植物生态学报 ›› 2016, Vol. 40 ›› Issue (4): 395-404.DOI: 10.17521/cjpe.2015.0147
汲玉河1,2, 郭柯1,*(), 倪健3, 徐小牛4, 王志高5, 王树东6
收稿日期:
2015-04-21
接受日期:
2015-08-13
出版日期:
2016-04-29
发布日期:
2016-04-30
通讯作者:
郭柯
基金资助:
Yu-He JI1,2, Ke GUO1,*(), Jian NI3, Xiao-Niu XU4, Zhi-Gao WANG5, Shu-Dong WANG6
Received:
2015-04-21
Accepted:
2015-08-13
Online:
2016-04-29
Published:
2016-04-30
Contact:
Ke GUO
摘要:
为阐明安徽省不同林龄的森林生态系统的碳储量现状, 以及现有自然环境条件下顶极森林生态系统的固碳潜力, 采用野外样地调查和BIOME4模型方法对此进行研究。安徽省森林生态系统的现状总碳储量为714.5 Tg C, 其中植被碳402.1 Tg C、土壤碳312.4 Tg C。从幼龄林至过熟林的生长过程中, 森林生态系统的总碳密度和植被碳密度都呈现增长趋势。但土壤碳密度从幼龄林至近熟林阶段呈增加趋势, 近熟林以后出现减少趋势。安徽省幼龄林和中龄林占森林总面积的75%, 若幼、中龄林发展到近熟林阶段, 将增加125.4 Tg C。BIOME4模拟显示: 当森林发展到气候顶极森林时, 安徽省森林生态系统将增加245.7 Tg C, 即总固碳潜力包括植被固碳153.7 Tg C, 土壤固碳92.0 Tg C。
汲玉河, 郭柯, 倪健, 徐小牛, 王志高, 王树东. 安徽省森林碳储量现状及固碳潜力. 植物生态学报, 2016, 40(4): 395-404. DOI: 10.17521/cjpe.2015.0147
Yu-He JI, Ke GUO, Jian NI, Xiao-Niu XU, Zhi-Gao WANG, Shu-Dong WANG. Current forest carbon stocks and carbon sequestration potential in Anhui Province, China. Chinese Journal of Plant Ecology, 2016, 40(4): 395-404. DOI: 10.17521/cjpe.2015.0147
干 Stem | 枝 Branch | 叶 Leaf | 根 Root | 胸径 Diameter at breast height (cm) | |
---|---|---|---|---|---|
马尾松 Pinus massoniana | W = 0.0337(D2H)0.9551 R2 = 0.996 | W = 0.036(D2H)0.7948 R2 = 0.997 | W = 0.0016(D2H)1.1007 R2 = 0.998 | W = 0.015(D2H)0.8322 R2 = 0.974 | 1.0-50.4 |
杉木 Cunninghamia lanceolata | W = 0.0411(D2H)0.8941 R2 = 0.990 | W = 0.0015(D2H)1.062 R2 = 0.999 | W = 0.0108(D2H)0.8246 R2 = 0.999 | W = 0.0314(D2H)0.7592 R2 = 0.990 | 1.0-85.5 |
甜槠栲 Castanopsis eyrei | W = 0.0278(D2H)0.9251 R2 = 0.998 | W = 0.0137(D2H)0.9053 R2 = 0.994 | W = 0.0054(D2H)0.9248 R2 = 0.997 | W = 0.0013(D2H)1.2697 R2 = 0.975 | 4.9-52.9 |
苦槠栲 Castanopsis sclerophylla | W = 0.0201(D2H)0.9719 R2 = 0.990 | W = 0.04101(D2H)0.662 R2 = 0.990 | W = 0.0617(D2H)0.5259 R2 = 0.990 | W = 0.0281(D2H)0.8011 R2 = 0.967 | 4.7-36.4 |
青冈 Cyclobalanopsis glauca | W = 0.0735(D2H)0.8503 R2 = 0.967 | W = 0.0086(D2H)1.0031 R2 = 0.931 | W = 0.0084(D2H)0.8108 R2 = 0.871 | W = 0.0181(D2H)0.8732 R2 = 0.952 | 2.4-60.0 |
台湾松 Pinus taiwanensis | W = 0.0581(D2H)0.8159 R2 = 0.991 | W = 0.0032(D2H)1.128 R2 = 0.987 | W = 0.0091(D2H)0.8579 R2 = 0.986 | W = 0.0133(D2H)0.8872 R2 = 0.988 | 4.0-79.5 |
湿地松 Pinus elliottii | W = 0.0474(D2H)0.8841 R2 = 0.994 | W = 0.0079(D2H)0.9572 R2 = 0.993 | W = 0.0166(D2H)0.9734 R2 = 0.971 | W = 0.0070 (D2H)1.1038 R2 = 0.990 | 1.5-32.5 |
黑杨 Populus nigra | W = 0.0635(D2H)0.8227 R2 = 0.991 | W = 0.171(D2H)0.5689 R2 = 0.995 | W = 0.0568(D2H)0.56 R2 = 0.978 | W = 0.0118(D2H)0.8848 R2 = 0.984 | 6.2-98.5 |
麻栎 Quercus acutissima | W = 0.0235(D2H)0.9792 R2 = 0.950 | W = 0.0004(D2H)1.3585 R2 = 0.988 | W = 0.0028(D2H)0.8444 R2 = 0.976 | W = 0.0125(D2H)0.9308 R2 = 0.978 | 2.2-47.1 |
