植物生态学报 ›› 2019, Vol. 43 ›› Issue (10): 843-852.DOI: 10.17521/cjpe.2019.0127
• 研究论文 • 下一篇
收稿日期:
2019-05-28
接受日期:
2019-10-06
出版日期:
2019-10-20
发布日期:
2020-02-24
通讯作者:
满秀玲
基金资助:
Received:
2019-05-28
Accepted:
2019-10-06
Online:
2019-10-20
Published:
2020-02-24
Contact:
MAN Xiu-Ling
Supported by:
摘要:
为了解中国寒温带地区不同林龄白桦林生态系统碳储量及固碳能力, 在样地调查基础上, 以大兴安岭地区25、40与61年白桦(Betula platyphylla)林生态系统为研究对象, 对其乔木层、林下地被物层(灌木层、草本层、凋落物层)、土壤层(0-100 cm)碳储量与分配特征进行调查研究。结果表明白桦林乔木层各器官碳含量在440.7-506.7 g·kg -1之间, 各器官碳含量随着林龄的增长而降低; 灌木层、草本层碳含量随林龄的增加呈先降后升的变化趋势; 凋落物层碳含量随林龄增加而降低; 土壤层(0-100 cm)碳含量随林龄增加而显著升高, 随着土层深度的增加而降低。白桦林生态系统各层次碳储量均随林龄的增加而明显升高。25、40与61年白桦林乔木层碳储量分别为11.9、19.1和34.2 t·hm -2, 各器官碳储量大小顺序表现为树干>树根>树枝>树叶, 树干碳储量分配比例随林龄增加而升高。25、40与61年白桦林生态系统碳储量分别为77.4、180.9和271.4 t·hm -2, 其中土壤层占生态系统总碳储量的81.6%、87.7%和85.9%, 是白桦林生态系统的主要碳库。随林龄增加, 白桦林年净生产力(2.0-4.4 t·hm -2·a -1)、年净固碳量(1.0-2.1 t·hm -2·a -1)均出现增长, 老龄白桦林仍具有较强的碳汇作用。
魏红, 满秀玲. 中国寒温带不同林龄白桦林碳储量及分配特征. 植物生态学报, 2019, 43(10): 843-852. DOI: 10.17521/cjpe.2019.0127
WEI Hong, MAN Xiu-Ling. Carbon storage and its allocation in Betula platyphylla forests of different ages in cold temperate zone of China. Chinese Journal of Plant Ecology, 2019, 43(10): 843-852. DOI: 10.17521/cjpe.2019.0127
林龄 Stand age (a) | 坡度 Slope (°) | 密度 Stand density (No.·hm-2) | 郁闭度 Canopy density | 平均树高 Mean tree height (m) | 平均胸径 Mean DBH (cm) | 林下主要植物 Main understory plants |
---|---|---|---|---|---|---|
25 ± 6 | 3 ± 1 | 1 825 ± 225 | 0.7 ± 0.1 | 8.6 ± 1.6 | 7.1 ± 1.8 | 1, 2, 3, 5, 6, 8 |
40 ± 4 | 2 ± 1 | 2 075 ± 300 | 0.9 ± 0.1 | 11.1 ± 3.0 | 9.5 ± 1.8 | 1, 2, 4, 5, 7, 9 |
61 ± 7 | 6 ± 2 | 1 820 ± 250 | 0.8 ± 0.1 | 15.2 ± 3.5 | 12.4 ± 2.2 | 1, 2, 4, 5, 6, 7, 8 |
表1 大兴安岭北部不同林龄白桦林样地基本概况(平均值±标准偏差)
Table 1 General information of the studied Betula platyphylla forests in the north section of the Da Hinggan Ling Mountains, NE China (mean ± SD)
林龄 Stand age (a) | 坡度 Slope (°) | 密度 Stand density (No.·hm-2) | 郁闭度 Canopy density | 平均树高 Mean tree height (m) | 平均胸径 Mean DBH (cm) | 林下主要植物 Main understory plants |
---|---|---|---|---|---|---|
25 ± 6 | 3 ± 1 | 1 825 ± 225 | 0.7 ± 0.1 | 8.6 ± 1.6 | 7.1 ± 1.8 | 1, 2, 3, 5, 6, 8 |
40 ± 4 | 2 ± 1 | 2 075 ± 300 | 0.9 ± 0.1 | 11.1 ± 3.0 | 9.5 ± 1.8 | 1, 2, 4, 5, 7, 9 |
61 ± 7 | 6 ± 2 | 1 820 ± 250 | 0.8 ± 0.1 | 15.2 ± 3.5 | 12.4 ± 2.2 | 1, 2, 4, 5, 6, 7, 8 |
器官 Organ | 回归方程 Regression equation | R2 |
---|---|---|
树干 Stem | W = 0.046D1.55H1.163 | 0.969 |
树枝 Branch | W = 5.921D1.925H-1.54 | 0.793 |
树叶 Leaf | W = 0.012D1.662H0.49 | 0.711 |
树根 Root | W = 0.016D2.171H0.281 | 0.933 |
表2 白桦生物量方程
Table 2 General regression models used to estimate biomass of different organs of the Betula platyphylla forests
器官 Organ | 回归方程 Regression equation | R2 |
---|---|---|
