植物生态学报 ›› 2011, Vol. 35 ›› Issue (2): 137-146.DOI: 10.3724/SP.J.1258.2011.00137
龙文兴1, 丁易1, 臧润国1,*(), 杨民2, 陈少伟2
收稿日期:
2010-07-21
接受日期:
2010-11-29
出版日期:
2011-07-21
发布日期:
2011-01-21
通讯作者:
臧润国
作者简介:
*E-mail: zangrung@caf.ac.cn
LONG Wen-Xing1, DING Yi1, ZANG Run-Guo1,*(), YANG Min2, CHEN Shao-Wei2
Received:
2010-07-21
Accepted:
2010-11-29
Online:
2011-07-21
Published:
2011-01-21
Contact:
ZANG Run-Guo
摘要:
以海南岛霸王岭热带云雾林中热带山地常绿林和热带山顶矮林群落为对象, 分析了热带云雾林雨季光照、空气湿度、空气温度、土壤和地形特征, 为分析生物多样性、生态系统功能及其对气候变化的反应等生态学过程奠定基础。结果表明: 热带山地常绿林和热带山顶矮林在一天中的光合有效辐射呈单峰曲线变化, 热带山地常绿林各时段的光合有效辐射显著低于热带山顶矮林; 5-10月两群落类型日平均空气温度分别为(21.76 ± 2.44) ℃和(19.33 ± 1.03) ℃, 且随时间变化呈单峰曲线, 热带山地常绿林日平均空气温度显著高于热带山顶矮林; 5-10月两群落类型日平均空气相对湿度分别为(88.44 ± 2.90)%和(97.71 ± 0.80)%, 且随时间变化呈倒“S”型曲线, 热带山地常绿林各月日平均空气相对湿度显著小于热带山顶矮林; 与热带山顶矮林相比, 热带山地常绿林的土壤全氮、全磷、速效氮、有机质、pH和土壤厚度显著大, 而全钾和有效磷含量显著低; 热带山地常绿林的坡度、岩石裸露比例和海拔高度显著小于热带山顶矮林, 地形因子与其他生态因子显著相关; 主成分和相关性分析表明: 空气温度、有效磷、全钾、全氮及地形因子对热带云雾林植被分布有重要影响。
龙文兴, 丁易, 臧润国, 杨民, 陈少伟. 海南岛霸王岭热带云雾林雨季的环境特征. 植物生态学报, 2011, 35(2): 137-146. DOI: 10.3724/SP.J.1258.2011.00137
LONG Wen-Xing, DING Yi, ZANG Run-Guo, YANG Min, CHEN Shao-Wei. Environmental characteristics of tropical cloud forests in the rainy season in Bawangling National Nature Reserve on Hainan Island, South China. Chinese Journal of Plant Ecology, 2011, 35(2): 137-146. DOI: 10.3724/SP.J.1258.2011.00137
研究样地 Study site | 海拔 Altitude (m) | 郁闭度 Canopy density | 平均树高 Mean tree height (m) | 植株密度 Stem density (stems·100 m-2) | 基面积 Basal area (m2·100 m-2) | 物种丰富度 Species richness |
---|---|---|---|---|---|---|
热带山地常绿林 TMEF | 1 200 ± 4.34 | >0.7 | 5.55 ± 0.59 | 52.2 ± 6.4 | 0.43 ± 0.16 | 18.6 ± 2.3 |
热带山顶矮林 TMDF | 1 300 ± 8.52 | 0.5-0.7 | 4.01 ± 0.58 | 115.3 ± 24.5 | 0.25 ± 0.09 | 29.7 ± 1.5 |
表1 热带山地常绿林和热带山顶矮林研究样地比较(平均值±标准偏差)
Table 1 Comparison of study sites between tropical montane evergreen forest (TMEF) and tropical montane dwarf forest (TMDF) (mean ± SD)
研究样地 Study site | 海拔 Altitude (m) | 郁闭度 Canopy density | 平均树高 Mean tree height (m) | 植株密度 Stem density (stems·100 m-2) | 基面积 Basal area (m2·100 m-2) | 物种丰富度 Species richness |
---|---|---|---|---|---|---|
热带山地常绿林 TMEF | 1 200 ± 4.34 | >0.7 | 5.55 ± 0.59 | 52.2 ± 6.4 | 0.43 ± 0.16 | 18.6 ± 2.3 |
热带山顶矮林 TMDF | 1 300 ± 8.52 | 0.5-0.7 | 4.01 ± 0.58 | 115.3 ± 24.5 | 0.25 ± 0.09 | 29.7 ± 1.5 |
图1 热带山地常绿林(TMEF)和热带山顶矮林(TMDF)间光合有效辐射(PAR)和日平均空气温度湿度的比较(平均值±标准误差)。A, 光合有效辐射。B, 日平均空气温度。C, 日平均空气相对湿度。不同字母(a, b)表示两者有显著差异(p < 0.05)。
Fig. 1 Comparisons in photosynthetically active radiation (PAR), mean daily air temperature and air relative humidity between tropical montane evergreen forest (TMEF) and tropical montane dwarf forest (TMDF) (mean ± SE). A, Photosynthetically active radiation. B, Mean daily air temperature. C, Mean daily relative humidity. Different letters (a, b) indicate significant difference at p < 0.05.
