植物生态学报 ›› 2011, Vol. 35 ›› Issue (2): 125-136.DOI: 10.3724/SP.J.1258.2011.00125
涂利华1, 胡庭兴1,*(), 张健1, 李仁洪2, 戴洪忠1, 雒守华1
收稿日期:
2009-12-22
接受日期:
2010-11-16
出版日期:
2011-12-22
发布日期:
2011-01-21
通讯作者:
胡庭兴
作者简介:
*E-mail:hutx001@yahoo.com.cn
TU Li-Hua1, HU Ting-Xing1,*(), ZHANG Jian1, LI Ren-Hong2, DAI Hong-Zhong1, LUO Shou-Hua1
Received:
2009-12-22
Accepted:
2010-11-16
Online:
2011-12-22
Published:
2011-01-21
Contact:
HU Ting-Xing
摘要:
从2007年11月至2009年10月, 对华西雨屏区苦竹(Pleioblastus amarus)人工林进行了模拟氮(N)沉降试验, N沉降水平分别为对照(CK, 0 g N·m-2·a-1)、低N (5 g N·m-2·a-1)、中N (15 g N·m-2·a-1)和高N (30 g N·m-2·a-1)。在N沉降进行1年后, 每月采集各样方0-20 cm的土壤样品, 连续采集12个月, 测定其土壤总有机C、微生物生物量C、浸提性溶解有机C、活性C、全N、微生物生物量N、NH4+-N、NO3--N、有效P和速效K。结果表明: N沉降显著增加了土壤总有机C、微生物生物量C、全N、微生物生物量N、NH4+-N和有效P含量, 对其余几个指标无显著影响。土壤微生物生物量C和微生物生物量N的季节变化明显, 并与气温极显著正相关。土壤有效P、速效K与微生物生物量C、微生物生物量N呈极显著负相关关系。N沉降提高了土壤中C、N、P元素的活性, 并通过微生物的转化固定作用使得C、N、P元素在土壤中的含量增加。苦竹林生态系统处于N限制状态, 土壤有机C和养分对N沉降呈正响应, N沉降的增加可能会提高土壤肥力并促进植被的生长, 进而促进生态系统对C的固定。
涂利华, 胡庭兴, 张健, 李仁洪, 戴洪忠, 雒守华. 模拟氮沉降对华西雨屏区苦竹林土壤有机碳和养分的影响. 植物生态学报, 2011, 35(2): 125-136. DOI: 10.3724/SP.J.1258.2011.00125
TU Li-Hua, HU Ting-Xing, ZHANG Jian, LI Ren-Hong, DAI Hong-Zhong, LUO Shou-Hua. Response of soil organic carbon and nutrients to simulated nitrogen deposition in Pleioblastus amarus plantation, Rainy Area of West China. Chinese Journal of Plant Ecology, 2011, 35(2): 125-136. DOI: 10.3724/SP.J.1258.2011.00125
图1 华西雨屏区苦竹林气温(T)、降水量(P)和凋落量的季节变化(2007年11月至2009年10月)。LL, 凋落叶; SL, 凋落箨; TL, 凋落枝。
Fig. 1 Seasonal variations of air temperature (T), precipita- tion (P) and litterfall in Pleioblastus amarus plantation in Rainy Area of West China from November 2007 to October 2009. LL, leaf litter; SL, sheath litter; TL, twig litter.
图2 N沉降对华西雨屏区苦竹林土壤总有机碳(TOC)、微生物生物量碳(MBC)、可浸提溶解性有机碳(EDOC)、活性碳(LC)的影响(平均值±标准误差, n = 3)。CK, 对照(0 g N·m-2·a-1); LN, 低N (5 g N·m-2·a-1); MN, 中N (15 g N·m-2·a-1); HN, 高N (30 g N·m-2·a-1)。不同字母表示处理之间差异显著(p < 0.05)。
Fig. 2 Effects of N deposition on soil total organic carbon (TOC), microbial biomass carbon (MBC), extractable dissolved organic carbon (EDOC) and labile carbon (LC) in Pleioblastus amarus plantation in Rainy Area of West China (mean ± SE, n = 3). CK, control (0 g N·m-2·a-1); LN, low-N (5 g N·m-2·a-1); MN, medium-N (15 g N·m-2·a-1); HN, high-N (30 g N·m-2·a-1). Different letters indicate significant difference between treatments at p < 0.05.