树干 Stem | W = 0.046D1.55H1.163 | 0.969 |
树枝 Branch | W = 5.921D1.925H-1.54 | 0.793 |
树叶 Leaf | W = 0.012D1.662H0.49 | 0.711 |
树根 Root | W = 0.016D2.171H0.281 | 0.933 |
组分 Component | 25 a | 40 a | 61 a | |||||||
---|---|---|---|---|---|---|---|---|---|---|
生物量 Biomass (t·hm-2) | 碳含量 Carbon Content (g·kg-1) | 碳储量 Carbon Storage (t·hm-2) | 生物量 Biomass (t·hm-2) | 碳含量 Carbon content (g·kg-1) | 碳储量 Carbon storage (t·hm-2) | 生物量 Biomass (t·hm-2) | 碳含量 Carbon content (g·kg-1) | 碳储量 Carbon storage (t·hm-2) | ||
乔木层 Arbor layer | 树干 Stem | 11.7 ± 0.6Ac | 490.3 ± 8.8 Ba | 5.8 ± 0.5Ac | 24.8 ± 1.2Ab | 453.3 ± 8.7Bb | 11.2 ± 0.6Ab | 54.0 ± 2.7Aa | 440.7 ± 4.7Db | 23.8 ± 0.7Aa |
树枝 Branch | 9.4 ± 0.5Bb | 485.9 ± 8.4Ca | 4.6 ± 0.4Bb | 11.1 ± 0.5Ba | 473.7 ± 3.6Aa | 5.3 ± 0.3Ba | 11.4 ± 0.1Ba | 453.6 ± 6.8Cb | 5.2 ± 0.2Ba | |
树叶 Leaf | 0.9 ± 0.1Fc | 506.7 ± 7.3Ba | 0.5 ± 0.0Gc | 1.7 ± 0.1Db | 484.2 ± 16.0Ab | 0.8 ± 0.0Eb | 3.0 ± 0.2Da | 467.9 ± 9.7Cb | 1.4 ± 0.0Ea | |
树根 Root | 2.1 ± 0.1Cc | 505.9 ± 11.0Ba | 1.0 ± 0.1Cc | 3.9 ± 0.2Cb | 471.6 ± 12.5Ab | 1.8 ± 0.1Cb | 8.1 ± 0.5Ca | 465.6 ± 12.6Cb | 3.8 ± 0.1Ca | |
总计 Sum | 24.1 ± 1.1c | 11.9 ± 1.0c | 41.5 ± 2.0b | 19.1 ± 1.0b | 76.5 ± 3.5a | 34.2 ± 1.0a | ||||
灌木层 Shrub layer | 地上部分 Aboveground | 1.5 ± 0.1Da | 505.3 ± 1.7Bb | 0.8 ± 0.1Db | 1.0 ± 0.1Eb | 494.3 ± 14.9Ab | 0.5 ± 0.1Fc | 1.5 ± 0.1Ea | 575.3 ± 26.6Aa | 0.9 ± 0.2Fa |
地下部分 Underground | 1.2 ± 0.1Ea | 483.7 ± 1.9Cb | 0.6 ± 0.1Fb | 0.9 ± 0.0Fb | 465.7 ± 1.3Bc | 0.4 ± 0.1Gc | 1.3 ± 0.1Fa | 551.7 ± 7.5Aa | 0.7 ± 0.1Ga | |
总计 Sum | 2.8 ± 0.2a | 1.4 ± 0.2b | 1.8 ± 0.1b | 0.9 ± 0.2c | 2.8 ± 0.2a | 1.6 ± 0.3a | ||||
草本层 Herb layer | 地上部分 Aboveground | 0.2 ± 0.0Gb | 426.1 ± 2.9Db | 0.1 ± 0.0Ib | 0.7 ± 0.1Ga | 412.8 ± 2.7Cc | 0.3 ± 0.1Ja | 0.7 ± 0.0Ga | 462.4 ± 7.1ABc | 0.1 ± 0.0Ib |
地下部分 Underground | 0.1 ± 0.0Hb | 424.8 ± 1.5Db | 0.0 ± 0.0Jc | 0.5 ± 0.0Ha | 399.8 ± 9.1Cc | 0.2 ± 0.0Ja | 0.5 ± 0.0Ha | 471.5 ± 8.3Ba | 0.0 ± 0.0Jb | |
总计 Sum | 0.2 ± 0.0b | 0.1 ± 0.0b | 1.1 ± 0.1a | 0.5 ± 0.1a | 0.2 ± 0.0b | 0.1 ± 0.0b | ||||
凋落 物层 Litter layer | 未分解层 Undecomposed layer | 544.0 ± 63.0Aa | 0.1 ± 0.0Hc | 478.1 ± 21.8Ab | 0.3 ± 0.1Hb | 433.0 ± 17.8Dc | 0.6 ± 0.1Ha | |||
半分解层 partially- decomposed layer | 486.3 ± 11.7Ca | 0.7 ± 0.1Eb | 488.1 ± 13.3Aa | 1.5 ± 0.2Da | 419.9 ± 2.4Eb | 1.8 ± 0.2Da | ||||
总计 Sum | 515.2 | 0.8 ± 0.1c | 483.1 | 1.8 ± 0.3b | 426.4 | 2.3 ± 0.3a |
表3 大兴安岭北部不同林龄白桦林各组分的生物量(t·hm-2)、碳含量(g·kg-1)和碳储量(t·hm-2)(平均值±标准偏差)
Table 3 Biomass, carbon content and carbon storage of the components (organs) of the studied Betula platyphylla forests in the north section of the Da Hinggan Ling Mountains, NE China (mean ± SD)
组分 Component | 25 a | 40 a | 61 a | |||||||
