植物生态学报 ›› 2016, Vol. 40 ›› Issue (4): 374-384.DOI: 10.17521/cjpe.2015.0152
所属专题: 青藏高原植物生态学:生态系统生态学; 碳储量
王建1,2, 王根绪1,*(), 王长庭3, 冉飞1, 常瑞英1
收稿日期:
2015-04-28
接受日期:
2015-11-10
出版日期:
2016-04-29
发布日期:
2016-04-30
通讯作者:
王根绪
基金资助:
Jian WANG1,2, Gen-Xu WANG1,*(), Chang-Ting WANG3, Fei RAN1, Rui-Ying CHANG1
Received:
2015-04-28
Accepted:
2015-11-10
Online:
2016-04-29
Published:
2016-04-30
Contact:
Gen-Xu WANG
摘要:
为明晰青藏高原高寒区阔叶林植被碳储量现状及其动态变化特征, 利用森林资源清查数据和标准样地实测数据, 估算了青藏高原高寒区(青海和西藏两省区)阔叶林植被的碳储量、固碳速率和固碳潜力。结果表明: 2011年青藏高原高寒区阔叶林植被碳储量为310.70 Tg, 碳密度为89.04 Mg·hm-2。六类阔叶林型(栎(Quercus)林、桦木(Betula)林、杨树(Populus)林、其他硬阔林、其他软阔林和阔叶混交林)中, 阔叶混交林的碳储量最大, 杨树林碳储量最小; 其他硬阔林碳密度最大, 其他软阔林碳密度最小。空间分配上碳储量和碳密度表现为: 乔木层>灌木层>凋落物层>草本层>枯死木层。不同龄级碳储量和碳密度总体表现为随林龄增加逐渐增大的趋势。阔叶林碳储量从2001年的304.26 Tg增加到2011年的310.70 Tg, 平均年固碳量为0.64 Tg·a-1, 固碳速率为0.19 Mg·hm-2·a-1。不同林型固碳速率表现为其他软阔林最大, 其他硬阔林最小; 不同龄级表现为成熟林最大, 幼龄林最小。阔叶林乔木层固碳潜力为19.09 Mg·hm-2, 且不同林型固碳潜力表现为栎林最大, 桦树林最小。三次调查期间阔叶林碳储量逐渐增加, 主要原因是近年来森林保护工程的开展使阔叶林生长健康良好。
王建, 王根绪, 王长庭, 冉飞, 常瑞英. 青藏高原高寒区阔叶林植被固碳现状、速率和潜力. 植物生态学报, 2016, 40(4): 374-384. DOI: 10.17521/cjpe.2015.0152
Jian WANG, Gen-Xu WANG, Chang-Ting WANG, Fei RAN, Rui-Ying CHANG. Carbon storage and potentials of the broad-leaved forest in alpine region of the Qinghai- Xizang Plateau, China. Chinese Journal of Plant Ecology, 2016, 40(4): 374-384. DOI: 10.17521/cjpe.2015.0152
图1 青藏高原高寒区植被分布图。1, 常绿针叶林; 2, 常绿阔叶林; 3, 落叶针叶林; 4, 落叶阔叶林; 5, 混交林; 6, 郁闭灌丛; 7, 开放灌丛; 8, 稀树草原; 9, 热带稀树草原; 10, 草地。土地利用数据(1:100万)来自中国西部环境与生态科学数据中心(http://westdc.westgis.ac.cn)。
Fig. 1 Vegetation map in alpine area of Qinghai-Xizang Plateau. 1, evergreen needleleaf forest; 2, evergreen broadleaf forest; 3, deciduous needleleaf forest; 4, deciduous broadleaf forest; 5, mixed forest; 6, closed shrublands; 7, open shrublands; 8, woody savannas; 9, savannas; 10, grasslands. The landuse data (1:1 000 000) was from the Environmental and Ecological Science Data Center for the West China (http://westdc.westgis. ac.cn).