土壤因子 Soil factor | 植被类型 Forest type | 土壤因子 Soil factor | 植被类型 Forest type | |||
---|---|---|---|---|---|---|
热带山地常绿林 TMEF | 热带山顶矮林 TMDF | 热带山地常绿林 TMEF | 热带山顶矮林 TMDF | |||
全氮 Total nitrogen (g·kg-1) | 2.25 ± 0.59a | 1.15 ± 0.38b | 有效钾 Available potassium (mg·kg-1) | 21.97 ± 1.39a | 31.97 ± 13.79a | |
全磷 Total phosphorous (g·kg-1) | 0.79 ± 0.14a | 0.49 ± 0.32b | 有机质 Organic matter (g·kg-1) | 64.87 ± 22.23a | 36.71 ± 12.99b | |
全钾 Total potassium (g·kg-1) | 12.68 ± 1.67b | 65.31 ± 12.50a | pH | 4.44 ± 0.29a | 3.96 ± 0.19b | |
速效氮 Available nitrogen (mg·kg-1) | 153.02 ± 28.10a | 84.50 ± 15.44b | 腐殖质厚度 Humus thickness (cm) | 8.75 ± 0.67a | 9.15 ± 1.22a | |
有效磷 Available phosphorous (mg·kg-1) | 11.00 ± 1.65b | 19.46 ± 4.25a | 土壤厚度 Soil thickness (cm) | 65.35 ± 8.63a | 54.90 ± 8.55b |
表2 热带山地常绿林和热带山顶矮林土壤因子比较(平均值±标准偏差)
Table 2 Comparison in soil factors between tropical montane evergreen forest (TMEF) and tropical montane dwarf forest (TMDF) (mean ± SD)
土壤因子 Soil factor | 植被类型 Forest type | 土壤因子 Soil factor | 植被类型 Forest type | |||
---|---|---|---|---|---|---|
热带山地常绿林 TMEF | 热带山顶矮林 TMDF | 热带山地常绿林 TMEF | 热带山顶矮林 TMDF | |||
全氮 Total nitrogen (g·kg-1) | 2.25 ± 0.59a | 1.15 ± 0.38b | 有效钾 Available potassium (mg·kg-1) | 21.97 ± 1.39a | 31.97 ± 13.79a | |
全磷 Total phosphorous (g·kg-1) | 0.79 ± 0.14a | 0.49 ± 0.32b | 有机质 Organic matter (g·kg-1) | 64.87 ± 22.23a | 36.71 ± 12.99b | |
全钾 Total potassium (g·kg-1) | 12.68 ± 1.67b | 65.31 ± 12.50a | pH | 4.44 ± 0.29a | 3.96 ± 0.19b | |
速效氮 Available nitrogen (mg·kg-1) | 153.02 ± 28.10a | 84.50 ± 15.44b | 腐殖质厚度 Humus thickness (cm) | 8.75 ± 0.67a | 9.15 ± 1.22a | |
有效磷 Available phosphorous (mg·kg-1) | 11.00 ± 1.65b | 19.46 ± 4.25a | 土壤厚度 Soil thickness (cm) | 65.35 ± 8.63a | 54.90 ± 8.55b |
图2 热带山地常绿林(TMEF)和热带山顶矮林(TMDF)地形因子的比较。A, 坡度。B, 岩石裸露比例。C, 海拔高度。箱线图上不同字母(a, b)表示两者有显著差异(p < 0.05)。
Fig. 2 Comparison in topographic conditions between tropical montane evergreen forest (TMEF) and tropical montane dwarf forest (TMDF).A, Slope. B, Coverage of exposed rock. C, Altitude. Different letters (a, b) above the boxplot indicate significant difference at p < 0.05.