---|---|---|---|---|---|---|---|---|---|---|
生物量 Biomass (t·hm-2) | 碳含量 Carbon Content (g·kg-1) | 碳储量 Carbon Storage (t·hm-2) | 生物量 Biomass (t·hm-2) | 碳含量 Carbon content (g·kg-1) | 碳储量 Carbon storage (t·hm-2) | 生物量 Biomass (t·hm-2) | 碳含量 Carbon content (g·kg-1) | 碳储量 Carbon storage (t·hm-2) | ||
乔木层 Arbor layer | 树干 Stem | 11.7 ± 0.6Ac | 490.3 ± 8.8 Ba | 5.8 ± 0.5Ac | 24.8 ± 1.2Ab | 453.3 ± 8.7Bb | 11.2 ± 0.6Ab | 54.0 ± 2.7Aa | 440.7 ± 4.7Db | 23.8 ± 0.7Aa |
树枝 Branch | 9.4 ± 0.5Bb | 485.9 ± 8.4Ca | 4.6 ± 0.4Bb | 11.1 ± 0.5Ba | 473.7 ± 3.6Aa | 5.3 ± 0.3Ba | 11.4 ± 0.1Ba | 453.6 ± 6.8Cb | 5.2 ± 0.2Ba | |
树叶 Leaf | 0.9 ± 0.1Fc | 506.7 ± 7.3Ba | 0.5 ± 0.0Gc | 1.7 ± 0.1Db | 484.2 ± 16.0Ab | 0.8 ± 0.0Eb | 3.0 ± 0.2Da | 467.9 ± 9.7Cb | 1.4 ± 0.0Ea | |
树根 Root | 2.1 ± 0.1Cc | 505.9 ± 11.0Ba | 1.0 ± 0.1Cc | 3.9 ± 0.2Cb | 471.6 ± 12.5Ab | 1.8 ± 0.1Cb | 8.1 ± 0.5Ca | 465.6 ± 12.6Cb | 3.8 ± 0.1Ca | |
总计 Sum | 24.1 ± 1.1c | 11.9 ± 1.0c | 41.5 ± 2.0b | 19.1 ± 1.0b | 76.5 ± 3.5a | 34.2 ± 1.0a | ||||
灌木层 Shrub layer | 地上部分 Aboveground | 1.5 ± 0.1Da | 505.3 ± 1.7Bb | 0.8 ± 0.1Db | 1.0 ± 0.1Eb | 494.3 ± 14.9Ab | 0.5 ± 0.1Fc | 1.5 ± 0.1Ea | 575.3 ± 26.6Aa | 0.9 ± 0.2Fa |
地下部分 Underground | 1.2 ± 0.1Ea | 483.7 ± 1.9Cb | 0.6 ± 0.1Fb | 0.9 ± 0.0Fb | 465.7 ± 1.3Bc | 0.4 ± 0.1Gc | 1.3 ± 0.1Fa | 551.7 ± 7.5Aa | 0.7 ± 0.1Ga | |
总计 Sum | 2.8 ± 0.2a | 1.4 ± 0.2b | 1.8 ± 0.1b | 0.9 ± 0.2c | 2.8 ± 0.2a | 1.6 ± 0.3a | ||||
草本层 Herb layer | 地上部分 Aboveground | 0.2 ± 0.0Gb | 426.1 ± 2.9Db | 0.1 ± 0.0Ib | 0.7 ± 0.1Ga | 412.8 ± 2.7Cc | 0.3 ± 0.1Ja | 0.7 ± 0.0Ga | 462.4 ± 7.1ABc | 0.1 ± 0.0Ib |
地下部分 Underground | 0.1 ± 0.0Hb | 424.8 ± 1.5Db | 0.0 ± 0.0Jc | 0.5 ± 0.0Ha | 399.8 ± 9.1Cc | 0.2 ± 0.0Ja | 0.5 ± 0.0Ha | 471.5 ± 8.3Ba | 0.0 ± 0.0Jb | |
总计 Sum | 0.2 ± 0.0b | 0.1 ± 0.0b | 1.1 ± 0.1a | 0.5 ± 0.1a | 0.2 ± 0.0b | 0.1 ± 0.0b | ||||
凋落 物层 Litter layer | 未分解层 Undecomposed layer | 544.0 ± 63.0Aa | 0.1 ± 0.0Hc | 478.1 ± 21.8Ab | 0.3 ± 0.1Hb | 433.0 ± 17.8Dc | 0.6 ± 0.1Ha | |||
半分解层 partially- decomposed layer | 486.3 ± 11.7Ca | 0.7 ± 0.1Eb | 488.1 ± 13.3Aa | 1.5 ± 0.2Da | 419.9 ± 2.4Eb | 1.8 ± 0.2Da | ||||
总计 Sum | 515.2 | 0.8 ± 0.1c | 483.1 | 1.8 ± 0.3b | 426.4 | 2.3 ± 0.3a |
图1 大兴安岭北部不同林龄白桦林土壤层碳含量(平均值±标准偏差)。不同大写字母表示同一林龄不同土层间差异显著, 不同小写字母表示同一土层不同林龄间差异显著(p < 0.05)。
Fig. 1 Carbon content of soil layer in the Betula platyphylla forests of different ages in the north section of the Da Hinggan Ling Mountains, NE China (mean ± SD). Different capital letters indicate significant differences among different levels of the components of the forest of same age, and different lowercase letters showed significant differences among the same type of component, but different forest ages (p < 0.05).