处理 Treatment | TOC (mg·g-1) | MBC (mg·g-1) | EDOC (mg·g-1) | LC (mg·g-1) | TN (mg·g-1) | MBN (mg·g-1) | NH4+-N (mg·kg-1) | NO3--N (mg·kg-1) | AP (mg·kg-1) | AK (mg·kg-1) |
---|---|---|---|---|---|---|---|---|---|---|
CK | 9.51 ± 0.15a | 0.19 ± 0.01a | 0.13 ± 0.01a | 0.35 ± 0.01a | 0.79 ± 0.01a | 0.024 ± 0.001a | 18.13 ± 0.35a | 1.70 ± 0.25a | 5.57 ± 0.07a | 53.03 ± 2.12a |
LN | 9.82 ± 0.07b | 0.22 ± 0.01a | 0.12 ± 0.00a | 0.35 ± 0.00a | 0.82 ± 0.01bc | 0.027 ± 0.001ab | 18.56 ± 0.52a | 1.63 ± 0.09a | 9.46 ± 0.56c | 55.47 ± 0.73a |
MN | 9.42 ± 0.11c | 0.21 ± 0.01a | 0.13 ± 0.00a | 0.33 ± 0.01b | 0.80 ± 0.01ab | 0.028 ± 0.001b | 19.54 ± 0.74a | 1.54 ± 0.17a | 7.45 ± 0.31b | 53.29 ± 1.69a |
HN | 9.76 ± 0.07b | 0.26 ± 0.02b | 0.13 ± 0.00a | 0.35 ± 0.01a | 0.84 ± 0.02c | 0.031 ± 0.002c | 21.77 ± 1.64b | 1.64 ± 0.15a | 9.77 ± 0.90c | 53.86 ± 1.93a |
月 Month | p < 0.000 1 | p < 0.000 1 | p < 0.000 1 | p < 0.000 1 | p < 0.000 1 | p < 0.000 1 | p < 0.000 1 | p < 0.000 1 | p < 0.000 1 | p < 0.0001 |
月× N处理Month × N treatment | p = 0.131 | p = 0.08 | p < 0.000 1 | p < 0.000 1 | p = 0.008 | p = 0.295 | p = 0.480 | p = 0.547 | p < 0.000 1 | p = 0.063 |
N处理 N treatment | p = 0.004 | p < 0.000 1 | p = 0.854 | p = 0.032 | p = 0.008 | p < 0.002 | p = 0.007 | p = 0.749 | p < 0.000 1 | p = 0.357 |
表1 各指标重复测量方差分析的结果
Table 1 Results of repeated measures ANOVA of each indicator
处理 Treatment | TOC (mg·g-1) | MBC (mg·g-1) | EDOC (mg·g-1) | LC (mg·g-1) | TN (mg·g-1) | MBN (mg·g-1) | NH4+-N (mg·kg-1) | NO3--N (mg·kg-1) | AP (mg·kg-1) | AK (mg·kg-1) |
---|---|---|---|---|---|---|---|---|---|---|
CK | 9.51 ± 0.15a | 0.19 ± 0.01a | 0.13 ± 0.01a | 0.35 ± 0.01a | 0.79 ± 0.01a | 0.024 ± 0.001a | 18.13 ± 0.35a | 1.70 ± 0.25a | 5.57 ± 0.07a | 53.03 ± 2.12a |
LN | 9.82 ± 0.07b | 0.22 ± 0.01a | 0.12 ± 0.00a | 0.35 ± 0.00a | 0.82 ± 0.01bc | 0.027 ± 0.001ab | 18.56 ± 0.52a | 1.63 ± 0.09a | 9.46 ± 0.56c | 55.47 ± 0.73a |
MN | 9.42 ± 0.11c | 0.21 ± 0.01a | 0.13 ± 0.00a | 0.33 ± 0.01b | 0.80 ± 0.01ab | 0.028 ± 0.001b | 19.54 ± 0.74a | 1.54 ± 0.17a | 7.45 ± 0.31b | 53.29 ± 1.69a |
HN | 9.76 ± 0.07b | 0.26 ± 0.02b | 0.13 ± 0.00a | 0.35 ± 0.01a | 0.84 ± 0.02c | 0.031 ± 0.002c | 21.77 ± 1.64b | 1.64 ± 0.15a | 9.77 ± 0.90c | 53.86 ± 1.93a |
月 Month | p < 0.000 1 | p < 0.000 1 | p < 0.000 1 | p < 0.000 1 | p < 0.000 1 | p < 0.000 1 | p < 0.000 1 | p < 0.000 1 | p < 0.000 1 | p < 0.0001 |
月× N处理Month × N treatment | p = 0.131 | p = 0.08 | p < 0.000 1 | p < 0.000 1 | p = 0.008 | p = 0.295 | p = 0.480 | p = 0.547 | p < 0.000 1 | p = 0.063 |