图3 热带山地常绿林(TMEF)和热带山顶矮林(TMDF)样方随环境变量变化的PCA排序图。AK, 有效钾; Alt, 海拔高度; AN, 速效氮; AP, 有效磷; CER, 岩石裸露比例; HT, 腐殖质厚度; OM, 有机质; PAR, 光合有效辐射; RH, 日平均空气相对湿度; Slo, 坡度; ST, 土壤厚度; Tem, 日平均空气温度; TK, 全钾; TN, 全氮; TP, 全磷。
Fig. 3 Biplot of principal component analysis (PCA) showing changes in environmental variables across tropical montane evergreen forest (TMEF) and tropical montane dwarf forest (TMDF).AK, available potassium; Alt, altitude; AN, available nitrogen; AP, available phosphorus; CER, coverage of exposed rock; HT, humus thickness; OM, organic matter; PAR, photosynthetically active radiation; RH, mean daily air relative humidity; Slo, slope gradient; ST, soil thickness; Tem, mean daily air temperature; TK, total potassium; TN, total nitrogen; TP, total phosphorus.
环境变量 Environmental variables | PCA1 | PCA2 | PCA3 | PCA4 |
---|---|---|---|---|
海拔高度 Altitude (m) | 0.86 | 0.23 | -0.32 | 0.07 |
日平均空气相对湿度 Mean daily air relative humidity (%) | 0.85 | -0.10 | -0.45 | -0.01 |
日平均空气温度 Mean daily air temperature (℃) | -0.98 | -0.07 | -0.12 | -0.004 |
坡度 Slope gradient (o) | 0.90 | -0.01 | 0.34 | 0.11 |
岩石裸露比例 Coverage of exposed rock (%) | 0.92 | -0.09 | -0.28 | 0.06 |
土壤厚度 Soil thickness (cm) | -0.48 | -0.58 | 0.34 | 0.23 |
腐殖质厚度 Humus thickness (cm) | 0.53 | 0.56 | 0.46 | 0.17 |
光合有效辐射 Photosynthetically active radiation, PAR (μmol?m-2?s-1) | 0.49 | -0.76 | -0.15 | 0.04 |
全氮 Total nitrogen (g?kg-1) | -0.78 | 0.08 | -0.27 | 0.25 |
全磷 Total phosphorus (g?kg-1) | -0.42 | 0.53 | -0.53 | 0.30 |
全钾 Total potassium (g?kg-1) | 0.87 | 0.16 | 0.34 | 0.001 |
速效氮 Available nitrogen (mg?kg-1) | -0.45 | -0.01 | -0.15 | -0.51 |
有效磷 Available phosphorus (mg?kg-1) | 0.90 | -0.14 | -0.33 | -0.002 |
有效钾 Available potassium (mg?kg-1) | 0.61 | -0.08 | -0.16 | 0.11 |
有机质 Organic matter (g?kg-1) | -0.65 | -0.31 | -0.07 | 0.43 |
pH | -0.75 | 0.24 | -0.05 | 0.04 |
特征值 Eigenvalue | 8.76 | 1.80 | 1.49 | 1.11 |
方差比例 Proportion of variance | 0.547 | 0.113 | 0.090 | 0.070 |
累积方差比例 Proportion of cumulative variance | 0.547 | 0.660 | 0.753 | 0.822 |
表3 主成分分析(PCA)中各环境变量在前两个排序轴的负荷值及解释方差
Table 3 The loadings and explained variance of environmental variables in the first two axes in principal component analysis (PCA)
环境变量 Environmental variables | PCA1 | PCA2 | PCA3 | PCA4 |
---|---|---|---|---|
海拔高度 Altitude (m) | 0.86 | 0.23 | -0.32 | 0.07 |
日平均空气相对湿度 Mean daily air relative humidity (%) | 0.85 | -0.10 | -0.45 | -0.01 |
