植物生态学报 ›› 2017, Vol. 41 ›› Issue (8): 840-849.DOI: 10.17521/cjpe.2017.0060
所属专题: 碳储量
出版日期:
2017-08-10
发布日期:
2017-09-29
通讯作者:
郑成洋
作者简介:
康璟瑶(1991-),男,江苏南京人,硕士生,主要从事旅游地理与旅游规划研究,E-mail: 基金资助:
Juan XING, Cheng-Yang ZHENG*(), Chan-Ying FENG, Fa-Xu ZENG
Online:
2017-08-10
Published:
2017-09-29
Contact:
Cheng-Yang ZHENG
About author:
KANG Jing-yao(1991-), E-mail: 摘要:
樟子松(Pinus sylvestris var. mongolica)作为华北地区重要的造林树种, 其生长及固碳特征的研究对樟子松人工林经营有着重要的意义。该文通过2006-2016年10年的定点观测, 研究河北省塞罕坝林场樟子松人工林的生长和固碳特征。结果表明: 10年间樟子松人工林胸径年增长4.19%, 树高年增长1.97%; 林木死亡率8.39%。该林分2006年和2016年的碳储量分别为59.04和109.64 t?hm-2, 即10年间固碳量为50.6 t?hm-2, 固碳年平均增长8.57%。不同径级的林木固碳能力有差异, 0-10 cm径级的林木总株数占39.1%, 但固碳量仅占8.3%; 10-20 cm径级的林木株数占59.2%, 固碳量占比达87.1%。结果显示樟子松人工林具有较大的固碳潜力, 未来评估林分生态效益与固碳潜力时, 应充分考虑林分的结构特征。
邢娟, 郑成洋, 冯婵莹, 曾发旭. 河北塞罕坝樟子松人工林生长及碳储量的变化. 植物生态学报, 2017, 41(8): 840-849. DOI: 10.17521/cjpe.2017.0060
Juan XING, Cheng-Yang ZHENG, Chan-Ying FENG, Fa-Xu ZENG. Change of growth characters and carbon stocks in plantations of Pinus sylvestris var. mongolica in Saihanba, Hebei, China. Chinese Journal of Plant Ecology, 2017, 41(8): 840-849. DOI: 10.17521/cjpe.2017.0060
树种 Species | 器官 Organ | 生物量方程 Formulate for biomass |
---|---|---|
樟子松 | 树干 Stem | W = 0.039 × (D2H)0.888 |
Pinus sylvestris var. mongolica | 树枝 Branch | W = 0. 047 × (D2H)0.705 |
树叶 Foliage | W = 0.075 × (D2H)0.404 | |
树根 Root | W = 0.012 × (D2H)0.873 | |
落叶松 | 树干 Stem | W = 0.065 × (D2H)0793 |
Larix principis-rupprechtii | 树枝 Branch | W = 0.052 × (D2H)0.679 |
树叶 Foliage | W = 0.139 × (D2H)0.457 | |
树根 Root | W = 0.023 × (D2H)0.75 |
表1 樟子松和落叶松各生物量组分计算公式
Table 1 Formulae for biomass in different components of Pinus sylvestris var. mongolica and Larix principis-rupprechtii
树种 Species | 器官 Organ | 生物量方程 Formulate for biomass |
---|---|---|
樟子松 | 树干 Stem | W = 0.039 × (D2H)0.888 |
Pinus sylvestris var. mongolica | 树枝 Branch | W = 0. 047 × (D2H)0.705 |
树叶 Foliage | W = 0.075 × (D2H)0.404 | |
树根 Root | W = 0.012 × (D2H)0.873 | |
落叶松 | 树干 Stem | W = 0.065 × (D2H)0793 |
Larix principis-rupprechtii | 树枝 Branch | W = 0.052 × (D2H)0.679 |
树叶 Foliage | W = 0.139 × (D2H)0.457 | |
树根 Root | W = 0.023 × (D2H)0.75 |
树种 Species | 2006年 | 2016年 | 年均增幅 Annual increment rate (%) | |||||
---|---|---|---|---|---|---|---|---|
密度 Density (stems?hm-2) | 胸径 DBH (cm) | 树高 Tree height (m) | 密度 Density (stems?hm-2) | 胸径 DBH (cm) | 树高 Tree height (m) | 胸径 DBH | 树高 Tree height (m) | |