N处理 N treatment | p = 0.004 | p < 0.000 1 | p = 0.854 | p = 0.032 | p = 0.008 | p < 0.002 | p = 0.007 | p = 0.749 | p < 0.000 1 | p = 0.357 |
图3 N沉降对华西雨屏区苦竹林土壤总氮(TN)、微生物生物量氮(MBN)、铵态氮(NH4+-N)、硝态氮(NO3--N)的影响(平均值±标准误差, n = 3)。CK, 对照(0 g N·m-2·a-1); LN, 低N (5 g N·m-2·a-1); MN, 中N (15 g N·m-2·a-1); HN, 高N (30 g N·m-2·a-1)。不同字母表示处理之间差异显著(p < 0.05)。
Fig. 3 Effects of N deposition on soil total nitrogen (TN), microbial biomass nitrogen (MBN), NH4+-N and NO3--N in Pleioblastus amarus plantation in Rainy Area of West China (mean ± SE, n = 3). CK, control (0 g N·m-2·a-1); LN, low-N (5 g N·m-2·a-1); MN, Medium-N (15 g N·m-2·a-1); HN, high-N (30 g N·m-2·a-1). Different letters indicate significant difference between treatments at p < 0.05.
TOC | MBC | EDOC | LC | TN | MBN | NH4+-N | NO3--N | AP | |
---|---|---|---|---|---|---|---|---|---|
MBC | 0.24** | ||||||||
EDOC | 0.29** | ||||||||
LC | 0.27** | 0.28** | |||||||
TN | 0.19* | ||||||||
MBN | 0.26** | 0.88** | 0.25** | 0.25** | |||||
NH4+-N | 0.23** | 0.32** | 0.58** | -0.22** | 0.32** | ||||
NO3--N | 0.51** | 0.36** | 0.70** | 0.49** | 0.27** | ||||
AP | -0.27** | -0.55** | 0.40** | -0.69** | -0.38** | ||||
AK | -0.48** | -0.69** | -0.32** | 0.21* | -0.78** | 0.52** | -0.33** | 0.77** |
表2 土壤有机碳和养分含量相关分析的结果
Table 2 Results of correlation analysis of soil organic carbon and nutrient contents
TOC | MBC | EDOC | LC | TN | MBN | NH4+-N | NO3--N | AP | |
---|---|---|---|---|---|---|---|---|---|
MBC | 0.24** | ||||||||
EDOC | 0.29** | ||||||||
LC | 0.27** | 0.28** | |||||||
TN | 0.19* | ||||||||
MBN | 0.26** | 0.88** | 0.25** | 0.25** | |||||
NH4+-N | 0.23** | 0.32** | 0.58** | -0.22** | 0.32** | ||||
NO3--N | 0.51** | 0.36** | 0.70** | 0.49** | 0.27** | ||||
AP | -0.27** | -0.55** | 0.40** | -0.69** | -0.38** | ||||
AK | -0.48** | -0.69** | -0.32** | 0.21* | -0.78** | 0.52** | -0.33** | 0.77** |
图5 N沉降对华西雨屏区苦竹林土壤有效磷(AP)和速效钾(AK)的影响(平均值±标准误差, n = 3)。CK, 对照(0 g N·m-2·a-1); LN, 低N (5 g N·m-2·a-1); MN, 中N (15 g N·m-2·a-1); HN, 高N (30 g N·m-2·a-1)。不同字母表示处理之间差异显著(p < 0.05)。
Fig. 5 Effects of N deposition on soil available P (AP) and available K (AK) in Pleioblastus amarus plantation in Rainy Area of West China (mean ± SE, n = 3). CK, control (0 g N·m-2·a-1); LN, low-N (5 g N·m-2·a-1); MN, medium-N (15 g N·m-2·a-1); HN, high-N (30 g N·m-2·a-1). Different letters indicate significant difference between treatments at p < 0.05.