林型 Forest type | 幼龄林 Young forest | 中龄林 Middle-aged forest | 近熟林 Near-mature forest | 成熟林 Mature Forest | 过熟林 Over-mature forest |
---|---|---|---|---|---|
栎类 Quercus spp. | ≤40 | 41-60 | 61-80 | 81-120 | ≥121 |
桦木 Betula spp. | ≤30 | 31-50 | 51-60 | 61-80 | ≥81 |
杨树 Populus spp. | ≤10 | 11-15 | 16-20 | 21-30 | ≥31 |
其他软阔类 Other soft broad-leaved species | ≤10 | 11-15 | 16-20 | 21-30 | ≥31 |
其他硬阔类 Other hard broad-leaved species | ≤40 | 41-60 | 61-80 | 81-120 | ≥121 |
阔叶混交林 Broad-leaved mixed forest | ≤40 | 41-60 | 61-80 | 81-120 | ≥121 |
表2 青藏高原高寒区阔叶林不同林型龄级与龄组划分表
Table 2 The partition table of age classes for different broad-leaved forests in the alpine region of the Qinghai-Xizang Plateau
林型 Forest type | 幼龄林 Young forest | 中龄林 Middle-aged forest | 近熟林 Near-mature forest | 成熟林 Mature Forest | 过熟林 Over-mature forest |
---|---|---|---|---|---|
栎类 Quercus spp. | ≤40 | 41-60 | 61-80 | 81-120 | ≥121 |
桦木 Betula spp. | ≤30 | 31-50 | 51-60 | 61-80 | ≥81 |
杨树 Populus spp. | ≤10 | 11-15 | 16-20 | 21-30 | ≥31 |
其他软阔类 Other soft broad-leaved species | ≤10 | 11-15 | 16-20 | 21-30 | ≥31 |
其他硬阔类 Other hard broad-leaved species | ≤40 | 41-60 | 61-80 | 81-120 | ≥121 |
阔叶混交林 Broad-leaved mixed forest | ≤40 | 41-60 | 61-80 | 81-120 | ≥121 |
树种 Forest species | 西藏自治区生物量方程 Allometric equations in Xizang Autonomous Region | 树种 Forest species | 青海省生物量方程 Allometric equations in Qinghai Province |
---|---|---|---|
栎类 Quercus spp. | WL = 0.3402(D2H)0.4670 | 山杨 Populus davidiana | WL = 0.0033(D2H)0.8820 |
WB = 0.03427(D2H)0.8887 | WB = 0.0093(D2H)0.8950 | ||
WS = 0.1202(D2H)0.9773 | WS = 0.0413(D2H)0.8663 | ||
WR = 0.8062(D2H)0.7025 | WR = 0.0183(D2H)0.8527 | ||
杨树 Populus spp. | WL = 0.0078(D2H)0.7753 | 其他杨树 Other Populus spp. | WL = 0.0035(D2H)0.8774 |
WB = 0.026(D2H)0.7655 | WB = 0.0095(D2H)0.8951 | ||
WS = 0.0529(D2H)0.8364 | WS = 0.0417(D2H)0.8860 | ||
WR = 0.0079(D2H)0.9577 | WR = 0.0289(D2H)0.7860 | ||
其他树种 Other species | WL = 0.0075(D2H)0.8592 | 其他树种 Other species | WL = 0.0075(D2H)0.8592 |
WB = 0.0079(D2H)1.007 | WB = 0.0079(D2H)1.007 | ||
WS = 0.0401(D2H)0.8514 | WS = 0.0401(D2H)0.8514 | ||
WR = 0.0176(D2H)0.8841 | WR = 0.0176(D2H)0.8841 |
表1 青藏高原高寒区阔叶林各优势树种生物量异速生长方程
Table 1 The allometric biomass equations of dominant species in the broad-leaved forests in the alpine region of the Qinghai-Xizang Plateau
树种 Forest species | 西藏自治区生物量方程 Allometric equations in Xizang Autonomous Region | 树种 Forest species | 青海省生物量方程 Allometric equations in Qinghai Province |
---|---|---|---|
栎类 Quercus spp. | WL = 0.3402(D2H)0.4670 | 山杨 Populus davidiana | WL = 0.0033(D2H)0.8820 |
WB = 0.03427(D2H)0.8887 | WB = 0.0093(D2H)0.8950 | ||
WS = 0.1202(D2H)0.9773 | WS = 0.0413(D2H)0.8663 | ||
WR = 0.8062(D2H)0.7025 | WR = 0.0183(D2H)0.8527 | ||
杨树 Populus spp. | WL = 0.0078(D2H)0.7753 | 其他杨树 Other Populus spp. | WL = 0.0035(D2H)0.8774 |
WB = 0.026(D2H)0.7655 | WB = 0.0095(D2H)0.8951 | ||
WS = 0.0529(D2H)0.8364 | WS = 0.0417(D2H)0.8860 | ||
WR = 0.0079(D2H)0.9577 | WR = 0.0289(D2H)0.7860 | ||
其他树种 Other species | WL = 0.0075(D2H)0.8592 | 其他树种 Other species | WL = 0.0075(D2H)0.8592 |
WB = 0.0079(D2H)1.007 | WB = 0.0079(D2H)1.007 | ||
WS = 0.0401(D2H)0.8514 | WS = 0.0401(D2H)0.8514 | ||
WR = 0.0176(D2H)0.8841 | WR = 0.0176(D2H)0.8841 |
图2 青藏高原高寒区阔叶林乔木层、灌木层、草本层、凋落物层、枯死木层和植被碳储量和碳密度。
Fig. 2 Carbon storage and density of overstory, understory, grass, litter, dead woody layers in the broad-leaved forests in the alpine region of the Qinghai-Xizang Plateau. QUE, BET, POP, SBS, HBS, BMF refer to Quercus forest, Betula forest, Populus forest, other soft broad-leaved species, other hard broad-leaved species, broad-leaved mixed forest, respectively.