针叶混交林 Coniferous mixed forest | W = 0.018(D2H)1.089 R2 = 0.941 | W = 0.013(D2H)0.857 R2 = 0.793 | W = 0.005(D2H)0.929 R2 = 0.884 | W = 0.021(D2H)0.809 R2 = 0.909 | 3.1-84.5 |
阔叶混交林 Broadleaved mixed forest | W = 0.045 (D2H)0.874 R2 = 0.953 | W = 0.020 (D2H)0.839 R2 = 0.880 | W = 0.010 (D2H)0.780 R2 = 0.848 | W = 0.009 (D2H)0.974 R2 = 0.906 | 2.0-98.6 |
针阔混交林 Conifer-broadleaved mixed forest | W = 0.049(D2H)0.870 R2 = 0.955 | W = 0.013(D2H)0.867 R2 = 0.817 | W = 0.007(D2H)0.860 R2 = 0.843 | W = 0.014(D2H)0.874 R2 = 0.891 | 2.0-98.6 |
表1 安徽省优势树种(组)各个器官(干、枝、叶、根)的生物量方程
Table 1 Biomass equations for different organs (stem, branches, leaves, and roots) of dominant trees (groups) in Anhui Province
干 Stem | 枝 Branch | 叶 Leaf | 根 Root | 胸径 Diameter at breast height (cm) | |
---|---|---|---|---|---|
马尾松 Pinus massoniana | W = 0.0337(D2H)0.9551 R2 = 0.996 | W = 0.036(D2H)0.7948 R2 = 0.997 | W = 0.0016(D2H)1.1007 R2 = 0.998 | W = 0.015(D2H)0.8322 R2 = 0.974 | 1.0-50.4 |
杉木 Cunninghamia lanceolata | W = 0.0411(D2H)0.8941 R2 = 0.990 | W = 0.0015(D2H)1.062 R2 = 0.999 | W = 0.0108(D2H)0.8246 R2 = 0.999 | W = 0.0314(D2H)0.7592 R2 = 0.990 | 1.0-85.5 |
甜槠栲 Castanopsis eyrei | W = 0.0278(D2H)0.9251 R2 = 0.998 | W = 0.0137(D2H)0.9053 R2 = 0.994 | W = 0.0054(D2H)0.9248 R2 = 0.997 | W = 0.0013(D2H)1.2697 R2 = 0.975 | 4.9-52.9 |
苦槠栲 Castanopsis sclerophylla | W = 0.0201(D2H)0.9719 R2 = 0.990 | W = 0.04101(D2H)0.662 R2 = 0.990 | W = 0.0617(D2H)0.5259 R2 = 0.990 | W = 0.0281(D2H)0.8011 R2 = 0.967 | 4.7-36.4 |
青冈 Cyclobalanopsis glauca | W = 0.0735(D2H)0.8503 R2 = 0.967 | W = 0.0086(D2H)1.0031 R2 = 0.931 | W = 0.0084(D2H)0.8108 R2 = 0.871 | W = 0.0181(D2H)0.8732 R2 = 0.952 | 2.4-60.0 |
台湾松 Pinus taiwanensis | W = 0.0581(D2H)0.8159 R2 = 0.991 | W = 0.0032(D2H)1.128 R2 = 0.987 | W = 0.0091(D2H)0.8579 R2 = 0.986 | W = 0.0133(D2H)0.8872 R2 = 0.988 | 4.0-79.5 |
湿地松 Pinus elliottii | W = 0.0474(D2H)0.8841 R2 = 0.994 | W = 0.0079(D2H)0.9572 R2 = 0.993 | W = 0.0166(D2H)0.9734 R2 = 0.971 | W = 0.0070 (D2H)1.1038 R2 = 0.990 | 1.5-32.5 |
黑杨 Populus nigra | W = 0.0635(D2H)0.8227 R2 = 0.991 | W = 0.171(D2H)0.5689 R2 = 0.995 | W = 0.0568(D2H)0.56 R2 = 0.978 | W = 0.0118(D2H)0.8848 R2 = 0.984 | 6.2-98.5 |
麻栎 Quercus acutissima | W = 0.0235(D2H)0.9792 R2 = 0.950 | W = 0.0004(D2H)1.3585 R2 = 0.988 | W = 0.0028(D2H)0.8444 R2 = 0.976 | W = 0.0125(D2H)0.9308 R2 = 0.978 | 2.2-47.1 |
针叶混交林 Coniferous mixed forest | W = 0.018(D2H)1.089 R2 = 0.941 | W = 0.013(D2H)0.857 R2 = 0.793 | W = 0.005(D2H)0.929 R2 = 0.884 | W = 0.021(D2H)0.809 R2 = 0.909 | 3.1-84.5 |
阔叶混交林 Broadleaved mixed forest | W = 0.045 (D2H)0.874 R2 = 0.953 | W = 0.020 (D2H)0.839 R2 = 0.880 | W = 0.010 (D2H)0.780 R2 = 0.848 | W = 0.009 (D2H)0.974 R2 = 0.906 | 2.0-98.6 |