日平均空气温度 Mean daily air temperature (℃) | -0.98 | -0.07 | -0.12 | -0.004 |
坡度 Slope gradient (o) | 0.90 | -0.01 | 0.34 | 0.11 |
岩石裸露比例 Coverage of exposed rock (%) | 0.92 | -0.09 | -0.28 | 0.06 |
土壤厚度 Soil thickness (cm) | -0.48 | -0.58 | 0.34 | 0.23 |
腐殖质厚度 Humus thickness (cm) | 0.53 | 0.56 | 0.46 | 0.17 |
光合有效辐射 Photosynthetically active radiation, PAR (μmol?m-2?s-1) | 0.49 | -0.76 | -0.15 | 0.04 |
全氮 Total nitrogen (g?kg-1) | -0.78 | 0.08 | -0.27 | 0.25 |
全磷 Total phosphorus (g?kg-1) | -0.42 | 0.53 | -0.53 | 0.30 |
全钾 Total potassium (g?kg-1) | 0.87 | 0.16 | 0.34 | 0.001 |
速效氮 Available nitrogen (mg?kg-1) | -0.45 | -0.01 | -0.15 | -0.51 |
有效磷 Available phosphorus (mg?kg-1) | 0.90 | -0.14 | -0.33 | -0.002 |
有效钾 Available potassium (mg?kg-1) | 0.61 | -0.08 | -0.16 | 0.11 |
有机质 Organic matter (g?kg-1) | -0.65 | -0.31 | -0.07 | 0.43 |
pH | -0.75 | 0.24 | -0.05 | 0.04 |
特征值 Eigenvalue | 8.76 | 1.80 | 1.49 | 1.11 |
方差比例 Proportion of variance | 0.547 | 0.113 | 0.090 | 0.070 |
累积方差比例 Proportion of cumulative variance | 0.547 | 0.660 | 0.753 | 0.822 |
图4 热带山地常绿林(TMEF)和热带山顶矮林(TMDF)环境因子间的相关性分析: 相关图解为环境因子间的相关系数及其显著性。该图是将热带山地常绿林和热带山顶矮林的环境因子数据合并后的相关性分析结果。AK, 有效钾(mg·kg-1); Alt, 海拔高度(m); AN, 速效氮(mg·kg-1); AP, 有效磷(mg·kg-1); CER, 岩石裸露比例(%); HT, 腐殖质厚度(cm); OM, 有机质(g·kg-1); PAR, 光合有效辐射(μmol?m-2?s-1); RH, 日平均空气相对湿度(%); Slo, 坡度(o); ST, 土壤厚度(cm); Tem, 日平均空气温度(℃); TK, 全钾(g·kg-1); TN, 全氮(g·kg-1); TP, 全磷(g·kg-1)。*, p < 0.05; **, p < 0.01; ***, p < 0.001; 无*的数字表示 p > 0.05。
Fig. 4 Correlation among environmental conditions in both tropical montane evergreen forest (TMEF) and tropical montane dwarf forest (TMDF), indicating correlation coefficients of environmental factors and their significance. The figure was obtained with correlation analysis after combining environmental data of TMEF and TMDF.AK, available potassium (mg·kg-1); Alt, altitude (m); AN, available nitrogen (mg·kg-1); AP, available phosphorous (mg·kg-1); CER, coverage of exposed rock (%); HT, humus thickness (cm); OM, organic matter (g·kg-1); PAR, photosynthetically active radiation (μmol ? m-2 ? s-1); RH, mean daily air relative humidity (%); Slo, slope gradient (o); ST, soil thickness (cm); Tem, mean daily air temperature (℃); TK, total potassium (g·kg-1); TN, total nitrogen (g·kg-1); TP, total phosphorus (g·kg-1). *, p < 0.05; **, p < 0.01; ***, p < 0.001; figures without * indicate p > 0.05.