图3 青藏高原高寒区阔叶林不同龄级乔木层碳储量和碳密度。
Fig. 3 Carbon storage and density of overstory tree layer for different age classes in the broad-leaved forests in the alpine region of the Qinghai-Xizang Plateau. QUE, BET, POP, SBS, HBS, BMF see Fig. 2.
林型 Forest type | 固碳速率 Carbon sequestration rate (Mg·hm-2·a-1) | 碳储量 Carbon storage (Tg) | 10年平均年固碳量 Mean annual carbon sequestration of ten years (Tg·a-1) | |||||
---|---|---|---|---|---|---|---|---|
2001-2006 | 2006-2011 | 2001-2011 | 2001 | 2006 | 2011 | |||
栎类 Quercus | 0.36 | 0.74 | 0.55 | 44.66 | 45.56 | 47.42 | 0.28 | |
桦木 Betula | 1.04 | 0.71 | 0.88 | 10.00 | 10.92 | 11.56 | 0.16 | |
杨树 Populus | 0.92 | 0.57 | 0.74 | 5.46 | 6.01 | 6.35 | 0.09 | |
其他软阔类 Other soft broad-leaved species | -0.24 | 2.65 | 1.21 | 8.14 | 8.03 | 9.33 | 0.12 | |
其他硬阔类 Other hard broad-leaved species | 0.01 | -0.12 | -0.06 | 23.99 | 24.00 | 23.86 | -0.01 | |
阔叶混交林 Broad-leaved mixed forest | -0.01 | 0.02 | 0.01 | 212.00 | 211.92 | 212.17 | 0.02 | |
全部林型 All forest types | 0.13 | 0.25 | 0.19 | 304.26 | 306.44 | 310.70 | 0.64 |
表3 青藏高原高寒区阔叶林不同林分碳储量和固碳速率
Table 3 The carbon storage and its rate of different broad-leaved forests in the alpine region of the Qinghai-Xizang Plateau
林型 Forest type | 固碳速率 Carbon sequestration rate (Mg·hm-2·a-1) | 碳储量 Carbon storage (Tg) | 10年平均年固碳量 Mean annual carbon sequestration of ten years (Tg·a-1) | |||||
---|---|---|---|---|---|---|---|---|
2001-2006 | 2006-2011 | 2001-2011 | 2001 | 2006 | 2011 | |||
栎类 Quercus | 0.36 | 0.74 | 0.55 | 44.66 | 45.56 | 47.42 | 0.28 | |
桦木 Betula | 1.04 | 0.71 | 0.88 | 10.00 | 10.92 | 11.56 | 0.16 | |
杨树 Populus | 0.92 | 0.57 | 0.74 | 5.46 | 6.01 | 6.35 | 0.09 | |
其他软阔类 Other soft broad-leaved species | -0.24 | 2.65 | 1.21 | 8.14 | 8.03 | 9.33 | 0.12 | |
其他硬阔类 Other hard broad-leaved species | 0.01 | -0.12 | -0.06 | 23.99 | 24.00 | 23.86 | -0.01 | |
阔叶混交林 Broad-leaved mixed forest | -0.01 | 0.02 | 0.01 | 212.00 | 211.92 | 212.17 | 0.02 | |
全部林型 All forest types | 0.13 | 0.25 | 0.19 | 304.26 | 306.44 | 310.70 | 0.64 |
龄级 Age class | 固碳速率 Carbon sequestration rate (Mg·hm-2·a-1) | 碳储量 Carbon storage (Tg) | 10年平均年固碳量 Mean annual carbon sequestration of ten years (Tg·a-1) | |||||
---|---|---|---|---|---|---|---|---|
2001-2006 | 2006-2011 | 2001-2011 | 2001 | 2006 | 2011 | |||
幼龄林 Young forest | 0.14 | 0.47 | 0.30 | 3.92 | 4.26 | 5.44 | 0.15 | |
中龄林 Middle-aged forest | 0.82 | 0.47 | 0.65 | 21.16 | 21.89 | 22.31 | 0.12 | |
近熟林 Near-mature forest | 0.05 | 0.88 | 0.47 | 111.65 | 111.68 | 112.10 | 0.04 | |
成熟林 Mature Forest | 0.47 | 1.43 | 0.95 | 111.57 | 111.83 | 112.59 | 0.10 | |
过熟林 Over-mature forest | 0.26 | 0.71 | 0.49 | 36.22 | 36.52 | 37.34 | 0.11 | |
全部龄级 All age classes | 0.15 | 0.32 | 0.24 | 284.53 | 286.18 | 289.77 | 0.52 |
表4 青藏高原高寒区阔叶林不同龄级碳储量和固碳速率