樟子松 Pinus sylvestris var. mongolica | 2 900 | 10.95 ± 3.53 | 8.74 ± 1.54 | 2 625 | 15.56 ± 6.29 | 10.62 ± 2.22 | 4.21 | 2.15 |
落叶松 Larix principis-rupprechtii | 669 | 12.29 ± 4.34 | 9.49 ± 2.08 | 650 | 17.18 ± 6.54 | 10.67 ± 2.66 | 3.98 | 1.24 |
林分 Stand | 3 569 | 11.19 ± 3.73 | 8.88 ± 1.68 | 3 275 | 15.88 ± 6.37 | 10.63 ± 2.37 | 4.19 | 1.97 |
表2 樟子松人工林林分结构特征(平均值±标准偏差)
Table 2 Stand characteristics of Pinus sylvestris var. mongolica plantations (mean ± SD)
树种 Species | 2006年 | 2016年 | 年均增幅 Annual increment rate (%) | |||||
---|---|---|---|---|---|---|---|---|
密度 Density (stems?hm-2) | 胸径 DBH (cm) | 树高 Tree height (m) | 密度 Density (stems?hm-2) | 胸径 DBH (cm) | 树高 Tree height (m) | 胸径 DBH | 树高 Tree height (m) | |
樟子松 Pinus sylvestris var. mongolica | 2 900 | 10.95 ± 3.53 | 8.74 ± 1.54 | 2 625 | 15.56 ± 6.29 | 10.62 ± 2.22 | 4.21 | 2.15 |
落叶松 Larix principis-rupprechtii | 669 | 12.29 ± 4.34 | 9.49 ± 2.08 | 650 | 17.18 ± 6.54 | 10.67 ± 2.66 | 3.98 | 1.24 |
林分 Stand | 3 569 | 11.19 ± 3.73 | 8.88 ± 1.68 | 3 275 | 15.88 ± 6.37 | 10.63 ± 2.37 | 4.19 | 1.97 |
树种 Species | 年份 Year | 胸径 DBH (cm) | 树高 Tree height (m) | ||
---|---|---|---|---|---|
总生长量 Total increment | 年生长量 Annual increment | 总生长量 Total increment | 年生长量 Annual increment | ||
樟子松 Pinus sylvestris var. mongolica | 2006 | 10.95 | 0.456 | 8.74 | 0.257 |
2016 | 15.56 | 0.458 | 10.62 | 0.312 | |
落叶松 Larix principis- rupprechtii | 2006 | 12.29 | 0.512 | 9.49 | 0.279 |
2016 | 17.18 | 0.505 | 10.67 | 0.314 | |
林分 Stand | 2006 | 11.19 | 0.466 | 8.88 | 0.261 |
2016 | 15.88 | 0.467 | 10.63 | 0.313 |
表3 树木年生长量特征
Table 3 Dynamics of annual tree growth
树种 Species | 年份 Year | 胸径 DBH (cm) | 树高 Tree height (m) | ||
---|---|---|---|---|---|
总生长量 Total increment | 年生长量 Annual increment | 总生长量 Total increment | 年生长量 Annual increment | ||
樟子松 Pinus sylvestris var. mongolica | 2006 | 10.95 | 0.456 | 8.74 | 0.257 |
2016 | 15.56 | 0.458 | 10.62 | 0.312 | |
落叶松 Larix principis- rupprechtii | 2006 | 12.29 | 0.512 | 9.49 | 0.279 |
2016 | 17.18 | 0.505 | 10.67 | 0.314 | |
林分 Stand | 2006 | 11.19 | 0.466 | 8.88 | 0.261 |
2016 | 15.88 | 0.467 | 10.63 | 0.313 |
图1 10年间塞罕坝樟子松人工林胸径、树高增长量(平均值±标准误差)。
Fig. 1 Decadal increment of diameter at breast height (DBH) and tree height in Pinus sylvestris var. mongolica plantations in Saihanba (mean ± SE).