图6 微生物生物量碳(MBC)、微生物生物量氮(MBN)与有效磷(AP)、速效钾(AK)之间的关系。图中数据为所有处理的集合(n = 144)。
Fig. 6 Relationships between microbial biomass carbon (MBC), microbial biomass nitrogen (MBN) and available phosphorus (AP), available potassium (AK). Values in the figure are combinations of all treatments (n = 144).
[1] | Aber J, McDowell W, Nadelhoffer K, Magill A, Berntson G, Kamakea M, McNulty S, Currie W, Rustad L, Fernandez I (1998). Nitrogen saturation in temperate forest ecosys- tems. BioScience, 48, 921-934. |
[2] |
Bedison JE, McNeil BE (2009). Is the growth of temperate forest trees enhanced along an ambient nitrogen deposition gradient? Ecology, 90, 1736-1742.
DOI URL PMID |
[3] | Biederbeck VO, Janzen HH, Campbell CA, Zentner RP (1994). Labile soil organic matter as influenced by cropping practices in an arid environment. Soil Biology and Biochemistry, 26, 1647-1656. |
[4] | Blair GJ, Lefroy RDB, Lisle L (1995). Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems. Australian Journal of Agricultural Research, 46, 1459-1466. |
[5] | Boddy E, Hill PW, Farrar J, Jones DL (2007). Fast turnover of low molecular weight components of the dissolved organic carbon pool of temperate grassland field soils. Soil Biology and Biochemistry, 39, 827-835. |
[6] | Bowden RD, Davidson E, Savage K, Arabia C, Steudler P (2004). Chronic nitrogen additions reduce total soil respiration and microbial respiration in temperate forest soils at the Harvard Forest. Forest Ecology and Management, 196, 43-56. |
[7] | Cardon ZG, Hungate BA, Cambardella CA, Chapin FS III, Field CB, Holland EA, Mooney HA (2001). Contrasting effects of elevated CO2 on old and new soil carbon pools. Soil Biology and Biochemistry, 33, 365-373. |
[8] | Cosmas M (2009). Determination of the soil organic carbon, nitrogen, available phosphorus and the combined aboveground plant materials in the semi-arid Mbulu District, Tanzania. African Journal of Ecology, 47, 352-359. |
[9] |
Cusack DF, Silver WL, Torn MS, McDowell WH (2010). Effects of nitrogen additions on above- and belowground carbon dynamics in two tropical forests. Biogeochemistry, doi: 10.1007/s10533-010-9496-4.
DOI URL PMID |
[10] | Deng RJ (邓仁菊), Yang WQ (杨万勤), Hu JL (胡建利), Feng RF (冯瑞芳) (2009). Dynamics on soil available nitrogen in organic layer and its responses to carbon and nitrogen supply in two subalpine coniferous forests of western Sichuan. Acta Ecologica Sinica (生态学报), 29, 2716-2724. (in Chinese with English abstract) |
[11] | de Vries W, Solberg S, Dobbertin M, Sterba H, Laubhann D, van Oijen M, Evans C, Gundersen P, Kros J, Wamelink GWW, Reinds GJ, Sutton MA (2009). The impact of nitrogen deposition on carbon sequestration by European forests and heathlands. Forest Ecology and Management, 258, 1814-1823. |
[12] |
Dixon RK, Brown S, Houghton RA, Solomon AM, Trexler MC, Wisniewski J (1994). Carbon pools and flux of global forest ecosystems. Science, 263, 185-190.