Table 4 The carbon storage and its rate for different age classes of the broad-leaved forests in the alpine region of the Qinghai-Xizang Plateau
龄级 Age class | 固碳速率 Carbon sequestration rate (Mg·hm-2·a-1) | 碳储量 Carbon storage (Tg) | 10年平均年固碳量 Mean annual carbon sequestration of ten years (Tg·a-1) | |||||
---|---|---|---|---|---|---|---|---|
2001-2006 | 2006-2011 | 2001-2011 | 2001 | 2006 | 2011 | |||
幼龄林 Young forest | 0.14 | 0.47 | 0.30 | 3.92 | 4.26 | 5.44 | 0.15 | |
中龄林 Middle-aged forest | 0.82 | 0.47 | 0.65 | 21.16 | 21.89 | 22.31 | 0.12 | |
近熟林 Near-mature forest | 0.05 | 0.88 | 0.47 | 111.65 | 111.68 | 112.10 | 0.04 | |
成熟林 Mature Forest | 0.47 | 1.43 | 0.95 | 111.57 | 111.83 | 112.59 | 0.10 | |
过熟林 Over-mature forest | 0.26 | 0.71 | 0.49 | 36.22 | 36.52 | 37.34 | 0.11 | |
全部龄级 All age classes | 0.15 | 0.32 | 0.24 | 284.53 | 286.18 | 289.77 | 0.52 |
图4 青藏高原高寒区阔叶林不同林型固碳潜力。
Fig. 4 The carbon sequestration potential of different broad- leaved forests in alpine region of the Qinghai-Xizang Plateau. QUE, BET, POP, SBS, HBS, BMF see Fig. 2.
1 | Akselsson C, Berg B, Meentemeyer V, Westling O (2005). Carbon sequestration rates in organic layers of boreal and temperate forest soils—Sweden as a case study.Global Ecology and Biogeography, 14, 77-84. |
2 | Cai LS (2009). Study on Carbon Storage of Forest Vegetation and Its Changes in Yunnan Province. Master degree dissertation,Southwest Forestry University, Kunming. 28-29. (in Chinese with English abstract)[蔡丽莎 (2009). 云南省森林植被碳储量及动态变化研究. 硕士学位论文, 西南林学院, 昆明. 28-29.] |
3 | Dixon RK, Solomon AM, Brown S, Houghton RA, Trexier MC, Wisniewski J (1994). Carbon pools and flux of global forest ecosystems.Science, 263, 185-190. |
4 | Fang JY, Wang ZM (2001). Forest biomass estimation at regional and global levels, with special reference to China’s forest biomass.Ecological Research, 16, 587-592. |
5 | Fu DF (2014). Shrubwood carbon reserve estimation in Tibet Autonomous Region.Central South Forest Inventory and Planning, 33(4), 4-7. (in Chinese with English abstract)[付达夫 (2014). 西藏自治区灌木林碳储量估算. 中南林业调查规划, 33(4), 4-7.] |
6 | Ge LW, Pan G, Ren DZ, Du YJ, Zheng XL (2013). Forest carbon storage, carbon density, and their distribution characteristics in Linzhi area of Tibet, China.Chinese Journal of Applied Ecology, 24, 319-325. (in Chinese with English abstract)[葛立雯, 潘刚, 任德智, 杜玉婕, 郑祥蕾 (2013). 西藏林芝地区森林碳储量、碳密度及其分布. 应用生态学报, 24, 319-325.] |
7 | Ge ZM, Kellomäki S, Peltola H, Zhou X, Väisänen H, Strandman H (2013). Impacts of climate change on primary production and carbon sequestration of boreal Norway spruce forests: Finland as a model.Climatic Change, 118, 259-273. |
8 | General Administration of Quality Supervision, Inspection, Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China (2011). GB/T 26424-2010 Technical Regulations for Inventory for Forest Management Planning and Design. China Standard Publishing House, Beijing. 8. (in Chinese with English abstract)[中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会 (2011). GB/T 26424-2010森林资源规划设计调查技术规程. 中国标准出版社, 北京. 8.] |