图2 10年间不同径级的胸径、树高和胸高断面积增长量。小写字母表示不同径级的10年间胸径、树高、胸高断面积增长量的多重比较显著水平(p < 0.05) (平均值±标准误差)。
Fig. 2 Decadal increment of diameter at breast height (DBH), tree height and basal area in different DBH-class. Lowercase letter represent the significant level of multiple comparisons of decadal increment of DBH, tree height and basal area in different DBH-class (mean ± SE).
径级 DBH-class (cm) | 2006年 | 2016年 | 10年间死亡率 Decadal mortality (%) | |||
---|---|---|---|---|---|---|
樟子松 Pinus sylvestris var. mongolica | 落叶松 Larix principis- rupprechtii | 樟子松 Pinus sylvestris var. mongolica | 落叶松 Larix principis- rupprechtii | 樟子松 Pinus sylvestris var. mongolica | 落叶松 Larix principis- rupprechtii | |
0-5 | 29 | 5 | 8 | 4 | 72.4 | 20.0 |
5-10 | 404 | 67 | 330 | 63 | 18.3 | 5.9 |
10-15 | 466 | 107 | 460 | 105 | 1.3 | 1.9 |
15-20 | 143 | 47 | 143 | 47 | 0.0 | 0.0 |
20-25 | 4 | 15 | 4 | 15 | 0.0 | 0.0 |
表4 不同径级林木死亡率
Table 4 Mortality of forest stand in different DBH-class
径级 DBH-class (cm) | 2006年 | 2016年 | 10年间死亡率 Decadal mortality (%) | |||
---|---|---|---|---|---|---|
樟子松 Pinus sylvestris var. mongolica | 落叶松 Larix principis- rupprechtii | 樟子松 Pinus sylvestris var. mongolica | 落叶松 Larix principis- rupprechtii | 樟子松 Pinus sylvestris var. mongolica | 落叶松 Larix principis- rupprechtii | |
0-5 | 29 | 5 | 8 | 4 | 72.4 | 20.0 |
5-10 | 404 | 67 | 330 | 63 | 18.3 | 5.9 |
10-15 | 466 | 107 | 460 | 105 | 1.3 | 1.9 |
15-20 | 143 | 47 | 143 | 47 | 0.0 | 0.0 |
20-25 | 4 | 15 | 4 | 15 | 0.0 | 0.0 |
图3 2006年和2016年樟子松人工林胸径频率分布。
Fig. 3 Diameter at breast height (DBH) frequency distribution in Pinus sylvestris var. mongolica plantation in 2006 and 2016.
图4 10年间不同径级林木碳储量变化和碳储量年平均变 化率。
Fig. 4 Decadal variation and annual rate of change of tree carbon storage in different DBH-class. DBH, diameter at breast height.
[1] |
Alvarez S, Ortiz C, Díaz-Pinés E, Rubio A (2016). Influence of tree species composition, thinning intensity and climate change on carbon sequestration in Mediterranean mountain forests: A case study using the CO2 fix model.Mitigation and Adaptation Strategies for Global Change, 21, 1045-1058.
DOI URL |
[2] |
Chen DX, Li YD, Xu H, Xiao WF, Luo TS, Zhou Z, Lin MX (2010). Biomass and carbon dynamics of a tropical mountain rain forest in China.Science China: Life Science, 40, 596-609.(in Chinese)[陈德祥, 李意德, 许涵, 肖文发, 骆土寿, 周璋, 林明献 (2010). 尖峰岭热带山地雨林生物量及碳库动态. 中国科学: 生命科学,40, 596-609.]