DOI URL PMID |
[13] | Dou JX (窦晶鑫), Liu JS (刘景双), Wang Y (王洋), Zhao GY (赵光影) (2008). Effects of simulated nitrogen deposition on biomass of wetland plant and soil active carbon pool. Chinese Journal of Applied Ecology (应用生态学报), 19, 1714-1720. (in Chinese with English abstract) |
[14] | Fang YT (方运霆), Mo JM (莫江明), Gunderson P, Zhou GY (周国逸), Li DJ (李德军) (2004). Nitrogen transforma- tions in forest soils and its responses to atmospheric nitrogen deposition: a review. Acta Ecologica Sinica (生态学报), 24, 1523-1531. (in Chinese with English abstract) |
[15] | Findlay SEG (2005). Increased carbon transport in the Hudson River: Unexpected consequence of nitrogen deposition? Frontiers in Ecology Environment, 3, 133-137. |
[16] | Frey SD, Knorr M, Parrent JL, Simpson RT (2004). Chronic nitrogen enrichment affects the structure and function of the soil microbial community in temperate hardwood and pine forests. Forest Ecology Management, 196, 159-171. |
[17] | Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner GP, Cleveland CC, Green PA, Holland EA, Karl DM, Michaels AF, Porter JH, Townsend AR, Vörösmarty CJ (2004). Nitrogen cycles: past, present, and future. Biogeochemistry, 70, 153-226. |
[18] | Gavrichkova O, Kuzyakov Y (2008). Ammonium versus nitrate nutrition of Zea mays and Lupinus albus: effect on root-derived CO2 efflux. Soil Biology and Biochemistry, 40, 2835-2842. |
[19] | Gu F, Zhang Y, Tao B, Wang Q, Yu G, Zhang L, Li K (2010). Modeling the effects of nitrogen deposition on carbon budget in two temperate forests. Ecological Complexity, doi: 10.1016/j.ecocom.2010.04.002. |
[20] | Haynes RJ (2000). Labile organic matter as an indicator of organic matter quality in arable and pastoral soil in New Zealand. Soil Biology and Biochemistry, 32, 211-219. |
[21] |
Hobbie SE (2008). Nitrogen effects on decomposition: a five-year experiment in eight temperate sites. Ecology, 89, 2633-2644.
DOI URL PMID |
[22] |
Högberg P (2007). Nitrogen impacts on forest carbon. Nature, 447, 781-782.
DOI URL PMID |
[23] | Högberg P, Read DJ (2006). Towards a more plant physiological perspective on soil ecology. Trends in Ecology and Evolusiton, 21, 548-554. |
[24] | Howarth RW, Billen G, Swaney D, Townsend A, Jaworski N, Lajtha K, Downing JA, Elmgren R, Caraco N, Jordan T, Berendse F, Freney J, Kudeyarov V, Murdoch P, Zhu ZL (1996). Regional nitrogen budgets and riverine N & P fluxes for the drainages to the North Atlantic Ocean: natural and human influences. Biogeochemistry, 35, 75-139. |
[25] | Hyvönen R, Persson T, Andersson S, Olsson B, Ågren GI, Linder S (2008). Impact of long-term nitrogen addition on carbon stocks in trees and soils in northern Europe. Biogeochemistry, 89, 121-137. |
[26] | Jarecki MK, Lal R (2003). Crop management for soil carbon sequestration. Critical Reviews in Plant Sciences, 22, 471-502. |
[27] | Johnson D, Leake JR, Lee JA, Campbellb CD (1998). Changes in soil microbial biomass and microbial activities in response to 7 years simulated pollutant nitrogen deposition on a heathland and two grasslands. Environmental Pollution, 103, 239-250. |
[28] | Keeler BL, Hobbie SE, Kellogg LE (2009). Effects of long-term nitrogen addition on microbial enzyme activity in eight forested and grassland sites: implications for litter and soil organic matter decomposition. Ecosystems, 12, 1-15. |
[29] |
Knorr W, Prentice IC, House JI, Holland EA (2005). Long-term sensitivity of soil carbon turnover to warming. Nature, 433, 298-301.