9 | Gui LT (2013). The status and countermeasures of Tibet forest carbon pool.Central South Forest Inventory and Planning, 32(3), 1-4. (in Chinese with English abstract)[桂来庭 (2013). 西藏自治区森林碳库状况及对策. 中南林业调查规划, 32(3), 1-4.] |
10 | Guo ZD, Fang JY, Pan YD, Birdsey R (2010). Inventory-based estimates of forest biomass carbon stocks in China: A comparison of three methods.Forest Ecology and Management, 259, 1225-1231. |
11 | Huang CD (2008). Characteristics of Carbon Stock and Its Spatial Differentiation in the Forest Ecosystem of Sichuan. PhD dissertation, Sichuan Agricultural University, Yaan. 90-91. (in Chinese with English abstract)[黄从德 (2008). 四川森林生态系统碳储量及其空间分异特征. 博士学位论文, 四川农业大学, 雅安. 90-91.] |
12 | Huang CD, Zhang J, Yang WQ, Tang X, Zhao AJ (2008). Dynamics on forest carbon stock in Sichuan Province and Chongqing City.Acta Ecologica Sinica, 28, 966-975. (in Chinese with English abstract)[黄从德, 张健, 杨万勤, 唐宵, 赵安玖 (2008). 四川省及重庆地区森林植被碳储量动态. 生态学报, 28, 966-975.] |
13 | Huang M, Ji JJ, Peng LL (2008). The response of vegetation net primary productivity to climate change during 1981-2000 in the Tibetan Plateau.Climatic and Environmental Research, 13, 608-616. (in Chinese with English abstract)[黄玫, 季劲钧, 彭莉莉 (2008). 青藏高原1981~2000年植被净初级生产力对气候变化的响应. 气候与环境研究, 13, 608-616.] |
14 | Li KR, Wang SQ, Cao MK (2004). Vegetation and soil carbon storage in China.Science in China (Series D: Earth Sciences), 47, 49-57. |
15 | Li L (2012). Change of Carbon Storage in Forest Vegetation and Carbon Sequestration Potential Analysis of Yunnan Province in 1992-2007. Master degree dissertation, Yunnan University of Finance and Economics, Kunming. 22-23. (in Chinese with English abstract)[李亮 (2012). 云南省1992-2007年森林植被碳储量动态变化及其碳汇潜力分析. 硕士学位论文, 云南财经大学, 昆明. 22-23.] |
16 | Lin H, Ma X, He ZH, Liu B, Huang Z, Tian XJ (2014). Research on forest ecosystem carbon sinks in Jiangsu Province.Forest Resources Management, (1), 89-97. (in Chinese with English abstract)[林虹, 马旭, 何再华, 刘斌, 黄众, 田兴军 (2014). 江苏省森林生态系统碳汇现状研究. 林业资源管理, (1), 89-97.] |
17 | Lu H, Liu K, Wu JH (2013). Change of carbon storage in forest vegetation and current situation analysis of Qinghai pronvince in reccent 20 years.Resources and Environment in the Yangtze Basin, 22, 1333-1338. (in Chinese with English abstract)[卢航, 刘康, 吴金鸿 (2013). 青海省近20年森林植被碳储量变化及其现状分析. 长江流域资源与环境, 22, 1333-1338.] |
18 | Luo TX (1996). Patterns of Net Primary Productivity for Chinese Major Forest Types and Their Mathematical Models. PhD dissertation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing. 132-167. (in Chinese with English abstract)[罗天祥 (1996). 中国主要森林类型生物生产力格局及其数学模型. 博士学位论文, 中国科学院研究生院, 北京. 132-167.] |