DOI URL |
[3] |
Coomes DA, Allen RB (2007). Mortality and tree-size distributions in natural mixed-age forests.Journal of Ecology, 95, 27-40.
DOI URL |
[4] | Dai JX (2002). Afforestation Techniques of Pinus sylvestris var. mongolica China. Forestry Publishing House, Beijing.(in Chinese)[戴继先 (2002). 樟子松造林技术. 中国林业出版社, 北京.] |
[5] |
Dobbertin M, Eilmann B, Bleuler P, Giuggiola A, Graf Pannatier E, Landolt W, Schleppi P, Rigling A (2010). Effect of irrigation on needle morphology, shoot and stem growth in a drought-exposed Pinus sylvestris forest.Tree Physiology, 30, 346-360.
DOI URL PMID |
[6] | Eilmann B, Buchmann N, Siegwolf R, Saurer M, Cherubini P, Rigling A (2010). Fast response of Scots pine to improved water availability reflected in tree-ring width and delta 13C.Plant, Cell & Environment, 33, 1351-1360. |
[7] |
Fang JY, Chen AP, Peng CH, Zhao SQ, Ci LJ (2001). Changes in forest biomass carbon storage in China between 1949 and 1998.Science, 292, 2320-2322.
DOI URL PMID |
[8] |
Fedrigo M, Kasel S, Bennett LT, Roxburgh SH, Nitschke CR (2014). Carbon stocks in temperate forests of south-eastern Australia reflect large tree distribution and edaphic conditions.Forest Ecology and Management, 334, 129-143.
DOI URL |
[9] | Gerile, Siqinbilige, Jin R (2004). Research on the growth characteristics of the introduced Pinus sylvestris var. mongolica in Maowusu sandy land.Journal of Arid Land Resources and Environment, 18(5), 159-162.[格日勒, 斯琴毕力格, 金荣 (2004). 毛乌素沙地引种樟子松生长特性的研究. 干旱区资源与环境, 18(5), 159-162.] |
[10] |
Guo ZD, Hu HF, Li P, Li NY, Fang JY (2013). Spatio-temporal changes in biomass carbon sinks in China’s forests from 1977 to 2008.Science China: Life Sciences, 56, 661.
DOI URL PMID |
[11] | Han MN, Wei YW, Qin SJ, Deng LP, Zhou YB (2015). Carbon storage dynamics and its distribution pattern in Pinus sylvestris var. mongolica plantation in sandy land.Chinese Journal of Ecology, 34, 1798-1803.(in Chinese with English abstract)[韩美娜, 魏亚伟, 秦胜金, 邓莉萍, 周永斌 (2015). 沙地樟子松人工林碳库动态及其分配特征. 生态学杂志 34, 1798-1803.] |
[12] | Hu HQ, Luo BZ, Wei SJ, Wei SW, Sun L, Luo SS, Ma HB (2015). Biomass carbon density and carbon sequestration capacity in seven typical forest types of the Xiaoxing’an Mountains China. Chinese Journal of Plant Ecology, 39, 140-158.(in Chinese with English abstract)[胡海清, 罗碧珍, 魏书精, 魏书威, 孙龙, 罗斯生, 马洪斌 (2015). 小兴安岭7种典型林型林分生物量碳密度与固碳能力., 植物生态学报,39, 140-158.] |
[13] | Jia WW, Li FR, Dong LH, Zhao X (2012). Carbon density and storage for Pinus sylvestris var. mongolica plantation based on compatible biomass models.Journal of Beijing Forestry University, 34(1), 6-13.(in Chinese with English abstract)[贾炜玮, 李凤日, 董利虎, 赵鑫 (2012). 基于相容性生物量模型的樟子松林碳密度与碳储量研究, 北京林业大学学报,34(1), 6-13.] |
[14] | Jiang FQ, Zeng DH, Fan ZP, Zhu JJ (1996). Simulation of individual tree growth of Mongolian pine forest in sandy land.Chinese Journal of Applied Ecology, 7, 1-5.(in Chinese with English abstract)[姜凤岐, 曾德慧, 范志平, 朱教君 (1996). 沙地樟子松林单木生长的研究, 应用生态学报,7, 1-5.] |
[15] | Lang JM, Song TM (1993). Effects of root treatment and packaging methods on afforestation of seedling of Pinus sylvestris var.mongolica. Journal of Beijing Forestry University, 15(2), 203-206.[郎建民, 宋廷茂 (1993). 根系处理及包装方法对樟子松苗木造林效果的影响. 北京林业大学学报, 15(2), 203-206.] |
[16] |
Lee J, Tolunay D, Makineci E, ??mez A, Son YM, Kim R, Son Y (2016). Estimating the age-dependent changes in carbon stocks of Scots pine (Pinus sylvestris L.) stands in Turkey. Annals of Forest Science, 73, 523-531.