DOI URL PMID |
[30] | Lal R (2005). Forest soils and carbon sequestration. Forest Ecology and Management, 220, 242-258. |
[31] | Lee KH, Jose S (2003). Soil respiration, fine root production, and microbial biomass in cottonwood and loblolly pine plantations along a nitrogen fertilization gradient. Forest Ecology and Management, 185, 263-273. |
[32] | Li GC (李贵才), Han XG (韩兴国), Huang JH (黄建辉) (2001). Dry-season dynamics of soil inorganic nitrogen pools in primary Lithocarpus xylocarpus forest and degraded vegetations in Ailao Mountain, Yunnan Province. Acta Phytoecologica Sinica (植物生态学报), 25, 210-217. (in Chinese with English abstract) |
[33] | Liang BC, MacKenzie AF, Schnitzer M, Monreal CM, Voroney PR, Beyaert RP (1998). Management-induced change in labile soil organic matter under continuous corn in eastern Canadian soils. Biology and Fertility of Soils, 26, 88-94. |
[34] | Lü DQ (吕殿青), Zhang SL (张树兰), Yang XY (杨学云) (2007). Effect of supplying C and N on the mineralization, immobilization and priming effect of soil nitrogen. Plant Nutrition and Fertilizer Science (植物营养与肥料学报), 13, 223-229. (in Chinese with English abstract) |
[35] | Magill AH, Aber JD, Currie WS, Nadelhoffer KJ, Martin ME, McDowell WH, Melillo JM, Steudler P (2004). Ecosystem response to 15 years of chronic nitrogen additions at the Harvard Forest LTER, Massachusetts, USA. Forest Ecology and Management, 196, 7-28. |
[36] |
Magnani F, Mencuccini M, Borghetti M, Berbigier P, Berninger F, Delzon S, Grelle A, Hari P, Jarvis PG, Kolari P, Kowalski AS, Lankreijer H, Law BE, Lindroth A, Loustau D, Manca G, Moncrieff JB, Rayment M, Tedeschi V, Valentini R, Grace J (2007). The human footprint in the carbon cycle of temperate and boreal forests. Nature, 447, 848-850.
DOI URL PMID |
[37] | McLauchlan K (2006). The nature and longevity of agricultural impacts on soil carbon and nutrients: a review. Ecosystems, 9, 1364-1382. |
[38] | Meng Y (孟盈), Xue JY (薛敬意), Sha LQ (沙丽清), Tang JW (唐建维) (2001). Variations of soil NHNH4+-N, NO3--N and N mineralization under different forests in Xishuang- banna, Southwest China. Acta Phytoecologica Sinica (植物生态学报), 25, 99-104. (in Chinese with English abstract) |
[39] | Mo J, Zhang W, Zhu W, Gundersen P, Fang Y, Li D, Wang H (2007). Nitrogen addition reduces soil respiration in a mature tropical forest in southern China. Global Change Biology, 14, 1-10. |
[40] | Nadelhoffer KJ, Emmett BA, Gundersen P, Kjønaas OJ, Koopmans CJ, Schleppi P, Tietema A, Wright RF (1999). Nitrogen deposition makes a minor contribution to carbon sequestration in temperate forests. Nature, 398, 145-148. |
[41] |
Neff JC, Townsend AR, Gleixner G, Lehman SJ, Turnbull J, Bowman WD (2002). Variable effects of nitrogen additions on the stability and turnover of soil carbon. Nature, 419, 915-917.
DOI URL PMID |
[42] |
Nowinski NS, Trumbore SE, Schuur EAG, Mack MC, Shaver GR (2008). Nutrient addition prompts rapid destabilization of organic matter in an arctic tundra ecosystem. Ecosystems, 11, 16-25.