19 | Malhi Y, Baldocchi DD, Jarvis PG (1999). The carbon balance of tropical, temperate and boreal forests.Plant, Cell & Environment, 22, 715-740. |
20 | Matsuzaki E, Sanborn P, Fredeen AL, Shaw CH, Hawkins C (2013). Carbon stocks in managed and unmanaged old-growth western redcedar and western hemlock stands of Canada’s inland temperate rainforests.Forest Ecology and Management, 297, 108-119. |
21 | Ministry of Construction of the People’s Republic of China (1993). City Green Regulations Interpretation. Chinese Legal Press, Beijing. (in Chinese with English abstract)[中华人民共和国建设部 (1993). 城市绿化条例释义. 中国法制出版社, 北京.] |
22 | Ni J (2002). Effects of climate change on carbon storage in boreal forests of China: A local perspective.Climatic Change, 55, 61-75. |
23 | Pan YD, Luo TX, Birdsey R, Hom J, Melillo J (2004). New estimates of carbon storage and sequestration in China’s forests: Effects of age-class and method on inventory- based carbon estimation.Climatic Change, 67, 211-236. |
24 | Piao SL, Fang JY, Zhu B, Tan K (2005). Forest biomass carbon stocks in China over the past 2 decades: Estimation based on integrated inventory and satellite data.Journal of Geophysical Research: Biogeosciences, 110, doi: 10.1029/2005JG000014. |
25 | Ren ZZ (2013). Study on the Carbon Sequestration Capacity of the Plantation of Betula Alnoides. PhD dissertation, Kunming University of Science and Technology, Kunming. 72-73. (in Chinese with English abstract)[任治忠 (2013). 西南桦人工林碳汇功能研究. 博士学位论文, 昆明理工大学, 昆明. 72-73.] |
26 | Rice AH, Pyle EH, Saleska SR, Hutyra L, Palace M, Keller M, de Camargo PB, Portilho K, Marques DF, Wofsy SC (2004). Carbon balance and vegetation dynamics in an old-growth Amazonian forest.Ecological Applications, 14, 55-71. |
27 | Seely B, Welham C, Kimmins H (2002). Carbon sequestration in a boreal forest ecosystem: Results from the ecosystem simulation model, FORECAST.Forest Ecology and Management, 169, 123-135. |
28 | Sleutel S, De Neve S, Hofman G, Boeckx P, Beheydt D, Van Cleemput O, Mestdagh I, Lootens P, Carlier L, van Camp N, Verbeeck H, Vande Walle I, Samson R, Lust N, Lemeur R (2003) Carbon stock changes and carbon sequestration potential of flemish cropland soils.Global Change Biology, 9, 1193-1203. |
29 | Sperow M, Eve M, Paustian, K (2003). Potential soil C sequestration on U.S. agricultural soils.Climatic Change, 57, 319-339. |
30 | Tang X (2007). Carbon Storage of Forest Vegetation and Spatial Distribution in Sichuan Province. Master degree dissertation,The Graduate School of Sichuan Agricultural University, Yaan. 18-21. (in Chinese with English abstract)[唐霄 (2007). 四川森林植被碳储量估算及其空间分布特征. 硕士学位论文, 四川农业大学, 雅安. 18-21.] |
31 | Wang N (2014). Study on Distribution Patterns of Carbon Density and Carbon Stock in the Forest Ecosystem of Shanxi. PhD dissertation, Beijing Forestry University, Beijing. 118-121. (in Chinese with English abstract)[王宁 (2014). 山西森林生态系统碳密度分配格局及碳储量研究. 博士学位论文, 北京林业大学, 北京. 118-121.] |
