植物生态学报 ›› 2014, Vol. 38 ›› Issue (12): 1273-1282.DOI: 10.3724/SP.J.1258.2014.00122
梁爽1, 许涵2,*(), 林家怡1, 李意德2, 林明献2
收稿日期:
2014-05-09
接受日期:
2014-11-06
出版日期:
2014-05-09
发布日期:
2015-04-16
通讯作者:
许涵
作者简介:
(E-mail: hanxu81@gmail.com)基金资助:
LIANG Shuang1, XU Han2,*(), LIN Jia-Yi1, LI Yi-De2, LIN Ming-Xian2
Received:
2014-05-09
Accepted:
2014-11-06
Online:
2014-05-09
Published:
2015-04-16
Contact:
XU Han
摘要:
优势树种对群落的构建和形成起主要作用。该文以海南岛尖峰岭60 hm2样地内重要值第二大的树种白颜树(Gironniera subaequalis)为研究对象, 探索其种群分布格局特征, 讨论环境异质性、密度依赖死亡、扩散限制等机制在格局形成过程中所起的作用。将白颜树10022个植株分为6个径级, 分别归属于幼树、中龄树、成年树三个生活史阶段, 采用成对相关函数分析各径级的空间分布特征; 双变量成对相关函数和标签关联函数分析不同生活史阶段之间的空间关系; Berman检验方法检验3个地形因子分别对幼树、中龄树、成年树分布影响的显著度。结果表明: 白颜树种群内I、II、III、IV径级呈现聚集分布, 聚集程度随径级的增加减弱; V和VI径级小尺度上均匀分布, 大尺度上以随机分布为主。幼树与中龄树空间正关联; 幼树与成年树空间负关联; 成年树与中龄树在较小的尺度上负关联, 大尺度上微弱正关联。但是不同生活史阶段的个体之间彼此分离, 个体间无直接的促进作用。地形因子中, 坡度、海拔、凹凸度对幼树的分布影响显著; 坡度、凹凸度对中龄树的分布影响显著; 仅坡度对成年树的分布影响显著。从现有的空间格局可以推断出环境异质性和密度依赖死亡对格局形成起作用, 但是种子的扩散限制对空间格局的影响没有明确地表现出来。
梁爽, 许涵, 林家怡, 李意德, 林明献. 尖峰岭热带山地雨林优势树种白颜树空间分布格局. 植物生态学报, 2014, 38(12): 1273-1282. DOI: 10.3724/SP.J.1258.2014.00122
LIANG Shuang, XU Han, LIN Jia-Yi, LI Yi-De, LIN Ming-Xian. Spatial distribution pattern of the dominant species Gironniera subaequalis in tropical montane rainforest of Jianfengling, Hainan Island, China. Chinese Journal of Plant Ecology, 2014, 38(12): 1273-1282. DOI: 10.3724/SP.J.1258.2014.00122
重要值 Importance value | 相对胸高断面积 Relative cross-section area at the breast height | 相对密度 Relative density | 相对频度 Relative frequency | |
---|---|---|---|---|
数值 Value | 3.01 | 5.50 | 2.28 | 1.24 |
在样地内的排名 Relative position of all species | 2 | 2 | 9 | 4 |
表1 白颜树在群落中的数量指标
Table 1 Quantitative indices of Gironniera subaequalis in community
重要值 Importance value | 相对胸高断面积 Relative cross-section area at the breast height | 相对密度 Relative density | 相对频度 Relative frequency | |
---|---|---|---|---|
数值 Value | 3.01 | 5.50 | 2.28 | 1.24 |
在样地内的排名 Relative position of all species | 2 | 2 | 9 | 4 |
幼树 Young trees (44%) | 中龄树 Middle-aged trees (34.8%) | 成年树 Adult trees (21.2%) | ||||||
---|---|---|---|---|---|---|---|---|
径级I Class I | 径级II Class II | 径级III Class III | 径级IV Class IV | 径级V Class V | 径级VI Class VI | |||
胸径 DBH | 1 cm ≤ DBH < 5 cm | 5 cm ≤ DBH < 10 cm | 10 cm ≤ DBH < 15 cm | 15 cm ≤ DBH < 20 cm | 20 cm ≤ DBH < 25 cm | DBH ≥ 25 cm | ||
株数 Number of stems | 2 503 | 1 948 | 1 830 | 1 655 | 1 194 | 932 |
表2 生活史的划分
Table 2 Classification of life-history
幼树 Young trees (44%) | 中龄树 Middle-aged trees (34.8%) | 成年树 Adult trees (21.2%) | ||||||
---|---|---|---|---|---|---|---|---|
径级I Class I | 径级II Class II | 径级III Class III | 径级IV Class IV | 径级V Class V | 径级VI Class VI | |||
胸径 DBH | 1 cm ≤ DBH < 5 cm | 5 cm ≤ DBH < 10 cm | 10 cm ≤ DBH < 15 cm | 15 cm ≤ DBH < 20 cm | 20 cm ≤ DBH < 25 cm | DBH ≥ 25 cm | ||
株数 Number of stems | 2 503 | 1 948 | 1 830 | 1 655 | 1 194 | 932 |
图1 白颜树所有个体的空间分布。三角形代表幼树; 黑色圆点代表中龄树; 正方形代表成年树。
Fig. 1 Spatial distribution of all stems of Gironniera subaequalis. Young trees are marked by the triangles; middle-aged trees are marked by the black dots; and adult trees are marked by the squares.