针阔混交林 Conifer-broadleaved mixed forest | W = 0.049(D2H)0.870 R2 = 0.955 | W = 0.013(D2H)0.867 R2 = 0.817 | W = 0.007(D2H)0.860 R2 = 0.843 | W = 0.014(D2H)0.874 R2 = 0.891 | 2.0-98.6 |
年数 Years | 森林面积 Forest area (×104 hm2) | 土壤碳密度 Soil C density (×106 g C·hm-2) | 植被碳密度 Vegetation C density (×106 g C·hm-2) | 总碳密度 Total C density (×106 g C·hm-2) | 土壤碳 Soil C stocks (Tg C) | 植被碳 Vegetation C stocks (Tg C) | 总碳 Total C stocks (Tg C) | |
---|---|---|---|---|---|---|---|---|
幼龄林 Young stand | 0-20 | 136.7 | 81.5 | 68.9 | 150.4 | 111.4 | 94.2 | 205.6 |
中龄林 Middle stand | 20-40 | 137.2 | 86.4 | 99.5 | 186.0 | 118.6 | 136.6 | 255.2 |
近熟林 Pre-mature stand | 40-60 | 57.5 | 96.9 | 117.2 | 214.0 | 55.7 | 67.3 | 123.0 |
成熟林 Mature stand | 60-80 | 27.4 | 76.8 | 262.3 | 339.1 | 21.1 | 71.9 | 92.9 |
过熟林 Over-mature stand | >80 | 8.1 | 69.8 | 395.1 | 464.9 | 5.7 | 32.1 | 37.8 |
总计 Total | 367.0 | 312.4 | 402.1 | 714.5 |
表2 2011-2012年安徽省森林生态系统中的土壤碳储量、植被碳储量和总碳储量
Table 2 Carbon stocks in soil and vegetation in forest ecosystems of Anhui Province during 2011-2012
年数 Years | 森林面积 Forest area (×104 hm2) | 土壤碳密度 Soil C density (×106 g C·hm-2) | 植被碳密度 Vegetation C density (×106 g C·hm-2) | 总碳密度 Total C density (×106 g C·hm-2) | 土壤碳 Soil C stocks (Tg C) | 植被碳 Vegetation C stocks (Tg C) | 总碳 Total C stocks (Tg C) | |
---|---|---|---|---|---|---|---|---|
幼龄林 Young stand | 0-20 | 136.7 | 81.5 | 68.9 | 150.4 | 111.4 | 94.2 | 205.6 |
中龄林 Middle stand | 20-40 | 137.2 | 86.4 | 99.5 | 186.0 | 118.6 | 136.6 | 255.2 |
近熟林 Pre-mature stand | 40-60 | 57.5 | 96.9 | 117.2 | 214.0 | 55.7 | 67.3 | 123.0 |
成熟林 Mature stand | 60-80 | 27.4 | 76.8 | 262.3 | 339.1 | 21.1 | 71.9 | 92.9 |
过熟林 Over-mature stand | >80 | 8.1 | 69.8 | 395.1 | 464.9 | 5.7 | 32.1 | 37.8 |
总计 Total | 367.0 | 312.4 | 402.1 | 714.5 |
森林类型 Forest type | 植被碳密度 Vegetation C density (t·hm-2) | 土壤碳密度 Soil C density (t·hm-2) |
---|---|---|
温带落叶阔叶林 Temperate deciduous broadleaf forests | 126 | 121 |
温带针叶林 Temperate needle leaf forests | 100 | 136 |
亚热带落叶阔叶林 Subtropical deciduous broadleaf forests | 132 | 135 |
常绿-落叶阔叶混交林 Mixed evergreen-deciduous broadleaf forests | 150 | 111 |
亚热带常绿阔叶林 Subtropical evergreen broadleaf forests | 163 | 103 |
亚热带针叶林 Subtropical needle leaf forests | 154 | 108 |
表3 BIOME4模拟的安徽省主要顶极森林类型(中国植被图的分类系统) (中国科学院中国植被图编辑委员会, 2007)的植被碳密度和土壤碳密度
Table 3 Soil carbon density and vegetation carbon density of the major climax forest types (taxonomy system of the Vegetation Atlas of China) in Anhui Province simulated by BIOME4
森林类型 Forest type | 植被碳密度 Vegetation C density (t·hm-2) | 土壤碳密度 Soil C density (t·hm-2) |
---|---|---|
温带落叶阔叶林 Temperate deciduous broadleaf forests | 126 | 121 |
温带针叶林 Temperate needle leaf forests | 100 | 136 |