32 | Wang XC, Qi G, Yu DP, Zhou L, Dai LM (2011). Carbon storage, density, and distribution in forest ecosystems in Jilin Province of Northeast China.Chinese Journal of Applied Ecology, 22, 2013-2020. (in Chinese with English abstract)[王新闯, 齐光, 于大炮, 周莉, 代力民 (2011). 吉林省森林生态系统的碳储量、碳密度及其分布. 应用生态学报, 22, 2013-2020.] |
33 | Wang XK, Feng ZW, Ouyang ZY (2001). Vegetation carbon storage and density of forest ecosystems in China.Chinese Journal of Applied Ecology, 12, 13-16. (in Chinese with English abstract)[王效科, 冯宗炜, 欧阳志云 (2001). 中国森林生态系统的植物碳储量和碳密度研究. 应用生态学报, 12, 13-16.] |
34 | Wang XL, Chang Y, Chen HW, Hu YM, Feng YT, Wu W, Jiao LL (2014a). Biomass allocation characteristics of the main forest ecosystems in the Great Xing’an Mountains, Heilongjiang Province.Chinese Journal of Ecology, 33, 1437-1444. (in Chinese with English abstract)[王晓莉, 常禹, 陈宏伟, 胡远满, 冯玉婷, 吴文, 焦琳琳 (2014a). 黑龙江省大兴安岭主要森林生态系统生物量分配特征. 生态学杂志, 33, 1437-1444.] |
35 | Wang XL, Chang Y, Chen HW, Hu YM, Jiao LL, Feng YT, Wu W, Wu HF (2014b). Spatial pattern of forest biomass and its influencing factors in the Great Xing’an Mountains, Heilongjiang Province, China.Chinese Journal of Applied Ecology, 25, 974-982. (in Chinese with English abstract)[王晓莉, 常禹, 陈宏伟, 胡远满, 焦琳琳, 冯玉婷, 吴文, 伍海峰 (2014b). 黑龙江省大兴安岭森林生物量空间格局及其影响因素. 应用生态学报, 25, 974-982.] |
36 | Wang XY, Sun YJ (2008). Review on research and estimation methods of carbon storage in forest ecosystem.World Forestry Research, 21(5), 24-29. (in Chinese with English abstract)[王秀云, 孙玉军 (2008). 森林生态系统碳储量估测方法及其研究进展. 世界林业研究, 21(5), 24-29.] |
37 | Wang Y (2014). Study on Carbon Storage of Forest Vegetation and Its Affecting Factors in the Region South of Miaodao Archipelago. Master degree dissertation, Tianjin University of Technology, Tianjin. 34-36. (in Chinese with English abstract)[王媛 (2014). 庙岛群岛南部岛群森林植被碳储量及其影响因素研究. 硕士学位论文, 天津理工大学, 天津. 34-36.] |
38 | Wu QB, Wang XK, Duan XN, Deng LB, Lu F, Ouyang ZY, Feng ZW (2008). Carbon sequestration and its potential by forest ecosystems in China.Acta Ecologica Sinica, 28, 517-524. (in Chinese with English abstract)[吴庆标, 王效科, 段晓男, 邓立斌, 逯非, 欧阳志云, 冯宗炜 (2008). 中国森林生态系统植被固碳现状和潜力. 生态学报, 28, 517-524.] |
39 | Yang HX, Wu B, Zhang JT, Lin DR, Chang SL (2005). Progress of research into carbon fixation and storage of forest ecosystems. Journal of Beijing Normal University (Natural Science), 41, 172-177. (in Chinese with English abstract)[杨洪晓, 吴波, 张金屯, 林德荣, 常顺利 (2005). 森林生态系统的固碳功能和碳储量研究进展. 北京师范大学学报(自然科学版), 41, 172-177.] |
40 | Ye JS, She GH (2010). Forest carbon dynamics in Guangdong Province. Journal of Nanjing Forestry University (Natural Science Edition), 34(4), 7-12. (in Chinese with English abstract)[叶金盛, 佘光辉 (2010). 广东省森林植被碳储量动态研究. 南京林业大学学报(自然科学版), 34(4), 7-12.] |