DOI URL |
[43] | Pregitzer KS, Burton AJ, Zak DR, Talhelm AF (2008). Simulated chronic nitrogen deposition increases carbon storage in Northern Temperate forests. Global Change Biology, 14, 142-153. |
[44] | Rustad LE, Fernandez IJ, Fuller RD, David MB, Nodvin SC, Halteman WA (1993). Soil solution response to acidic deposition in a northern hardwood forest. Agriculture, Ecosystems and Environment, 47, 117-134. |
[45] | Samuelson L, Mathew R, Stokes T, Feng Y, Aubrey D, Coleman M (2009). Soil and microbial respiration in a loblolly pine plantation in response to seven years of irrigation and fertilization. Forest Ecology and Management, 258, 2431-2438. |
[46] | Stark JM, Hart SC (1997). High rates of nitrification and nitrate turnover in undisturbed coniferous forests. Nature, 385, 61-64. |
[47] | Su B (苏波), Han XG (韩兴国), Qu CM (渠春梅), Li GC (李贵才) (2002). Factors affecting soil N availability in forest ecosystems: a literature review. Chinese Journal of Ecology (生态学杂志), 21, 40-46. (in Chinese with English abstract) |
[48] | Swanston C, Homann PS, Caldwell BA, Myrold DD, Ganio L, Sollins P (2004). Long-term effects of elevated nitrogen on forest soil organic matter stability. Biogeochemistry, 70, 227-250. |
[49] | Tamm CO (1991). Nitrogen in Terrestrial Ecosystems. Springer-Verlag, (London.) |
[50] |
Tietema A (1998). Microbial carbon and nitrogen dynamics in coniferous forest floor material collected along a European nitrogen deposition gradient. Forest Ecology and Management, 101, 29-36.
DOI URL |
[51] |
Tu L, Hu T, Zhang J, Li R, Dai H, Luo S (2010). Short-term simulated nitrogen deposition increases carbon sequestra- tion in a Pleioblastus amarus plantation. Plant and Soil, doi: 10.1007/s11104-010-0610-0.
DOI URL PMID |
[52] | Tu LH (涂利华), Hu TX (胡庭兴), Huang LH (黄立华), Li RH (李仁洪), Dai HZ (戴洪忠), Luo SH (雒守华), Xiang YB (向元彬) (2009a). Response of soil respiration to simulated nitrogen deposition in Pleioblastus amarus forest, Rainy Area of West China. Chinese Journal of Plant Ecology (植物生态学报), 33, 728-738. (in Chinese with English abstract) |
[53] | Tu LH (涂利华), Hu TX (胡庭兴), Zhang J (张健), He YY (何远洋), Tian XY (田祥宇), Xiao YL (肖银龙) (2010). Effects of simulated nitrogen deposition on the fine root characteristics and soil respiration in a Pleioblastus amarus plantation in Rainy Area of West China. Chinese Journal of Applied Ecology (应用生态学报), 21, 2472-2478. (in Chinese with English abstract) |
[54] | Tu LH (涂利华), Hu TX (胡庭兴), Zhang J (张健), Li RH (李仁洪), Dai HZ (戴洪忠), Luo SH (雒守华), Xiang YB (向元彬), Huang LH (黄立华) (2009b). Soil enzyme activities in a Pleioblastus amarus plantation in Rainy Area of West China under simulated nitrogen deposition. Chinese Journal of Applied Ecology (应用生态学报), 20, 2943-2948. (in Chinese with English abstract) |
[55] |
van Grogenigen KJ, Six J, Hungate BA, de Graaff MA, van Breemen N, van Kessel (2006). Element interactions limit soil carbon storage. Proceedings of the National Academy of Sciences of the United States of America, 103, 6571-6574.