亚热带落叶阔叶林 Subtropical deciduous broadleaf forests | 132 | 135 |
常绿-落叶阔叶混交林 Mixed evergreen-deciduous broadleaf forests | 150 | 111 |
亚热带常绿阔叶林 Subtropical evergreen broadleaf forests | 163 | 103 |
亚热带针叶林 Subtropical needle leaf forests | 154 | 108 |
森林面积 Forest area (×104 hm2) | 碳密度 Carbon density (×106 g C·hm-2) | 碳储量 Carbon stocks (Tg C) | |
---|---|---|---|
森林植被 Forest vegetation | 366.96 | 151.5 | 555.8 |
森林土壤 Forest soil | 366.96 | 110.2 | 404.4 |
森林生态系统 Forest ecosystem | 366.96 | 261.7 | 960.2 |
表4 基于BIOME4得到的安徽省顶极森林生态系统的碳密度和碳储量
Table 4 Carbon density and carbon stocks of climax forest ecosystems in Anhui Province derived by BIOME4 simulations
森林面积 Forest area (×104 hm2) | 碳密度 Carbon density (×106 g C·hm-2) | 碳储量 Carbon stocks (Tg C) | |
---|---|---|---|
森林植被 Forest vegetation | 366.96 | 151.5 | 555.8 |
森林土壤 Forest soil | 366.96 | 110.2 | 404.4 |
森林生态系统 Forest ecosystem | 366.96 | 261.7 | 960.2 |
1 | Cao Y, Chen YM, Ji B, Qu M (2014). Carbon storage and density of forest vegetation and its spatial distribution pattern in Shaanxi Province.Journal of Arid Land Resources and Environment, 28(9), 69-73. (in Chinese with English abstract)[曹扬, 陈云明, 晋蓓, 渠美 (2014). 陕西省森林植被碳储量、碳密度及其空间分布格局. 干旱区资源与环境, 28(9), 69-73.] |
2 | Dong ZY, Ouyang Y, Li H, Wang L, Zhao DH, An SQ, Liu SR (2011). Modeling the biome of North-South transect of eastern China in the future using BIOME4 model. Journal of Nanjing Forestry University (Natural Sciences Edition), 35(3), 21-27. (in Chinese with English abstract)[董卓瑶, 欧阳琰, 李航, 王磊, 赵德华, 安树青, 刘世荣 (2011). 基于BIOME4模拟未来中国东部南北样带生物群区的分布. 南京林业大学学报(自然科学版), 35(3), 21-27.] |
3 | Fang JY, Chen AP, Peng CH, Zhao SQ, Ci LJ (2001). Changes in forest biomass carbon storage in China between 1949 and 1998.Science, 292, 2320-2322. |
4 | Fang JY, Guo ZD, Hu HF, Kato T, Muraoka H, Son Y (2014). Forest biomass carbon sinks in East Asia, with special reference to the relative contributions of forest expansion and forest growth.Global Change Biology, 20, 2019-2030. |
5 | Fang JY, Guo ZD, Piao SL, Chen AP (2007). Terrestrial vegetation carbon sinks in China, 1981-2000.Science in China Series D: Earth Sciences, 50, 1341-1350.[方精云, 郭兆迪, 朴世龙, 陈安平 (2007). 1981-2000年中国陆地植被碳汇的估算. 中国科学D辑: 地球科学, 37, 804-812.] |
6 | Fu T (2013). Carbon Estimation of Main Forest Ecosystem in Three Gorges Reservoir Area Using CBM-CFS3. PhD dissertation, Chinese Academy of Forestry, Beijing. 1-39. (in Chinese with English abstract)[付甜 (2013). 基于CBM-CFS3模型的三峡库区主要森林生态系统碳计量. 博士学位论文, 中国林业科学研究院, 北京. 1-39.] |
7 | Guo ZD, Fang JY, Pan YD, Birdsey R (2010). Inventory-based estimates of forest biomass carbon stocks in China: A comparison of three methods.Forest Ecology and Management, 259, 1225-1231. |