DOI URL |
[17] |
Li LL, Li LG, Chen ZJ, Zhou YB, Zhang XL, Bai XP, Chang YX, Xiao JQ (2015). Responses of Pinus sylvestris var. mongolica to gradient change of hydrothermal in plantations in Liaoning Province.Acta Ecologica Sinica, 35, 4508-4517.(in Chinese with English abstract)[李露露, 李丽光, 陈振举, 周永斌, 张先亮, 白学平, 常永兴, 肖建强 (2015). 辽宁省人工林樟子松径向生长对水热梯度变化的响应, 生态学报,35, 4508-4517.]
DOI URL |
[18] |
Li Q, Zhu JH, Feng Y, Xiao WF (2016). Carbon stocks and carbon sequestration of the main plantation in China.Journal of Northwest Forestry University, 31, 1-6.(in Chinese with English abstract)[李奇, 朱建华, 冯源, 肖文发 (2016). 中国主要人工林碳储量与固碳能力, 西北林学院学报,31, 1-6.]
DOI URL |
[19] |
Liu F, Zhang YX, Ma YB, Dong LL, Yu XC, Huang YR (2015). Growth rhythm of Pinus sylvestris var. mongolica in the Ulan Buh Desert.Journal of Desert Research, 35, 1234-1238.[刘芳, 章尧想, 马迎宾, 董礼隆, 余新春, 黄雅茹 (2015). 乌兰布和沙漠绿洲樟子松(Pinus sylvestris var. mongolica)生长规律初探. 中国沙漠, 35, 1234-1238.]
DOI URL |
[20] | Liu HM, Lü SJ, Lui QQ, Lui LY, Wang YJ, Zhang BH (2013). Biomass and carbon storage of the Pinus sylvestris var. mongolica plantation in the Duolun County.Journal of Inner Mongolia Agricultural University, 34, 49-53.(in Chinese with English abstract)[刘红梅, 吕世杰, 刘清泉, 刘丽英, 王玉芝, 章海波 (2013). 多伦县樟子松人工林生物量及碳储量研究, 内蒙古农业大学学报,34, 49-53.] |
[21] |
Lui XP, He YH, Wei SL, Zhao XY, Zhang TH, Yue XF (2016). Growth response of Pinus sylvestris var. mongolica to precipitation and air temperature in the Horqin Sandy Land.Journal of Desert Research, 36(1), 57-63.[刘新平, 何玉惠, 魏水莲, 赵学勇, 张铜会, 岳祥飞 (2016). 科尔沁沙地樟子松(Pinus sylvestris var. mongolica)生长对降水和温度的响应. 中国沙漠, 36(1), 57-63.]