图2 大兴安岭北部不同林龄白桦林土壤碳储量绝对值(平均值±标准偏差)(A)和相对值(B)。
Fig. 2 Absolute (mean ± SD)(A) and relative distribution (B) of soil carbon density by soil depth in the Betula platyphylla forests of different ages in the north section of the Da Hinggan Ling Mountains, NE China.
林龄 Age (a) | 乔木层 Arbor layer | 灌木层 Shrub layer | 草本层 Herb layer | 总计 Total | |||||
---|---|---|---|---|---|---|---|---|---|
树干 Trunk | 树枝 Bark | 树叶 Leaf | 树根 Root | 总计 Total | |||||
25 | 年净生产力 Annual net productivity | 0.4 ± 0.0 | 0.3 ± 0.0 | 0.9 ± 0.1 | 0.1 ± 0.0 | 1.7 ± 0.1 | 0.1 ± 0.0 | 0.2 ± 0.0 | 2.0 ± 0.1 |
年固碳量 Annual carbon storage | 0.2 ± 0.0 | 0.2 ± 0.0 | 0.5 ± 0.0 | 0.0 ± 0.0 | 0.9 ± 0.1 | 0.1 ± 0.0 | 0.1 ± 0.0 | 1.0 ± 0.1 | |
40 | 年净生产力 Annual net productivity | 0.6 ± 0.0 | 0.3 ± 0.0 | 1.7 ± 0.1 | 0.1 ± 0.0 | 1.9 ± 0.1 | 0.0 ± 0.0 | 1.0 ± 0.1 | 3.0 ± 0.3 |
年固碳量 Annual carbon storage | 0.3 ± 0.0 | 0.1 ± 0.0 | 0.8 ± 0.0 | 0.1 ± 0.0 | 1.3 ± 0.1 | 0.0 ± 0.0 | 0.5 ± 0.1 | 1.8 ± 0.1 | |
61 | 年净生产力 Annual net productivity | 0.9 ± 0.0 | 0.2 ± 0.0 | 3.0 ± 0.2 | 0.1 ± 0.0 | 4.2 ± 0.2 | 0.0 ± 0.0 | 0.2 ± 0.0 | 4.4 ± 0.2 |
年固碳量 Annual carbon storage | 0.4 ± 0.0 | 0.1 ± 0.0 | 1.4 ± 0.1 | 0.1 ± 0.0 | 2.0 ± 0.1 | 0.0 ± 0.0 | 0.1 ± 0.0 | 2.1 ± 0.1 |
表4 大兴安岭北部白桦林各组分年净生产力和年净固碳量(t·hm-2·a-1)(平均值±标准偏差)
Table 4 Net productivity and carbon storage of each component in the Betula platyphylla forests in the north section of the Da Hinggan Ling Mountains, NE China (t·hm-2·a-1)(mean ± SD)
林龄 Age (a) | 乔木层 Arbor layer | 灌木层 Shrub layer | 草本层 Herb layer | 总计 Total | |||||
---|---|---|---|---|---|---|---|---|---|
树干 Trunk | 树枝 Bark | 树叶 Leaf | 树根 Root | 总计 Total | |||||
25 | 年净生产力 Annual net productivity | 0.4 ± 0.0 | 0.3 ± 0.0 | 0.9 ± 0.1 | 0.1 ± 0.0 | 1.7 ± 0.1 | 0.1 ± 0.0 | 0.2 ± 0.0 | 2.0 ± 0.1 |
年固碳量 Annual carbon storage | 0.2 ± 0.0 | 0.2 ± 0.0 | 0.5 ± 0.0 | 0.0 ± 0.0 | 0.9 ± 0.1 | 0.1 ± 0.0 | 0.1 ± 0.0 | 1.0 ± 0.1 | |
40 | 年净生产力 Annual net productivity | 0.6 ± 0.0 | 0.3 ± 0.0 | 1.7 ± 0.1 | 0.1 ± 0.0 | 1.9 ± 0.1 | 0.0 ± 0.0 | 1.0 ± 0.1 | 3.0 ± 0.3 |
年固碳量 Annual carbon storage | 0.3 ± 0.0 | 0.1 ± 0.0 | 0.8 ± 0.0 | 0.1 ± 0.0 | 1.3 ± 0.1 | 0.0 ± 0.0 | 0.5 ± 0.1 | 1.8 ± 0.1 | |
61 | 年净生产力 Annual net productivity | 0.9 ± 0.0 | 0.2 ± 0.0 | 3.0 ± 0.2 | 0.1 ± 0.0 | 4.2 ± 0.2 | 0.0 ± 0.0 | 0.2 ± 0.0 | 4.4 ± 0.2 |
年固碳量 Annual carbon storage | 0.4 ± 0.0 | 0.1 ± 0.0 | 1.4 ± 0.1 | 0.1 ± 0.0 | 2.0 ± 0.1 | 0.0 ± 0.0 | 0.1 ± 0.0 | 2.1 ± 0.1 |