图2 白颜树各径级的成对相关函数。实线表示成对相关函数, 虚线表示99%包迹线。零模型为完全空间随机模型(CSR)和sigma = 15 m的异质泊松模型(HP)。
Fig. 2 Univariate pair-correlation functions of different age classes of Gironniera subaequalis. Solid lines are pair-correlation functions, and dotted lines are 99% confidence envelopes. Null models: complete spatial randomness (CSR) and Heterogeneous Poisson (HP) with sigma = 15 m.
图3 白颜树各个生活史阶段之间的双变量成对相关函数。实线表示双变量成对相关函数; 虚线表示99%包迹线。A, 包迹线采用完全空间随机零模型的幼树与中龄树的关系。B, 包迹线采用先决条件零模型的幼树与中龄树的关系。C, 包迹线采用完全空间随机零模型的幼树与成年树的关系。D, 包迹线采用先决条件零模型的幼树与成年树的关系。E, 包迹线采用完全空间随机零模型的中龄树与成年树的关系。F, 包迹线采用先决条件零模型的中龄树与成年树的关系。
Fig. 3 Bivariate pair-correlation functions between pairs of life-history stages of Gironniera subaequalis. Solid lines are bivariate pair-correlation functions and dotted lines are 99% confidence envelopes. A, Relationship between young trees and middle-aged trees with envelopes calculated by complete spatial randomness null model. B, Relationship between young trees and middle-aged trees with envelops calculated by antecedent condition null model. C, Relationship between young trees and adult trees with envelopes calculated by complete spatial randomness null model. D, Relationship between young trees and adult trees with envelops calculated by antecedent condition null model. E, Relationship between middle-aged trees and adult trees with envelopes calculated by complete spatial randomness null model. F, Relationship between middle-aged trees and adult trees with envelops calculated by antecedent condition null model.
图4 标签关联函数P(r)。A, 从所有幼树和中龄树中任选两个距离为r的个体, 两者均为幼树的概率。B, 从所有幼树和中龄树中任选两个距离为r的个体, 其中一个为幼树, 另一个为中龄树的概率。C, 从所有幼树和中龄树中任选两个距离为r的个体, 两者均为中龄树的概率。D, 从所有幼树和成年树中任选两个距离为r的个体, 两者均为幼树的概率。E, 从所有幼树和成年树中任选两个距离为r的个体, 其中一个为幼树, 另一个为成年树的概率。F, 从所有幼树和成年树中任选两个距离为r的个体, 两者均为成年树的概率。G, 从所有中龄树和成年树中任选两个距离为r的个体, 两者均为中龄树的概率。H, 从所有中龄树和成年树中任选两个距离为r的个体, 其中一个为中龄树, 另一个为成年树的概率。I, 从所有中龄树和成年树中任选两个距离为r的个体, 两者均为成年树的概率。实线表示标签关联函数; 虚线表示99%包迹线。
Fig. 4 The mark-connection functions P(r). A, Probabilities by randomly choosing two individuals (separated by distance r) from all young trees and middle-aged trees, when both are young trees. B, Probabilities by randomly choosing two individuals (separated by distance r) from all young trees and middle-aged trees, when one is a young tree and the other is a middle-aged tree. C, Probabilities by randomly choosing two individuals (separated by distance r) from all young trees and middle-aged trees, when both are middle-aged trees. D, Probabilities by randomly choosing two individuals (separated by distance r) from all young trees and adult trees, when both are young trees. E, Probabilities by randomly choosing two individuals (separated by distance r) from all young trees and adult trees, when one is a young tree and the other is an adult tree. F, Probabilities by randomly choosing two individuals (separated by distance r) from all young trees and adult trees, when both are adult trees. G, Probabilities by randomly choosing two individuals (separated by distance r) from all middle-aged trees and adult trees, when both are middle-aged trees. H, Probabilities by randomly choosing two individuals (separated by distance r) from all middle-aged trees and adult trees, when one is a young tree and the other is an adult tree. I, Probabilities by randomly choosing two individuals (separated by distance r) from all middle-aged trees and adult trees, when both are adult trees. Solid lines are mark-connection functions, and dotted lines are 99% confidence envelopes.