DOI |
[22] |
Martin-Benito D, Beeckman H, Ca?ellas I (2013). Influence of drought on tree rings and tracheid features of Pinus nigra and Pinus sylvestris in a mesic Mediterranean forest.European Journal of Forest Research, 132, 33-45.
DOI URL |
[23] |
Michelot A, Simard S, Rathgeber C, Dufrene E, Damesin C (2012). Comparing the intra-annual wood formation of three European species (Fagus sylvatica, Quercus petraea and Pinus sylvestris) as related to leaf phenology and non-structural carbohydrate dynamics.Tree Physiology, 32, 1033-1045.
DOI URL PMID |
[24] |
Muller-Landau HC, Condit, RS, Chave J, Thomas SC, Bohlman SA, Bunyavejchewin S, Davies S, Foster R, Gunatilleke S, Gunatilleke N, Harms KE, Hart T, Hubbell SP, Itoh A, Kassim AR, LaFrankie JV, Lee HS, Losos E, Makana JR, Ohkubo T, Sukumar R, Sun IF, Nur Supardi MN, Tan S, Thompson J, Valencia R, Mu?oz GV, Wills C, Yamakura T, Chuyong G, Dattaraja HS, Esufali S, Hall P, Hernandez C, Kenfack D, Kiratiprayoon S, Suresh HS, Thomas D, Vallejo MI, Ashton P (2006). Testing metabolic ecology theory for allometric scaling of tree size, growth and mortality in tropical forests.Ecology Letters, 9, 575-588.
DOI URL PMID |
[25] |
Runkle JR (2013). Thirty-two years of change in an old-growth Ohio beech-maple forest.Ecology, 94, 1165-1175.
DOI URL PMID |
[26] |
Song L, Zhu J, Li M, Yu Z (2014). Water utilization of Pinus sylvestris var. mongolica in a sparse wood grassland in the semiarid sandy region of Northeast China.Trees, 28, 971-982.
DOI URL |
[27] |
Song L, Zhu J, Li M, Zhang J (2016). Water use patterns of Pinus sylvestris var. mongolica trees of different ages in a semiarid sandy lands of Northeast China.Environmental and Experimental Botany, 129, 94-107.
DOI URL |
[28] |
Song L, Zhu J, Yan Q, Li M, Yu G (2015). Comparison of intrinsic water use efficiency between different aged Pinus sylvestris var. mongolica wide windbreaks in semiarid sandy land of northern China.Agroforestry Systems, 89, 477-489.
DOI URL |
[29] |
Stephenson NL, Das AJ, Condit R, Russo SE, Baker PJ, Beckman NG, Coomes DA, Lines ER, Morris WK, Ruger N, Alvarez E, Blundo C, Bunyavejchewin S, Chuyong G, Davies SJ, Duque A, Ewango CN, Flores O, Franklin JF, Grau HR, Hao Z, Harmon ME, Hubbell SP, Kenfack D, Lin Y, Makana JR, Malizia A, Malizia LR, Pabst RJ, Pongpattananurak N, Su SH, Sun IF, Tan S, Thomas D, Mantgem PJ, Wang X, Wiser SK, Zavala MA (2014). Rate of tree carbon accumulation increases continuously with tree size.Nature, 507, 90.
DOI URL PMID |
[30] |
Vucetich JA, Reed DD, Breymeyer A, Degórski M, Mroz GD, Solon J, Roo-Zielinska E, Noble R (2000). Carbon pools and ecosystem properties along a latitudinal gradient in northern Scots pine (Pinus sylvestris) forests.Forest Ecology and Management, 136, 135-145.
DOI URL |
[31] |
Wang D, Wang B, Niu X (2014). Forest carbon sequestration in China and its benefits.Scandinavian Journal of Forest Research, 29, 51-59.