项目 Item | 林龄 Age (a) | |||||
---|---|---|---|---|---|---|
25 | 40 | 61 | ||||
碳储量 Carbon storage | 分配比例 Allocation pattern | 碳储量 Carbon storage | 分配比例 Allocation pattern | 碳储量 Carbon storage | 分配比例 Allocation pattern | |
乔木层 Arbor layer | 11.9 ± 1.0 | 15.4% ± 1.4% | 19.1 ± 1.0 | 10.5% ± 0.6% | 34.2 ± 1.0 | 12.6% ± 0.4% |
林下地被物层 Understory ground cover layer | 2.3 ± 0.3 | 3.0% ± 0.4% | 3.2 ± 0.5 | 1.8% ± 0.3% | 4.0 ± 0.6 | 1.5% ± 0.2% |
土壤层 Soil layer | 63.2 ± 4.1 | 81.6% ± 5.3% | 158.6 ± 3.0 | 87.7% ± 1.7% | 233.2 ± 7.6 | 85.9% ± 2.8% |
生态系统 Ecosystem | 77.4 ± 5.4 | 180.9 ± 4.5 | 271.4 ± 9.2 |
表5 大兴安岭北部白桦林碳储量(t·hm-2)及分配格局(平均值±标准偏差)
Table 5 Carbon storage (t·hm-2) and allocation percentage of the Betula platyphylla forests in the north section of the Da Hinggan Ling Mountains, NE China (t·hm-2·a-1)(mean ± SD)
项目 Item | 林龄 Age (a) | |||||
---|---|---|---|---|---|---|
25 | 40 | 61 | ||||
碳储量 Carbon storage | 分配比例 Allocation pattern | 碳储量 Carbon storage | 分配比例 Allocation pattern | 碳储量 Carbon storage | 分配比例 Allocation pattern | |
乔木层 Arbor layer | 11.9 ± 1.0 | 15.4% ± 1.4% | 19.1 ± 1.0 | 10.5% ± 0.6% | 34.2 ± 1.0 | 12.6% ± 0.4% |
林下地被物层 Understory ground cover layer | 2.3 ± 0.3 | 3.0% ± 0.4% | 3.2 ± 0.5 | 1.8% ± 0.3% | 4.0 ± 0.6 | 1.5% ± 0.2% |
土壤层 Soil layer | 63.2 ± 4.1 | 81.6% ± 5.3% | 158.6 ± 3.0 | 87.7% ± 1.7% | 233.2 ± 7.6 | 85.9% ± 2.8% |
生态系统 Ecosystem | 77.4 ± 5.4 | 180.9 ± 4.5 | 271.4 ± 9.2 |
[1] |
. Bradford JB, Kastendick DN (2010). Age-related patterns of forest complexity and carbon storage in pine and aspen- birch ecosystems of northern Minnesota, USA. Canadian Journal of Forest Research, 40, 401-409.
DOI URL |
[2] |
. Chen HYH, Luo Y (2015). Net aboveground biomass declines of four major forest types with forest ageing and climate change in western Canada’s boreal forests. Global Change Biology, 21, 3675-3684.
DOI URL PMID |
[3] | . Ding GJ, Wang PC (2002). Study on change laws of biomass and productivity of Masson pine forest plantation II. Biomass and productivity of stand at different ages. Forest Research, 15(l), 54-60. |
[ 丁贵杰, 王鹏程 (2002). 马尾松人工林生物量及生产力变化规律研究II. 不同林龄生物量及生产力. 林业科学研究, 15(l), 54-60.] | |
[4] |
. Fang JY, Chen AP, Peng CH, Zhao SQ, Ci LJ (2001). Changes in forest biomass carbon storage in China between 1949 and 1998. Science, 292, 2320-2322.