幼树 Young tree | 中龄树 Middle-aged tree | 成年树 Adult tree | |
---|---|---|---|
坡度 Slope | + | + | + |
海拔 Elevation | + | - | - |
凹凸度 Convex | + | + | - |
表3 地形因子对白颜树各生活史阶段个体分布的影响
Table 3 Influences of topographic factors on the distribution of the individuals in each life history stage of Gironniera subaequalis
幼树 Young tree | 中龄树 Middle-aged tree | 成年树 Adult tree | |
---|---|---|---|
坡度 Slope | + | + | + |
海拔 Elevation | + | - | - |
凹凸度 Convex | + | + | - |
1 |
Bagchi R, Henrys PA, Brown PE, Burslem DFRP, Diggle PJ, Gunatilleke CVS, Gunatilleke IAUN, Kassim AR, Law R, Noor S, Valencia RL (2011). Spatial patterns reveal negative density dependence and habitat associations in tropical trees. Ecology, 92, 1723-1729.
DOI URL PMID |
2 | Baldeck CA, Harms KE, Yavitt JB, John R, Turner BL, Valen- cia R, Navarrete H, Bunyavejchewin S, Kiratiprayoon S, Yaacob A, Supardi MNN, Davies SJ, Hubbell SP, Chuyong GB, Kenfack D, Thomas DW, Dalling JW (2013). Habitat filtering across tree life stages in tropical forest communities. Proceedings of the Royal Society B: Biological Sciences, 280, doi: 10.1098/rspb.2013.0548. |
3 | Batista JLF, Maguire DA (1998). Modeling the spatial structure of topical forests. Forest Ecology and Management, 110, 293-314. |
4 | Berman M (1986). Testing for spatial association between a point process and another stochastic process. Applied Statistics, 35, 54-62. |
5 | Clark DB, Clark DA, Read JM (1998). Edaphic variation and the mesoscale distribution of tree species in a neotropical rain forest. Journal of Ecology, 86, 101-112. |
6 |
Condit R, Ashton PS, Baker P, Bunyavejchewin S, Gunatilleke S, Gunatilleke N, Hubbell SP, Foster RB, Itoh A, Lafrankie JV, Lee HS, Losos E, Manokaran N, Sukumar R, Yamakura T (2000). Spatial patterns in the distribution of tropical tree species. Science, 288, 1414-1418.
DOI URL PMID |
7 | Connell JH (1971). On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees. Dynamics of Populations, 86, 298-312. |
8 | Diggle PJ (2003). Statistical Analysis of Spatial Point Patterns. 2nd edn. Edward Arnold, London. |
9 | Fang JY, Li YD, Zhu B, Liu GH, Zhou GY (2004). Community structures and species richness in the montane rain forest of Jianfengling, Hainan Island, China. Biodiversity Science, 12, 29-43.(in Chinese with English abstract) |
[方精云, 李意德, 朱彪, 刘国华, 周光益 (2004). 海南岛尖峰岭山地雨林的群落结构、物种多样性以及在世界雨林中的地位. 生物多样性, 12, 29-43.] | |
10 |
Flügge AJ, Olhede SC, Murrell DJ (2012). The memory of spatial patterns: changes in local abundance and aggregation in a tropical forest. Ecology, 93, 1540-1549.