8 | IPCC (The Intergovernmental Panel on Climate Change) (2007). Climate change 2007: the physical science basis. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL eds. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK. 1-18. |
9 | Liu YC, Yu GR, Wang QF, Zhang YJ, Xu ZH (2015). Carbon carry capacity and carbon sequestration potential in China based on an integrated analysis of mature forest biomass.Science China: Life Sciences, 57, 1218-1229. (in Chinese with English abstract)[刘迎春, 于贵瑞, 王秋凤, 张扬建, 徐泽鸿 (2015). 基于成熟林生物量整合分析中国森林碳容量和固碳潜力. 中国科学: 生命科学, 45, 210-222.] |
10 | McKinley DC, Ryan MG, Birdsey RA, Giardina CP, Harmon ME, Heath LS, Houghton RA, Jackson RB, Morrison JF, Murray BC, Pataki DE, Skog KE (2011). A synthesis of current knowledge on forests and carbon storage in the United States.Ecological Applications, 21, 1902-1924. |
11 | Mehta N, Pandya NR, Thomas VO, Krishnayya NSR (2014). Impact of rainfall gradient on aboveground biomass and soil organic carbon dynamics of forest covers in Gujarat, India. Ecological Research, 29, 1053-1063. |
12 | Ni J (2001). Carbon storage in terrestrial ecosystems of China: Estimates at different spatial resolutions and their responses to climate change.Climatic Change, 49, 339-358. |
13 | Ni J (2002). BIOME Models: Main principles and applications.Acta Phytoecologica Sinica, 26, 481-488. (in Chinese with English abstract)[倪健 (2002). BIOME系列模型: 主要原理与应用. 植物生态学报, 26, 481-488.] |
14 | Ni J, Sykes MT, Prentice IC, Cramer W (2000). Modelling the vegetation of China using the process-based equilibrium terrestrial biosphere model BIOME3.Global Ecology & Biogeography, 9, 463-479. |
15 | Peng CH, Apps MJ (1997). Contribution of China to the global carbon cycle since the last glacial maximum.Tellus, 49, 393-408. |
16 | Pu Y, Huang GS (2013). Analyses on young-and-middle aged forests characteristics and the tending potential in China.Journal of Southwest Forestry University, 33(4), 53-57. (in Chinese with English abstract)[蒲莹, 黄国胜 (2013). 我国中幼龄林资源特点及抚育潜力分析. 西南林业大学学报, 33(4), 53-57.] |
17 | Tewksbury CE, van Miegroet H (2007). Soil organic carbon dynamics along a climatic gradient in a southern Appalachian spruce-fir forest.Canadian Journal of Forest Research, 37, 1161-1172. |
18 | The Editorial Committee of Vegetation Map of China, Chinese Academy of Sciences (2007). Vegetation Map of the People’s Republic of China 1:1000000. Geological Publishing House, Beijing. (in Chinese)[中国科学院中国植被图编辑委员会 (2007). 中华人民共和国植被图1:1000000. 地质出版社, 北京.] |
19 | Wang H (2011). Modelling of Vegetation Patterns and Functions in China Responding to Changes of Climates and Atmospheric CO2 Concentration. PhD dissertation, Institute of Botany, Chinese Academy of Sciences, Beijing. 36-37. (in Chinese with English abstract).[王焓 (2011). 响应气候和大气CO2浓度变化的中国植被格局与功能模拟研究. 博士学位论文, 中国科学院植物研究所, 北京. 36-37.] |