DOI URL PMID |
[5] | . Fang JY, Piao SL, Zhao SQ (2001). The carbon sink: The role of the middle and high latitudes terrestrial ecosystems in the Northern Hemisphere. Acta Phytoecologica Sinica, 25, 594-602. |
[ 方精云, 朴世龙, 赵淑清 (2001). CO2失汇与北半球中高纬度陆地生态系统的碳汇. 植物生态学报, 25, 594-602.] | |
[6] | . Girardin MP, Bouriaud O, Hogg EH, Kurz W, Zimmermann NE, Metsaranta JM, de Jong R, Frank DC, Esper J, Büntgen U, Guo XJ, Bhatti J (2016). No growth stimulation of Canada’s boreal forest under half-century of combined warming and CO2 fertilization. Proceedings of the National Academy of Sciences of the United States of America, 113, 8406-8414. |
[7] | . Han YY, Huang W, Sun T, Lu B, Mao ZJ (2015). Soil organic carbon stocks and fluxes in different age stands of secondary Betula platyphylla in Xiaoxingʼan Mountain, China. Acta Ecologica Sinica, 35, 1460-1469. |
[ 韩营营, 黄唯, 孙涛, 陆彬, 毛子军 (2015). 不同林龄白桦天然次生林土壤碳通量和有机碳储量. 生态学报, 35, 1460-1469.] | |
[8] | . Hu HQ, Luo BZ, Wei SJ, Wei SW, Wen ZM, Sun L, Luo SS, Wang LM, Ma HB (2015). Estimating biological carbon storage of five typical forest types in the Daxingʼan Ling Mountains, Heilongjiang, China. Acta Ecologica Sinica, 35, 5745-5760. |
[ 胡海清, 罗碧珍, 魏书精, 魏书威, 文正敏, 孙龙, 罗斯生, 王立明, 马洪斌 (2015). 大兴安岭5种典型林型森林生物碳储量. 生态学报, 35, 5745-5760.] | |
[9] |
. Huang GS, Ma W, Wang XJ, Xia CZ, Dang YF (2014). Carbon storage measurement of larch forest in northeastern China. Scientia Silvae Sinicae, 50(6), 167-174.
DOI URL |
[ 黄国胜, 马炜, 王雪军, 夏朝宗, 党永锋 (2014). 东北地区落叶松林碳储量估算. 林业科学, 50(6), 167-174.]
DOI URL |
|
[10] | . Lan SB (2018). Comparison, selection and its progeny test of natural population of Betula platyphylla in northern China. Journal of Beihua University (Natural Science), 19, 582-587. |
[ 兰士波 (2018). 中国北方白桦自然群体比较选择及子代测定. 北华大学学报(自然科学版), 19, 582-587.] | |
[11] | . Li JQ, Ju H, Zhang QL (2010). Study on the Betula platyphylia natural forest biomass model. Journal of Inner Mongolia Agricultural University (Natural Science Edition), 31(1), 76-82. |
[ 李建强, 菊花, 张秋良 (2010). 白桦天然林生物量模型的研究. 内蒙古农业大学学报(自然科学版), 31(1), 76-82.] | |
[12] | . Li NN, Mu CC, Zheng T, Zhang Y, Cheng JY, Cao WL (2015). Effect of site types on carbon storage of natural white birch forest ecosystem in Changbai Mountains, Northeast China. Forest Research, 28, 618-626. |
[ 李娜娜, 牟长城, 郑瞳, 张毅, 程家友, 曹万亮 (2015). 立地类型对长白山天然白桦林生态系统碳储量的影响. 林业科学研究, 28, 618-626.] | |
[13] | . Li WY, Man XL, Zhang YW (2009). Soil properties and water conservation function of Betula platyphylla secondary forest with different stand ages. Science of Soil and Water Conservation, 7(5), 63-69. |
[ 李文影, 满秀玲, 张阳武 (2009). 不同林龄白桦次生林土壤特性及其水源涵养功能. 中国水土保持科学, 7(5), 63-69.] | |
[14] |
. Li XD, Yi MJ, Son Y, Park PS, Lee KH, Son YM, Kim RH, Jeong MJ (2011). Biomass and carbon storage in an age-sequence of Korean pine (Pinus koraiensis) plantation forests in central Korea. Journal of Plant Biology,54, 33-42.
DOI URL |
[15] | . Liu LX, Wang J, Yang XJ, Liu CZ, Wang XW (2018). Forest plant community and soil organic carbon density in Da Xingʼan Mountains. Ecology and Environmental Sciences, 27, 1610-1616. |
[ 刘林馨, 王健, 杨晓杰, 刘传照, 王秀文 (2018). 大兴安岭不同森林群落植被多样性对土壤有机碳密度的影响. 生态环境学报, 27, 1610-1616.] | |
[16] | . Liu SN, Zhou T, Wei LY, Shu Y (2012). The spatial distribution of forest carbon sinks and sources in China. Chinese Science Bulletin, 57, 943-950, 987. |
[ 刘双娜, 周涛, 魏林艳, 舒阳 (2012). 中国森林植被的碳汇/源空间分布格局. 科学通报, 57, 943-950, 987.] | |