[1] |
Ackerly DD, Knight CA, Weiss SB, Barton K, Starmer KP (2002). Leaf size, specific leaf area and microhabitat distribution of chaparral woody plants: constrasting patterns in species level and community level analyses. Oecologia, 130, 449-457.
DOI URL PMID |
[2] | Agricultural Chemistry Committee of Soil Science Society of China (中国土壤学会农业化学专业委员会) (1983). Conventional Methods for the Agricultural Chemical Analysis of Soil (土壤农业化学常规分析方法). Science Press, Beijing. (in Chinese) |
[3] | Aldrich M, Billington C, Edwards M, Laidlaw R (1997). Tropical Montane Cloud Forests: an Urgent Priority for Conservation. World Conservation Monitoring Centre, Cambridge, UK. |
[4] | Bohn H, McNeal B, O’Connor G (2001). Soil Chemistry 3rd edn. John Wiley & Sons, New York. |
[5] | Bruijnzeel LA, Hamilton LS (1998). Climatic conditions and tropical montane forest productivity: the fog has not lifted yet the structure and functioning of montane tropical forest: control by climate, soils and disturbance. Ecology, 79, 3-9. |
[6] | Bubb P, May I, Miles L, Sayer J (2004). Cloud Forest Agenda. UNEP-WCMC, Cambridge, UK. |
[7] | Chazdon RL, Fetcher N (1984). Photosynthetic light environments in a lowland tropical rainforest in Costa-Rica. Journal of Ecology, 72, 553-564. |
[8] | Chen SP (陈树培) (1982). The vegetation and vegetational regionalization of Ledong Country, Hainan Island. Acta Phytoecologica et Geobotanica Sinica (植物生态学与地植物学丛刊), 6, 37-50. (in Chinese with English abstract) |
[9] | Deng FY (邓福英) (2007). Classification of Plant Functional Groups and Identification of the Ecological Keystone Species in the Tropical Montane Rain Forest of Hainan Island, China (海南岛热带山地雨林植物功能群划分及生态关键种的确定). PhD dissertation, Chinese Academy of Forestry, Beijing. (in Chinese with English abstract) |
[10] | Emborg J (1998). Understory light conditions and regeneration with respect to the structural dynamics of a near-natural temperate deciduous forest in Denmark. Forest Ecology and Management, 106, 83-95. |
[11] | Gentry AH (1988). Changes in plant community diversity and floristic composition on environmental and geographical gradients. Annals of the Missouri Botanical Garden, 75, 1-34. |
[12] |
Hietz P, Briones O (1998). Correlation between water relations and within-canopy distribution of epiphytic ferns in a Mexican cloud forest. Oecologia, 114, 305-316.
URL PMID |
[13] |
Holder CD (2004). Rainfall interception and fog precipitation in a tropical montane cloud forest of Guatemala. Forest Ecology and Management, 190, 373-384.
DOI URL |
[14] | Hu YJ (胡玉佳), Li YX (李玉杏) (1992). Tropical Rain Forest in Hainan Island (海南岛热带雨林). Guangdong Higher Education Press, Guangzhou. (in Chinese) |
[15] | Huang Q (黄全), Li YD (李意德), Zheng DZ (郑德璋), Zhang JC (张家城), Wang LL (王丽丽), Jiang YX (蒋有绪), Zhao YM (赵彦民) (1986). Study of tropical vegetation series in Jianfengling Region, Hainan Island. Acta Phytoecologica et Geobotanica Sinica (植物生态学与地植物学学报), 10, 90-105. (in Chinese with English abstract) |
[16] | Huang SN (黄世能), Zhang HD (张宏达), Wang BS (王伯荪) (2000). Composition and geographical elements of the spermatophytic flora from Jianfengling area of Hainan Island. Guihaia (广西植物), 20(2), 97-106. (in Chinese with English abstract). |
[17] | Huston M (1980). Soil nutrients and tree species richness in Costa Rican forests. Journal of Biogeography, 7, 147-157. |
[18] | Jiang YX (蒋有绪), Lu JP (卢俊培) (1991). Tropical Forest Ecosystem of Jianfengling Mountain in Hainan Island,China (中国海南岛尖峰岭热带林生态系统). Science Press, Beijing. (in Chinese) |
[19] |
Kitajima K, Mulkey SS, Wright SJ (2005). Variation in crown light utilization characteristics among tropical canopy trees. Annals of Botany, 95, 535-547.
