | Xu XR (2005). Physics of Remote Sensing. Peking University Press, Beijing.(in Chinese) [徐希孺 (2005). 遥感物理. 北京大学出版社, 北京.] |
53 | Yeniay O, Goktas A (2002). A comparison of partial least squares regression with other prediction methods.Hacettepe Journal of Mathematics and Statistics, 31, 99-101. |
54 |
Yuan HH, Yang GJ, Li CC, Wang YJ, Liu JG, Yu HY, Feng HK, Xu B, Zhao XQ, Yang XD (2017). Retrieving soybean leaf area index from unmanned aerial vehicle hyperspectral remote sensing: Analysis of RF, ANN, and SVM regression models.Remote Sensing, 9, 309. doi: 10.3390/rs9040309.
DOI URL |
55 |
Yu K, Lenz-Wiedemann V, Chen X, Bareth G (2014). Estimating leaf chlorophyll of barley at different growth stages using spectral indices to reduce soil background and canopy structure effects.ISPRS Journal of Photogrammetry and Remote Sensing, 97, 58-77.
DOI URL |
56 |
Zhao CJ, Wang ZJ, Wang JH, Huang WJ (2012). Relationships of leaf nitrogen concentration and canopy nitrogen density with spectral features parameters and narrow-band spectral indices calculated from field winter wheat (Triticum aestivum L.) spectra. International Journal of Remote Sensing, 33, 3472-3491.
DOI |
[1] | 郝晴, 黄昌. 森林地上生物量遥感估算研究综述[J]. 植物生态学报, 2023, 47(10): 1356-1374. |
[2] | 丛楠, 张扬建, 朱军涛. 北半球中高纬度地区近30年植被春季物候温度敏感性[J]. 植物生态学报, 2022, 46(2): 125-135. |
[3] | 姜艳, 陈兴芳, 杨旭杰. 基于Landsat影像的武汉东湖30年来水生植物动态变化[J]. 植物生态学报, 2022, 46(12): 1551-1561. |
[4] | 田佳玉, 王彬, 张志明, 林露湘. 光谱多样性在植物多样性监测与评估中的应用[J]. 植物生态学报, 2022, 46(10): 1129-1150. |
[5] | 严正兵, 刘树文, 吴锦. 高光谱遥感技术在植物功能性状监测中的应用与展望[J]. 植物生态学报, 2022, 46(10): 1151-1166. |
[6] | 赵晏平, 王忠武, 温都日根, 赵玉金, 白永飞. 基于Sentinel-2数据的草地植物功能多样性遥感反演及其与生产力的关系[J]. 植物生态学报, 2022, 46(10): 1234-1250. |
[7] | 周楷玲, 赵玉金, 白永飞. 基于Sentinel-2A数据的东北森林植物多样性监测方法研究[J]. 植物生态学报, 2022, 46(10): 1251-1267. |
[8] | 陈哲, 汪浩, 王金洲, 石慧瑾, 刘慧颖, 贺金生. 基于物候相机归一化植被指数估算高寒草地植物地上生物量的季节动态[J]. 植物生态学报, 2021, 45(5): 487-495. |
[9] | 郭庆华, 胡天宇, 马勤, 徐可心, 杨秋丽, 孙千惠, 李玉美, 苏艳军. 新一代遥感技术助力生态系统生态学研究[J]. 植物生态学报, 2020, 44(4): 418-435. |
[10] | 张富广, 曾彪, 杨太保. 气候变化背景下近30年祁连山高寒荒漠分布时空变化[J]. 植物生态学报, 2019, 43(4): 305-319. |
[11] | 张峰,周广胜. 植被含水量高光谱遥感监测研究进展[J]. 植物生态学报, 2018, 42(5): 517-525. |
[12] | 刘畅, 孙鹏森, 刘世荣. 水分敏感的反射光谱指数比较研究——以锐齿槲栎为例[J]. 植物生态学报, 2017, 41(8): 850-861. |
[13] | 王克清, 王鹤松, 孙建新. 遥感GPP模型在中国地区多站点的应用与比较[J]. 植物生态学报, 2017, 41(3): 337-347. |
[14] | 刘涛宇, 赵霞, 沈海花, 胡会峰, 黄文江, 方精云. 灌丛化草原灌木和草本植物光谱特征差异及灌木盖度反演——以内蒙古镶黄旗为例[J]. 植物生态学报, 2016, 40(10): 969-979. |
[15] | 马勇刚, 张弛, 陈曦. 利用遥感数据优化物候模型时样本选择的新方法[J]. 植物生态学报, 2015, 39(3): 264-274. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19