[17] | . Liu X, Man XL, Tian YH (2015). Hydro-chemical and nutrient importing characteristics of precipitation in secondary Betula platyphylla forests in northern Great Xing’an Mountains, northeastern China. Journal of Beijing Forestry University, 37(8), 83-89. |
[ 刘茜, 满秀玲, 田野宏 (2015). 白桦次生林降雨水化学及养分输入特征. 北京林业大学学报, 37(8), 83-89.] | |
[18] | . Lu BQ, Zang SY, Sun L (2019). The effects of freezing- thawing process on soil active organic carbon and nitrogen mineralization in Daxingʼanling Mountain forests. Acta Scientiae Circumstantiae, 39, 1664-1672. |
[ 鲁博权, 臧淑英, 孙丽 (2019). 冻融作用对大兴安岭典型森林土壤活性有机碳和氮矿化的影响. 环境科学学报, 39, 1664-1672.] | |
[19] | . Lü CQ, Sun SC (2004). A review on the distribution patterns of carbon density in terrestrial ecosystems. Acta Phytoecologica Sinica, 28, 692-703. |
[ 吕超群, 孙书存 (2004). 陆地生态系统碳密度格局研究概述. 植物生态学报, 28, 692-703.] | |
[20] | . Ma FF, Zhang CM, Li YZ (2016). Density and distribution of organic carbon of Larix kaempferi plantation ecosystem in Subtropics. Journal of Central South University of Forestry & Technology, 36(1), 94-100. |
[ 马丰丰, 张灿明, 李有志 (2016). 亚热带日本落叶松人工林生态系统碳密度及其分配特征. 中南林业科技大学学报, 36(1), 94-100.] | |
[21] | . Ma L (2012). Xiaoxing’anling Birch Natural Forest Ecosystem Carbon Storage Research. Master degree dissertation, Northeast Forestry University, Harbin. |
[ 马林 (2012). 小兴安岭白桦天然林生态系统碳储量的研究. 硕士学位论文, 东北林业大学, 哈尔滨.] | |
[22] | . Ming AG, Jia HY, Tian ZW, Tao Y, Lu LH, Cai DX, Shi ZM, Wang WX (2014). Characteristics of carbon storage and its allocation in Erythrophleum fordii plantations with different ages. Chinese Journal of Applied Ecology, 25, 940-946. |
[ 明安刚, 贾宏炎, 田祖为, 陶怡, 卢立华, 蔡道雄, 史作民, 王卫霞 (2014). 不同林龄格木人工林碳储量及其分配特征. 应用生态学报, 25, 940-946.] | |
[23] |
. Pan YD, Birdsey RA, Fang JY, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, Ciais P, Jackson RB, Pacala SW, David McGuire A, Piao SL, Rautiainen A, Sitch S, Hayes D (2011). A large and persistent carbon sink in the world’s forests. Science, 333, 988-993.
DOI URL |
[24] |
. Pregitzer KS, Euskirchen ES (2004). Carbon cycling and storage in world forests: Biome patterns related to forest age. Global Change Biology, 10, 2052-2077.
DOI URL |
[25] | . Qi G, Wang QL, Wang XC, Qi L, Wang QW, Ye YJ, Dai LM (2011). Vegetation carbon storage in Larix gmelinii plantations in Great Xing’an Mountains. Chinese Journal of Applied Ecology, 22, 273-279. |
[ 齐光, 王庆礼, 王新闯, 齐麟, 王庆伟, 叶雨静, 代力民 (2011). 大兴安岭林区兴安落叶松人工林植被碳贮量. 应用生态学报, 22, 273-279.] | |
[26] |
. Raich JW, Russell AE, Kitayama K, Parton WJ, Vitousek PM (2006). Temperature influences carbon accumulation in moist tropical forests. Ecology, 87, 76-87.
DOI URL PMID |
[27] | . Shu Y, Zhou M, Zhao PW, Zeng N, Shi L, Wang ZX, Wang D, Ge P, Zhang B (2016). Carbon storage and its distribution characteristics in the planted forest of Larix principis in southern Daxinganling. Ecology and Environmental Sciences, 25, 1604-1611. |
[ 舒洋, 周梅, 赵鹏武, 曾楠, 石亮, 王梓璇, 王鼎, 葛鹏, 张波 (2016). 大兴安岭南段华北落叶松人工林碳储量及分配特征研究. 生态环境学报, 25, 1604-1611.] | |
[28] |
. van Huysen TL, Perakis SS, Harmon ME (2016). Decomposition drives convergence of forest litter nutrient stoichiometry following phosphorus addition. Plant and Soil, 406, 1-14.
DOI URL |
[29] |
. Wang Z, Liu GB, Xu MX, Zhang J, Wang Y, Tang L (2012). Temporal and spatial variations in soil organic carbon sequestration following revegetation in the hilly Loess Plateau, China. Catena, 99, 26-33.