DOI URL |
[32] | Wang NH, Gao M, Li D (2014). Tree layer biomass distribution and carbon storage capacity of Larix olgensis plantation.Bulletin of Botanical Research, 34, 554-558.(in Chinese with English abstract)[王霓虹, 高萌, 李丹 (2014). 长白落叶松人工林乔木层生物量分布特征及其固碳能力研究, 植物研究,34, 554-558.] |
[33] |
Williams CA, Collatz GJ, Masek J, Goward SN (2012). Carbon consequences of forest disturbance and recovery across the conterminous United States. Global Biogeochemical Cycles, 26, 1005-1017.
DOI URL |
[34] |
Xu B, Pan Y, Plante AF, Johnson A, Cole J, Birdsey R (2016). Decadal change of forest biomass carbon stocks and tree demography in the Delaware River Basin.Forest Ecology and Management, 374, 1-10.
DOI URL |
[35] |
Yuan LM, Yan DR, Wang YQ, Jiang P, Liu Y (2015). Carbon storage of Pinus sylvestris var. mongolica plantation in sandy land.Journal of Inner Mongolia Forestry Science and Technology, 37, 9-13.(in Chinese with English abstract)[袁立敏, 闫德仁, 王熠青, 姜鹏, 刘阳 (2011). 沙地樟子松人工林碳储量研究, 内蒙古林业科技,37, 9-13.]
DOI URL |
[36] |
Zeng DH, Hu YL, Chang SX, Fan ZP (2000). Land cover change effects on soil chemical and biological properties after planting Mongolian pine (Pinus sylvestris var. mongolica) in sandy lands in Keerqin, northeastern China.Plant and Soil, 317, 121-133.
DOI URL |
[37] |
Zeng DH, Jiang FQ, Fan ZP, Du XJ (2010). Self-thinning of even-aged pure plantations of Pinus sylvestris var. mongolica on sandy soil.Acta Ecologica Sinica, 20, 235-242.(in Chinese with English abstract)[曾德慧, 姜凤岐, 范志平, 杜晓军 (2000). 沙地樟子松人工林自然稀疏规律, 生态学报,20, 235-242.]
DOI URL |
[38] | Zeng DH, Jiang FQ, Fan ZP, Zhu JJ (1996). Stability of Mongolian pine plantations on sandy land.Journal of Applied Ecology, 7, 337-343.(in Chinese with English abstract)[曾德慧, 姜凤岐, 范志平, 朱教君 (1996). 樟子松人工固沙林稳定性的研究, 应用生态学报,7, 337-343.] |
[39] |
Zhang JY, Zhao HL, Cui JY, Zhang TH, Zhao XY (2005). Community structure, soil water dynamics and community stability of Pinus sylvestris var. mongolica plantation in Horqin Sandy Land.Scientia Silvae Sinicae, 41(3), 1-6.(in Chinese with English abstract)[张继义, 赵哈林, 崔建垣, 张铜会, 赵学勇 (2005). 科尔沁沙地樟子松人工林土壤水分动态的研究, 林业科学,41(3), 1-6]
DOI |
[40] | Zhang RS (2016). Growth and maturity of Pinus sylvestris var. mongolica plantation on sandy land.Protection Forest Science and Technology, (11), 45-47.(in Chinese with English abstract)[张日升 (2016). 沙地樟子松人工林的生长与成熟. 防护林科技, (11), 45-47.] |
[41] | Zhao M (2004).Carbon Storage Dynamics and Its Distribution Pattern in Pinus sylvestris var. mongolica Plantation in Sandy Land. PhD dissertation, Institute of Botany, Chinese Academy of Sciences,Beijing.(in Chinese with English abstract)[赵敏 (2004). 中国主要森林生态系统碳储量和碳收支评估. 博士学位论文, 中国科学院植物研究所, 北京.] |
[42] |
Zhu JJ, Fan ZP, Zeng DH, Jiang FQ, Matsuzaki T (2003) Comparison of stand structure and growth between artificial and natural forests of Pinus sylvestiris var. mongolica on sandy land.Journal of Forestry Research, 14, 103-111.