20 | Wang H, Ni J, Prentice IC (2011). Sensitivity of potential natural vegetation in China to projected changes in temperature, precipitation and atmospheric CO2.Regional Environmental Change, 11, 715-727. |
21 | Wang S, Chen JM, Ju WM, Feng X, Chen M, Chen P, Yu G (2007). Carbon sinks and sources in China’s forests during 1901-2001.Journal of Environmental Management, 85, 524-537. |
22 | Wu QB, Wang XK, Duan XN, Deng LB, Lu F, Ouyang ZY, Feng ZW (2008). Carbon sequestration and its potential by forest ecosystems in China.Acta Ecologica Sinica, 28, 517-524. (in Chinese with English abstract)[吴庆标, 王效科, 段晓男, 邓立斌, 逯非, 欧阳志云, 冯宗炜 (2008). 中国森林生态系统植被固碳现状和潜力. 生态学报, 28, 517-524.] |
23 | Xu B, Guo ZD, Piao SL, Fang JY (2010). Biomass carbon stocks in China’s forests between 2000 and 2050: A prediction based on forest biomass-age relationships.Science China Life Sciences, 53, 776-783. (in Chinese)[徐冰, 郭兆迪, 朴世龙, 方精云 (2010). 2000-2050年中国森林生物量碳库: 基于生物量密度与林龄关系的预测. 中国科学: 生命科学, 40, 587-594.] |
24 | Xu ZL, Zhao CY, Feng ZD, Zhang F, Sher H, Wang C, Peng HH, Wang Y, Zhao Y, Wang Y, Peng SZ, Zheng XL (2013). Estimating realized and potential carbon storage benefits from reforestation and afforestation under climate change: A case study of the Qinghai spruce forests in the Qilian Mountains, northwestern China.Mitigation and Adaptation Strategies for Global Change, 18, 1257-1268. |
25 | Zhang XW (2014). Effect of Drying-Rewetting on Litter and Soil Organic Matter Decomposition in Zoigê Wetland. Master degree dissertation, Beijing Forest University, Beijing. 11-33. (in Chinese with English abstract)[张雪雯 (2014). 干湿交替对若尔盖湿地枯落物和土壤有机质分解的影响. 硕士学位论文, 北京林业大学, 北京. 11-33.] |
26 | Zhao JF, Yan XD, Jia GS (2012). Simulating net carbon budget of forest ecosystems and its response to climate change in Northeastern China using improved FORCCHN.Chinese Geographical Science, 22, 29-41. |
27 | Zhou YR, Yu ZL, Zhao SD (2000). Carbon storage and budget of major Chinese forest types.Acta Phytoecologica Sinica, 24, 518-522. (in Chinese with English abstract)[周玉荣, 于振良, 赵士洞 (2000). 我国主要森林生态系统碳贮量和碳平衡. 植物生态学报, 24, 518-522.] |
[1] | 陈科宇, 字洪标, 阿的鲁骥, 胡雷, 王根绪, 王长庭. 青海省森林乔木层碳储量现状及固碳潜力[J]. 植物生态学报, 2018, 42(8): 831-840. |
[2] | 王建, 王根绪, 王长庭, 冉飞, 常瑞英. 青藏高原高寒区阔叶林植被固碳现状、速率和潜力[J]. 植物生态学报, 2016, 40(4): 374-384. |
[3] | 平晓燕, 王铁梅, 卢欣石. 农林复合系统固碳潜力研究进展[J]. 植物生态学报, 2013, 37(1): 80-92. |
[4] | 马泽清, 王辉民, 王绍强, 李庆康, 王义东, 汪宏清. 雨雪冰冻灾害对中亚热带人工林的影响——以江西省千烟洲为例[J]. 植物生态学报, 2010, 34(2): 204-212. |
[5] | 胡会峰, 王志恒, 刘国华, 傅伯杰. 中国主要灌丛植被碳储量[J]. 植物生态学报, 2006, 30(4): 539-544. |
[6] | 张家坡, 陈力, 郭泉水, 聂道平, 白秀兰, 蒋有绪. 演替顶极阶段森林群落优势树种分布的变动趋势研究[J]. 植物生态学报, 1999, 23(3): 256-268. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19