DOI URL PMID |
[20] |
Körner C (1989). The nutritional status of plants from high altitudes. A worldwide comparison. Oecologia, 81, 379-391.
DOI URL PMID |
[21] | Lu Y (陆阳), Li MG (李鸣光), Huang YW (黄雅文), Chen ZH (陈章和), Hu YJ (胡玉佳) (1986). Vegetation of Bawangling Gibbon Natural Reserve in Hainan Island. Acta Phytoecologica et Geobotanica Sinica (植物生态学与地植物学学报), 10, 106-114. (in Chinese with English abstract) |
[22] |
Monsi M, Saeki T (2005). On the factor light in plant communities and its importance for matter production. Annals of Botany, 95, 549-567.
DOI URL PMID |
[23] |
Nadkarni NM, Solano R (2002). Potential effects of climate change on canopy communities in a tropical cloud forest: an experimental approach. Oecologia, 131, 580-586.
DOI URL PMID |
[24] | Nomura N, Kikuzawa K (2003). Productive phenology of tropical montane forest: fertilization experiment along a moisture gradient. Ecological Research, 187, 573-586. |
[25] | Ostertag R, Giardina CP, Cordell S (2008). Understory colonization of Eucalyptus plantations in Hawaii in relation to light and nutrient levels. Restoration Ecology, 16, 475-485. |
[26] | R Development Core Team (2009). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna,Austria. |
[27] | Roche P, Díaz-Burlinson N, Gachet S (2004). Congruency analysis of species ranking based on leaf traits: Which traits are the more reliable? Plant Ecology, 174, 37-48. |
[28] | Shi JP (施济普) (2007). Community Ecology and Biogeography of the Mossy Dwarf Forest in Yunnan (云南山顶苔藓矮林群落生态学与生物地理学研究). PhD dissertation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming. (in Chinese with English abstract) |
[29] | Shi JP, Zhu H (2009). Tree species composition and diversity of tropical mountain cloud forest in the Yunnan, southwestern China. Ecological Research, 24, 83-92. |
[30] | Stadtmüller T (1987). Cloud Forest in the Humid Tropics: A Bibliographic Review. United Nations University, Tokyo and CATIE, Turrialba, Costa Rica. |
[31] | Tanner EVJ (1977). Four montane rain forests of Jamaica: a quantitative characterization of the floristics, the soils and the foloar mineral levels and a discussion of the interrelation. Journal of Ecology, 65, 883-913. |
[32] | Terborgh J (1977). Bird species diversity on an Andean elevational gradient. Ecology, 58, 1007-1019. |
[33] | Vazquez J, Givnish T (1998). Altitudinal gradients in tropical forest composition, structure, and diversity in the Sierra de Manantlan. Journal of Ecology, 86, 999-1020. |
[34] |
Walther G, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin JM, Hoegh-Gulderg O, Bairlein F (2002). Ecological responses to recent climate change. Nature, 416, 389-395.