DOI URL PMID |
11 | Franklin JF, Spies TA, van Pelt R, Carey AB, Thornburgh DA, Berg DR, Lindenmayer DB, Harmon ME, Keeton WS, Shaw DC, Bible K, Chen JQ (2002). Disturbances and structural development of natural forest ecosystems with silvicultural implications, using Douglas-fir forests as an example. Forest Ecology and Management, 155, 399-423. |
12 | Getzin S, Wiegand T, Wiegand K, He FL (2008). Heterogeneity influences spatial patterns and demographics in forest stands. Journal of Ecology, 96, 807-820. |
13 | Han L, Wang HZ, Peng J, Mo ZX (2007). Spatial distribution patterns and dynamics of major population in Populus euphratica forest in upper reaches of Tarim River. Acta Botanica Boreali-Occidentalia Sinica, 27, 1668-1673.(in Chinese with English abstract) |
[韩路, 王海珍, 彭杰, 莫治新 (2007). 塔里木河上游天然胡杨林种群空间分布格局与动态研究. 西北植物学报, 27, 1668-1673.] | |
14 | Harms KE, Condit R, Hubbell SP, Foster RB (2001). Habitat associations of trees and shrubs in a 50-ha neotropical forest plot. Journal of Ecology, 89, 947-959. |
15 | He FL, Duncan RP (2000). Density-dependent effects on tree survival in an old-growth Douglas fir forest. Journal of Ecology, 88, 676-688. |
16 | Hu YH, Sha LQ, Blanchet FG, Zhang JL, Tang Y, Lan GY, Cao M (2012). Dominant species and dispersal limitation regulate tree species distributions in a 20-ha plot in Xishuangbanna, southwest China. Oikos, 121, 952-960. |
17 | Huang YF, Ding Y, Zang RG, Li XC, Zou ZC, Han WT (2012). Spatial pattern of trees in tropical lowland rain forest in Bawangling of Hainan Island, China. Chinese Journal of Plant Ecology, 36, 269-280.(in Chinese with English abstract) |
[黄运峰, 丁易, 臧润国, 李小成, 邹正冲, 韩文涛 (2012). 海南岛霸王岭热带低地雨林树木的空间格局. 植物生态学报, 36, 269-280.] | |
18 |
Hubbell SP (1979). Tree dispersion, abundance, and diversity in a tropical dry forest. Science, 203, 1299-1309.
DOI URL PMID |
19 | Illian J, Penttinen A, Stoyan H, Stoyan D (2008). Statistical Analysis and Modelling of Spatial Point Patterns. John Wiley & Sons, London, UK. |
20 | Janzen DH (1970). Herbivores and the number of tree species in tropical forests. The American Naturalist, 104, 501-528. |
21 |
Johnson DJ, Beaulieu WT, Bever JD, Clay K (2012). Consp- ecific negative density dependence and forest diversity. Science, 336, 904-907.
DOI URL PMID |
22 | Lai JS, Mi XC, Ren HB, Ma KP (2009). Species-habitat associations change in a subtropical forest of China. Journal of Vegetation Science, 20, 415-423. |
23 | Lan GY, Hu YH, Cao M, Zhu H, Wang H, Zhou SY, Deng XB, Cui JY, Huang JG, Liu LY, Xu HL, Song JP, He YC (2008). Establishment of Xishuangbanna tropical forest dynamics plot: species compositions and spatial distribution patterns. Journal of Plant Ecology (Chinese Version), 32, 287-298.(in Chinese with English abstract) |
[兰国玉, 胡跃华, 曹敏, 朱华, 王洪, 周仕顺, 邓晓保, 崔景云, 黄建国, 刘林云, 许海龙, 宋军平, 何有才 (2008). 西双版纳热带森林动态监测样地——树种组成与空间分布格局. 植物生态学报, 32, 287-298.] | |
24 | Levine JM, Murrell DJ (2003). The community-level consequences of seed dispersal patterns. Annual Review of Ecology, Evolution, and Systematics, 34, 549-574. |
25 | Li L, Huang ZL, Ye WH, Cao HL, Wei SG, Wang ZG, Lian JY, Sun IF, Ma KP, He FL (2009). Spatial distributions of tree species in a subtropical forest of China. Oikos, 118, 495-502. |
26 | Li YD, Chen BF, Zhou GY (2002). Research and Conservation of Tropical Forest and the Biodiversity. China Forestry Publishing House, Beijing.(in Chinese) |
[李意德, 陈步峰, 周光益 (2002). 中国海南岛热带森林及其生物多样性保护研究. 中国林业出版社, 北京.] | |
27 | Lin YC, Chang LW, Yang KC, Wang HH, Sun IF (2011). Point patterns of tree distribution determined by habitat heterogeneity and dispersal limitation. Oecologia, 165, 175-184. |
28 |
Liu XB, Liang MX, Etienne RS, Wang YF, Staehelin C, Yu SX (2012). Experimental evidence for a phylogenetic Janzen- Connell effect in a subtropical forest. Ecology Letters, 15, 111-118.