41 | Zhang WL, Zhang B, Yang CJ, Mei H, Dai QS (2013). Forest litter fall carbon storage estimation of Tibet.Central South Forest Inventory and Planning, 32(4), 12-15. (in Chinese with English abstract)[张万林, 张蓓, 杨传金, 梅浩, 戴前石 (2013). 西藏自治区森林枯落物碳储量估算. 中南林业调查规划, 32(4), 12-15.] |
42 | Zhang WX, Zhou YD, Huang QL, Zhou YW, Mo LJ (2012). Advances in estimation of vegetation carbon stocks of forest ecosystem in China.Guangdong Forestry Science and Technology, 28(4), 50-55. (in Chinese with English abstract)[张玮辛, 周永东, 黄倩琳, 周永文, 莫罗坚 (2012). 我国森林生态系统植被碳储量估算研究进展. 广东林业科技, 28(4), 50-55.] |
43 | Zhang XQ, Xu DY (2003). Potential carbon sequestration in China’s forests.Environmental Science & Policy, 6, 421-432. |
44 | Zhao M, Zhou GS (2004). Carbon storage of forest vegetation and its relationship with climatic factors.Scientia Geographica Sinica, 24, 50-54. (in Chinese with English abstract)[赵敏, 周广胜 (2004). 中国森林生态系统的植物碳贮量及其影响因子分析. 地理科学, 24, 50-54.] |
45 | Zhen W, Huang M, Zhai YL, Chen K, Gong YZ (2014). Variation of forest vegetation carbon storage and carbon sequestration rate in Liaoning Province, Northeast China.Chinese Journal of Applied Ecology, 25, 1259-1265. (in Chinese with English abstract)[甄伟, 黄玫, 翟印礼, 陈珂, 龚亚珍 (2014). 辽宁省森林植被碳储量和固碳速率变化. 应用生态学报, 25, 1259-1265.] |
[1] | 张智洋 赵颖慧 甄贞. 1986-2022年松花江流域陆地生态系统碳储量动态监测[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 张计深, 史新杰, 刘宇诺, 吴阳, 彭守璋. 气候变化下中国潜在自然植被生态系统碳储量动态[J]. 植物生态学报, 2024, 48(4): 428-444. |
[3] | 陈昭铨, 王明慧, 胡子涵, 郎学东, 何云琼, 刘万德. 云南普洱季风常绿阔叶林幼苗的群落构建机制[J]. 植物生态学报, 2024, 48(1): 68-79. |
[4] | 仲琦, 李曾燕, 马炜, 况雨潇, 邱岭军, 黎蕴洁, 涂利华. 氮添加和凋落物处理对华西雨屏区常绿阔叶林凋落叶分解的影响[J]. 植物生态学报, 2023, 47(5): 629-643. |
[5] | 李慧璇, 马红亮, 尹云锋, 高人. 亚热带天然阔叶林凋落物分解过程中活性、惰性碳氮的动态特征[J]. 植物生态学报, 2023, 47(5): 618-628. |
[6] | 徐干君, 吴胜义, 李伟, 赵欣胜, 聂磊超, 唐希颖, 翟夏杰. 陕西黄河湿地自然保护区碳储量估算[J]. 植物生态学报, 2023, 47(4): 469-478. |
[7] | 朱华. 云南常绿阔叶林的植被地理研究[J]. 植物生态学报, 2021, 45(3): 224-241. |
[8] | 李鑫豪, 田文东, 李润东, 靳川, 蒋燕, 郝少荣, 贾昕, 田赟, 查天山. 北京松山落叶阔叶林生态系统水热通量对环境因子的响应[J]. 植物生态学报, 2021, 45(11): 1191-1202. |
[9] | 李帅锋, 郎学东, 黄小波, 王艳红, 刘万德, 徐崇华, 苏建荣. 云南普洱30 hm2季风常绿阔叶林动态监测样地群丛数量分类[J]. 植物生态学报, 2020, 44(3): 236-247. |
[10] | 张亮, 王志磊, 薛婷婷, 郝笑云, 杨晨露, 高飞飞, 王莹, 韩星, 李华, 王华. 葡萄园生态系统碳源/汇及碳减排策略研究进展[J]. 植物生态学报, 2020, 44(3): 179-191. |
[11] | 王艳红, 李帅锋, 郎学东, 黄小波, 刘万德, 徐崇华, 苏建荣. 地形异质性对云南普洱季风常绿阔叶林物种多样性的影响[J]. 植物生态学报, 2020, 44(10): 1015-1027. |
[12] | 莫丹, 王振孟, 左有璐, 向双. 亚热带常绿阔叶林木本植物幼树阶段抽枝展叶的权衡关系[J]. 植物生态学报, 2020, 44(10): 995-1006. |
[13] | 刘校铭, 杨晓芳, 王璇, 张守仁. 暖温带落叶阔叶林辽东栎和五角枫生长和光合生理生态特征对模拟氮沉降的响应[J]. 植物生态学报, 2019, 43(3): 197-207. |
[14] | 王雪, 陈光水, 闫晓俊, 陈廷廷, 姜琦, 陈宇辉, 范爱连, 贾林巧, 熊德成, 黄锦学. 亚热带常绿阔叶林89种木本植物一级根直径的变异[J]. 植物生态学报, 2019, 43(11): 969-978. |
[15] | 魏红, 满秀玲. 中国寒温带不同林龄白桦林碳储量及分配特征[J]. 植物生态学报, 2019, 43(10): 843-852. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19