DOI URL PMID |
[35] | Whitmore TC (1990). An Introduction to Tropical Rain Forest. Oxford University Press, Oxford. |
[36] | Williams-Linera G (2002). Tree species richness complementarily, disturbance and fragmentation in a Mexican tropical montane cloud forest. Biodiversity and Conservation, 11, 1825-1843. |
[37] | Wu ZY (吴征镒) (1995). Chinese Vegetation (中国植被). Science Press, Beijing. (in Chinese) |
[38] | Yang XB (杨小波), Lin Y (林英), Liang SQ (梁淑群) (1994). The forest vegetation of Wuzhishan Mountain in Hainan Island. I. The forest vegetation types of Wuzhishan Mountain. Natural Science Journal of Hainan University (海南大学学报(自然科学版), 12, 220-236. (in Chinese with English abstract) |
[39] | Yu SX (余世孝), Zang RG (臧润国), Jiang YX (蒋有绪) (2001). Spatial analysis of species diversity in the tropical vegetations along the vertical belt at Bawangling Natural Reserve, Hainan Island. Acta Ecologica Sinica (生态学报), 21, 1438-1443. (in Chinese with English abstract) |
[40] | Yu SX (余世孝), Zhang HD (张宏达), Wang BS (王伯荪) (1993). The tropical montane rain forest of Bawangling Natural Reserve, Hainan Island. I. The permanent plots and the community types. Ecological Science (生态科学), 2, 13-17. (in Chinese with English abstract) |
[41] | Zang RG, Tao JP, Li CY (2005). Within community patch dynamics in a tropical montane rain forest of Hainan Island, South China. Acta Oecologica, 28, 39-48. |
[1] | 江康威 张青青 王亚菲 李宏 丁雨 杨永强 吐尔逊娜依·热依木. 放牧干扰下天山北坡中段植物功能群特征及其与土壤环境因子的关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 李帅锋, 郎学东, 黄小波, 王艳红, 刘万德, 徐崇华, 苏建荣. 云南普洱30 hm2季风常绿阔叶林动态监测样地群丛数量分类[J]. 植物生态学报, 2020, 44(3): 236-247. |
[3] | 陈林, 王磊, 杨新国, 宋乃平, 李月飞, 苏莹, 卞莹莹, 祝忠有, 孟文婷. 荒漠草原猪毛蒿种群繁殖特征的土壤驱动因子分析[J]. 植物生态学报, 2019, 43(1): 65-76. |
[4] | 辜翔, 张仕吉, 刘兆丹, 李雷达, 陈金磊, 王留芳, 方晰. 中亚热带植被恢复对土壤有机碳含量、碳密度的影响[J]. 植物生态学报, 2018, 42(5): 595-608. |
[5] | 辜翔, 张仕吉, 刘兆丹, 李雷达, 陈金磊, 王留芳, 方晰. 湖南东部植被恢复对土壤有机碳矿化的影响[J]. 植物生态学报, 2018, 42(12): 1211-1224. |
[6] | 王小婷, 温学发. 黑河中游春玉米叶片水δD和δ18O的富集过程和影响因素[J]. 植物生态学报, 2016, 40(9): 912-924. |
[7] | 胡海清, 陆昕, 孙龙, 曲智林, 梁宇, 李海洋. 气温和空气相对湿度对森林地表细小死可燃物平衡含水率和时滞的影响[J]. 植物生态学报, 2016, 40(3): 221-235. |
[8] | 许洺山, 赵延涛, 杨晓东, 史青茹, 周刘丽, 阎恩荣. 浙江天童木本植物叶片性状空间变异的地统计学分析[J]. 植物生态学报, 2016, 40(1): 48-59. |
[9] | 梁爽, 许涵, 林家怡, 李意德, 林明献. 尖峰岭热带山地雨林优势树种白颜树空间分布格局[J]. 植物生态学报, 2014, 38(12): 1273-1282. |
[10] | 纪鹏, 朱春阳, 李树华. 城市河道绿带宽度对空气温湿度的影响[J]. 植物生态学报, 2013, 37(1): 37-44. |
[11] | 赖江山, 米湘成, 任海保, 马克平. 基于多元回归树的常绿阔叶林群丛数量分类——以古田山24公顷森林样地为例[J]. 植物生态学报, 2010, 34(7): 761-769. |
[12] | 苏志尧, 刘刚, 区余端, 戴朝晖, 李镇魁. 车八岭山地常绿阔叶林冰灾后林木受损的生态学评估[J]. 植物生态学报, 2010, 34(2): 213-222. |
[13] | 吴晓莆, 唐志尧, 崔海亭, 方精云. 北京地区不同地形条件下的土地覆盖动态[J]. 植物生态学报, 2006, 30(2): 239-251. |
[14] | 高秀霞, 陈进, 周会平, 白智林. 养分供应对3种舞花姜属植物繁殖方式的影响[J]. 植物生态学报, 2006, 30(1): 132-139. |
[15] | 刘世梁, 马克明, 傅伯杰, 康永祥, 张洁瑜, 张育新. 北京东灵山地区地形土壤因子与植物群落关系研究[J]. 植物生态学报, 2003, 27(4): 496-502. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19