DOI URL PMID |
29 | Murrell DJ (2009). On the emergent spatial structure of size-structured populations: When does self-thinning lead to a reduction in clustering? Journal of Ecology, 97, 256-266. |
30 |
Pinto SM, MacDougall AS (2010). Dispersal limitation and environmental structure interact to restrict the occupation of optimal habitat. The American Naturalist, 175, 675-686.
DOI URL PMID |
31 | Ripley BD (1976). The second-order analysis of stationary point processes. Journal of Applied Probability, 13, 255-266. |
32 | Salas C, LeMay V, Núñez P, Pacheco P, Espinosa A (2006). Spatial patterns in an old-growth Nothofagus obliqua forest in south-central Chile. Forest Ecology and Manage- ment, 231, 38-46. |
33 |
Seidler TG, Plotkin JB (2006). Seed dispersal and spatial pattern in tropical trees. PLoS Biology, 4, e344.
DOI URL PMID |
34 |
Shen GC, He FL, Waagepetersen R, Sun IF, Hao ZQ, Chen ZS, Yu MJ (2013). Quantifying effects of habitat heterogeneity and other clustering processes on spatial distributions of tree species. Ecology, 94, 2436-2443.
DOI URL PMID |
35 | Takyu M, Aiba S, Kitayama K (2002). Effects of topography on tropical lower montane forests under different geological conditions on Mount Kinabalu, Borneo. Plant Ecology, 159, 35-49. |
36 | Veblen TT, Ashton DH, Schlegel FM (1979). Tree regeneration strategies in a lowland Nothofagus-dominated forest in south-central Chile. Journal of Biogeography, 6, 329-340. |
37 | Wang XT, Hou YL, Liang CZ, Wang W, Liu F (2012). Point pattern analysis based on different null models for detecting spatial patterns. Biodiversity Science, 20, 151-158.(in Chinese with English abstract) |
[王鑫厅, 侯亚丽, 梁存柱, 王炜, 刘芳 (2012). 基于不同零模型的点格局分析. 生物多样性, 20, 151-158.] | |
38 | Wiegand T, Moloney KA (2004). Rings, circles, and null- models for point pattern analysis in ecology. Oikos, 104, 209-229. |
39 |
Wiegand T, Gunatilleke S, Gunatilleke N, Okuda T (2007). Analyzing the spatial structure of a Sri Lankan tree species with multiple scales of clustering. Ecology, 88, 3088-3102.
DOI URL PMID |
40 | Wills C, Condit R, Foster RB, Hubbell SP (1997). Strong density- and diversity-related effects help to maintain tree species diversity in a neotropical forest. Proceedings of the National Academy of Sciences of the United States of America, 94, 1252-1257. |
41 | Zhang JT (1998). Analysis of spatial point pattern for plant species. Acta Phytoecologica Sinica, 22, 344-349.(in Chinese with English abstract) |
[张金屯 (1998). 植物种群空间分布的点格局分析. 植物生态学报, 22, 344-349.] | |
42 | Zhou Z, Li YD, Lin MX, Chen DX, Xu H, Luo TS, Qiu JL (2009). Climate changes characteristics over tropical mountain rainforest in Jianfengling during the recent 26 years: radiation, moisture, and wind factors. Acta Ecologica Sinica, 29, 1112-1120.(in Chinese with English abstract) |
[周璋, 李意德, 林明献, 陈德祥, 许涵, 骆土寿, 邱建丽 (2009). 海南岛尖峰岭热带山地雨林区26年的气候变化特征——光、水和风因子. 生态学报, 29, 1112-1120.] | |
43 |
Zhu Y, Getzin S, Wiegand T, Ren HB, Ma KP (2013). The relative importance of Janzen-Connell effects in influence- ing the spatial patterns at the gutianshan subtropical forest. PLoS ONE, 8, e74560.