DOI URL PMID |
[56] | Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PA, Schindler DW, Schlesinger WH, Tilman DG (1997). Human alteration of the global nitrogen cycle: sources and consequences. Ecological Applications, 7, 737-750. |
[57] | Wallenstein MD, McNulty S, Fernandez IJ, Boggs J, Schlesinger WH (2006). Nitrogen fertilization decreases forest soil fungal and bacterial biomass in three long-term experiments. Forest Ecology and Management, 222, 459-468. |
[58] | Xiao HL (肖辉林) (2001). Effects of atmospheric nitrogen deposition on forest soil acidification. Scientia Silvae Sinicae (林业科学), 37(4), 111-116. (in Chinese with English abstract) |
[59] | Xu QF (徐秋芳), Jiang PK (姜培坤), Shen Q (沈泉) (2005). Comparison of organic carbon pool of soil in bush and broad-leaved forests. Journal of Beijing Forestry University (北京林业大学学报), 27(2), 18-22. (in Chinese with English abstract) |
[60] | Yang WQ (杨万勤), Wang KY (王开运) (2004). Advances in forest soil enzymology. Scientia Silvae Sinicae (林业科学), 40(2), 152-159. (in Chinese with English abstract) |
[1] | 张文瑾 佘维维 秦树高 乔艳桂 张宇清. 氮和水分添加对黑沙蒿群落优势植物叶片氮磷化学计量特征的影响[J]. 植物生态学报, 2024, 48(5): 590-600. |
[2] | 秦文宽, 张秋芳, 敖古凯麟, 朱彪. 土壤有机碳动态对增温的响应及机制研究进展[J]. 植物生态学报, 2024, 48(4): 403-415. |
[3] | 张英, 张常洪, 汪其同, 朱晓敏, 尹华军. 氮沉降下西南山地针叶林根际和非根际土壤固碳贡献差异[J]. 植物生态学报, 2023, 47(9): 1234-1244. |
[4] | 陈颖洁, 房凯, 秦书琪, 郭彦军, 杨元合. 内蒙古温带草地土壤有机碳组分含量和分解速率的空间格局及其影响因素[J]. 植物生态学报, 2023, 47(9): 1245-1255. |
[5] | 李万年, 罗益敏, 黄则月, 杨梅. 望天树人工幼林混交对土壤微生物功能多样性与碳源利用的影响[J]. 植物生态学报, 2022, 46(9): 1109-1124. |
[6] | 冯继广, 张秋芳, 袁霞, 朱彪. 氮磷添加对土壤有机碳的影响: 进展与展望[J]. 植物生态学报, 2022, 46(8): 855-870. |
[7] | 孙彩丽, 仇模升, 黄朝相, 王艺伟. 黔西南石漠化过程中土壤胞外酶活性及其化学计量变化特征[J]. 植物生态学报, 2022, 46(7): 834-845. |
[8] | 甘子莹, 王浩, 丁驰, 雷梅, 杨晓刚, 蔡敬琰, 丘清燕, 胡亚林. 亚热带森林不同植物及器官来源的可溶性有机质输入对土壤激发效应的影响及其作用机理[J]. 植物生态学报, 2022, 46(7): 797-810. |
[9] | 朱玉荷, 肖虹, 王冰, 吴颖, 白永飞, 陈迪马. 蒙古高原草地不同深度土壤碳氮磷化学计量特征对气候因子的响应[J]. 植物生态学报, 2022, 46(3): 340-349. |
[10] | 牟文博, 徐当会, 王谢军, 敬文茂, 张瑞英, 顾玉玲, 姚广前, 祁世华, 张龙, 苟亚飞. 排露沟流域不同海拔灌丛土壤碳氮磷化学计量特征[J]. 植物生态学报, 2022, 46(11): 1422-1431. |
[11] | 毛瑾, 朵莹, 邓军, 程杰, 程积民, 彭长辉, 郭梁. 冬季增温和减雪对黄土高原典型草原土壤养分和细菌群落组成的影响[J]. 植物生态学报, 2021, 45(8): 891-902. |
[12] | 孙建, 王毅, 刘国华. 青藏高原高寒草地地上植物碳积累速率对生态系统多功能性的影响机制[J]. 植物生态学报, 2021, 45(5): 496-506. |
[13] | 董利军, 李金花, 陈珊, 张瑞, 孙建, 马妙君. 若尔盖湿地高寒草甸退化过程中土壤有机碳含量变化及成因分析[J]. 植物生态学报, 2021, 45(5): 507-515. |
[14] | 王奕丹, 李亮, 刘琪璟, 马泽清. 亚热带6个典型树种吸收细根寿命与形态属性格局[J]. 植物生态学报, 2021, 45(4): 383-393. |
[15] | 胡宗达, 刘世荣, 罗明霞, 胡璟, 刘兴良, 李亚非, 余昊, 欧定华. 川西亚高山不同演替阶段天然次生林土壤碳氮含量及酶活性特征[J]. 植物生态学报, 2020, 44(9): 973-985. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19