DOI URL |
[43] |
Zhu JJ, Li FQ, Xu ML, Kang HZ, Wu XY (2008). The role of ectomycorrhizal fungi in alleviating pine decline in semiarid sandy soil of northern China: An experimental approach.Annals of Forest Science, 65, 1-12.
DOI URL |
[1] | 张智洋 赵颖慧 甄贞. 1986-2022年松花江流域陆地生态系统碳储量动态监测[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 周建 王焓. 森林径级结构研究:从统计描述到理论演绎[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[3] | 张计深, 史新杰, 刘宇诺, 吴阳, 彭守璋. 气候变化下中国潜在自然植被生态系统碳储量动态[J]. 植物生态学报, 2024, 48(4): 428-444. |
[4] | 徐干君, 吴胜义, 李伟, 赵欣胜, 聂磊超, 唐希颖, 翟夏杰. 陕西黄河湿地自然保护区碳储量估算[J]. 植物生态学报, 2023, 47(4): 469-478. |
[5] | 何春梅, 李雨姗, 尹秋龙, 贾仕宏, 郝占庆. 秦岭皇冠暖温性落叶阔叶林优势树种的径级结构和数量特征[J]. 植物生态学报, 2023, 47(12): 1658-1667. |
[6] | 张亮, 王志磊, 薛婷婷, 郝笑云, 杨晨露, 高飞飞, 王莹, 韩星, 李华, 王华. 葡萄园生态系统碳源/汇及碳减排策略研究进展[J]. 植物生态学报, 2020, 44(3): 179-191. |
[7] | 拓锋, 刘贤德, 刘润红, 赵维俊, 敬文茂, 马剑, 武秀荣, 赵晶忠, 马雪娥. 祁连山大野口流域青海云杉种群空间格局及其关联性[J]. 植物生态学报, 2020, 44(11): 1172-1183. |
[8] | 吴盼, 彭希强, 杨树仁, 高亚男, 白丰桦, 衣世杰, 杜宁, 郭卫华. 山东省滨海湿地柽柳种群的空间分布格局及其关联性[J]. 植物生态学报, 2019, 43(9): 817-824. |
[9] | 魏红, 满秀玲. 中国寒温带不同林龄白桦林碳储量及分配特征[J]. 植物生态学报, 2019, 43(10): 843-852. |
[10] | 陈科宇, 字洪标, 阿的鲁骥, 胡雷, 王根绪, 王长庭. 青海省森林乔木层碳储量现状及固碳潜力[J]. 植物生态学报, 2018, 42(8): 831-840. |
[11] | 周序力, 蔡琼, 熊心雨, 方文静, 朱剑霄, 朱江玲, 方精云, 吉成均. 贵州月亮山不同演替阶段亮叶水青冈林碳储量及其分配格局[J]. 植物生态学报, 2018, 42(7): 703-712. |
[12] | 温韩东, 林露湘, 杨洁, 胡跃华, 曹敏, 刘玉洪, 鲁志云, 谢有能. 云南哀牢山中山湿性常绿阔叶林20 hm2动态样地的物种组成与群落结构[J]. 植物生态学报, 2018, 42(4): 419-429. |
[13] | 李茜, 王芳, 曹扬, 彭守璋, 陈云明. 陕西省森林土壤固碳特征及其影响因素[J]. 植物生态学报, 2017, 41(9): 953-963. |
[14] | 汲玉河, 郭柯, 倪健, 徐小牛, 王志高, 王树东. 安徽省森林碳储量现状及固碳潜力[J]. 植物生态学报, 2016, 40(4): 395-404. |
[15] | 李银, 陈国科, 林敦梅, 陈彬, 高雷明, 简兴, 杨波, 徐武兵, 苏宏新, 赖江山, 王希华, 杨海波, 马克平. 浙江省森林生态系统碳储量及其分布特征[J]. 植物生态学报, 2016, 40(4): 354-363. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19