DOI URL PMID |
[1] | 周建 王焓. 森林径级结构研究:从统计描述到理论演绎[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 何春梅, 李雨姗, 尹秋龙, 贾仕宏, 郝占庆. 秦岭皇冠暖温性落叶阔叶林优势树种的径级结构和数量特征[J]. 植物生态学报, 2023, 47(12): 1658-1667. |
[3] | 樊凡, 赵联军, 马添翼, 熊心雨, 张远彬, 申小莉, 李晟. 川西王朗亚高山暗针叶林25.2 hm2动态监测样地物种组成与群落结构特征[J]. 植物生态学报, 2022, 46(9): 1005-1017. |
[4] | 赵长兴, 赵维俊, 张兴林, 刘思敏, 牟文博, 刘金荣. 祁连山排露沟流域青海云杉种群种内竞争与促进作用分析[J]. 植物生态学报, 2022, 46(9): 1027-1037. |
[5] | 李帅锋, 郎学东, 黄小波, 王艳红, 刘万德, 徐崇华, 苏建荣. 云南普洱30 hm2季风常绿阔叶林动态监测样地群丛数量分类[J]. 植物生态学报, 2020, 44(3): 236-247. |
[6] | 拓锋, 刘贤德, 刘润红, 赵维俊, 敬文茂, 马剑, 武秀荣, 赵晶忠, 马雪娥. 祁连山大野口流域青海云杉种群空间格局及其关联性[J]. 植物生态学报, 2020, 44(11): 1172-1183. |
[7] | 吴盼, 彭希强, 杨树仁, 高亚男, 白丰桦, 衣世杰, 杜宁, 郭卫华. 山东省滨海湿地柽柳种群的空间分布格局及其关联性[J]. 植物生态学报, 2019, 43(9): 817-824. |
[8] | 温韩东, 林露湘, 杨洁, 胡跃华, 曹敏, 刘玉洪, 鲁志云, 谢有能. 云南哀牢山中山湿性常绿阔叶林20 hm2动态样地的物种组成与群落结构[J]. 植物生态学报, 2018, 42(4): 419-429. |
[9] | 邢娟, 郑成洋, 冯婵莹, 曾发旭. 河北塞罕坝樟子松人工林生长及碳储量的变化[J]. 植物生态学报, 2017, 41(8): 840-849. |
[10] | 王鑫厅, 张维华, 姜超, 梁存柱. 重复取样条件下的点格局分析[J]. 植物生态学报, 2017, 41(5): 577-584. |
[11] | 刘群, 庄丽燕, 杨万勤, 倪祥银, 李婷婷, 徐振锋. 川西亚高山两种树木不同径级根系腐殖化过程中胡敏酸和富里酸的累积特征[J]. 植物生态学报, 2017, 41(12): 1251-1261. |
[12] | 张瑜, 金光泽. 腐烂等级、径级对典型阔叶红松林红松倒木物理化学性质的影响[J]. 植物生态学报, 2016, 40(12): 1276-1288. |
[13] | 许洺山, 赵延涛, 杨晓东, 史青茹, 周刘丽, 阎恩荣. 浙江天童木本植物叶片性状空间变异的地统计学分析[J]. 植物生态学报, 2016, 40(1): 48-59. |
[14] | 龙文兴, 丁易, 臧润国, 杨民, 陈少伟. 海南岛霸王岭热带云雾林雨季的环境特征[J]. 植物生态学报, 2011, 35(2): 137-146. |
[15] | 王鑫厅, 侯亚丽, 刘芳, 常英, 王炜, 梁存柱, 苗百岭. 羊草+大针茅草原退化群落优势种群空间点格局分析[J]. 植物生态学报, 2011, 35(12): 1281-1289. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19