DOI URL |
[30] | . Wu XR, Zhang JB, Tian Y, Li P (2014). Provincial agricultural carbon emissions in China: Calculation, performance change and influencing factors. Resources Science, 36, 129-138. |
[ 吴贤荣, 张俊飚, 田云, 李鹏 (2014). 中国省域农业碳排放: 测算、效率变动及影响因素研究——基于DEA-Malmquist指数分解方法与Tobit模型运用. 资源科学, 36, 129-138.] | |
[31] | . Xiang YX, Chen SK, Pan P, Ouyang XZ, Ning JK, Li Q (2019). Stoichiometric traits of C, N and P of leaf-litter-soil system of Pinus massoniana forest. Journal of Forest and Environment, 39(2), 120-126. |
[ 向云西, 陈胜魁, 潘萍, 欧阳勋志, 宁金魁, 李琦 (2019). 马尾松叶片-凋落物-土壤的碳氮磷化学计量特征. 森林与环境学报, 39(2), 120-126.] | |
[32] | . Xie XL, Sun B, Zhou HZ, Li ZP (2004). Soil carbon stocks and their influencing factors under native vegetations in China. Acta Pedologica Sinica, 41, 687-699. |
[ 解宪丽, 孙波, 周慧珍, 李忠佩 (2004). 不同植被下中国土壤有机碳的储量与影响因子. 土壤学报, 41, 687-699.] | |
[33] | . Yang LL, Wang YH, Wen SZ, Liu YH, Du M, Hao J, Li ZH (2015). Carbon and nitrogen storage and distribution in four forest ecosystems in Liupan Mountains, northwestern China. Acta Ecologica Sinica, 35, 5215-5227. |
[ 杨丽丽, 王彦辉, 文仕知, 刘延惠, 杜敏, 郝佳, 李振华 (2015). 六盘山四种森林生态系统的碳氮储量、组成及分布特征. 生态学报, 35, 5215-5227.] | |
[34] | . Zhang Y (2015). Effect of Site Types on Carbon Storage of Natural White Birch Forest Ecosystem in Xiaoxing’an Mountains of China. Master degree dissertation, Northeast Forestry University, Harbin. |
[ 张毅 (2015). 立地类型对小兴安岭天然白桦次生林生态系统碳储量的影响. 硕士学位论文, 东北林业大学, 哈尔滨.] | |
[35] | . Zhang Y, Mu CC, Zheng T, Li NN (2015). Ecosystem carbon storage of natural secondary birch forests in Xiaoxing’an Mountains of China. Journal of Beijing Forestry University, 37, 38-47. |
[ 张毅, 牟长城, 郑曈, 李娜娜 (2015). 小兴安岭天然白桦林生态系统碳储量. 北京林业大学学报, 37, 38-47.] | |
[36] |
. Zhang ZJ, Zhang XQ, Wang YH, Luo YJ, Li ZY, Cao L (2009). Carbon storage and distribution of Pinus massoniana forest ecosystem in Tieshanping of Chongqing. Scientia Silvae Sinicae, 45(5), 49-53.
DOI URL |
[ 张治军, 张小全, 王彦辉, 罗云建, 李志勇, 曹磊 (2009). 重庆铁山坪马尾松林生态系统碳贮量及其分配特征. 林业科学, 45(5), 49-53.]
DOI URL |
|
[37] | . Zheng T, Mu CC, Zhang Y, Li NN (2016). Effects of site condition on ecosystem carbon storage in a natural Betula platyphylla forest in the Zhangguangcai Mountains, China. Acta Ecologica Sinica, 36, 6284-6294. |
[ 郑瞳, 牟长城, 张毅, 李娜娜 (2016). 立地类型对张广才岭天然白桦林生态系统碳储量的影响. 生态学报, 36, 6284-6294.] | |
[38] |
. Zhou XL, Cai Q, Xiong XY, Fang WJ, Zhu JX, Zhu JL, Fang JY, Ji CJ (2018). Ecosystem carbon stock and within-system distribution in successional Fagus lucida forests in Mt. Yueliang, Guizhou, China. Chinese Journal of Plant Ecology, 42, 703-712.
DOI URL |
[ 周序力, 蔡琼, 熊心雨, 方文静, 朱剑霄, 朱江玲, 方精云, 吉成均 (2018). 贵州月亮山不同演替阶段亮叶水青冈林碳储量及其分配格局. 植物生态学报, 42, 703-712.]
DOI URL |
|
[39] |
. Zhou Y, Hartemink AE, Shi Z, Liang ZZ, Lu YL (2019). Land use and climate change effects on soil organic carbon in North and Northeast China. Science of the Total Environment, 647, 1230-1238.
DOI URL PMID |
[40] |
. Zhu JX, Hu HF, Tao SL, Chi XL, Li P, Jiang L, Ji CJ, Zhu JL, Tang ZY, Pan YD, Birdsey RA, He XH, Fang JY (2017 a). Carbon stocks and changes of dead organic matter in China’s forests. Nature Communications, 8, 151-160.
DOI URL PMID |
[41] |
. Zhu JX, Zhou XL, Fang WJ, Xiong XY, Zhu B, Ji CJ, Fang JY (2017b) . Plant debris and its contribution to ecosystem carbon storage in successional Larix gmelinii forests in northeastern China. Forests, 8, 191-200.
DOI URL |
[1] | 张亮, 王志磊, 薛婷婷, 郝笑云, 杨晨露, 高飞飞, 王莹, 韩星, 李华, 王华. 葡萄园生态系统碳源/汇及碳减排策略研究进展[J]. 植物生态学报, 2020, 44(3): 179-191. |
[2] | 罗斯生, 罗碧珍, 魏书精, 胡海清, 李小川, 吴泽鹏, 王振师, 周宇飞, 钟映霞. 中度强度森林火灾对马尾松次生林土壤有机碳密度的影响[J]. 植物生态学报, 2020, 44(10): 1073-1086. |
[3] | 陈科宇, 字洪标, 阿的鲁骥, 胡雷, 王根绪, 王长庭. 青海省森林乔木层碳储量现状及固碳潜力[J]. 植物生态学报, 2018, 42(8): 831-840. |
[4] | 周序力, 蔡琼, 熊心雨, 方文静, 朱剑霄, 朱江玲, 方精云, 吉成均. 贵州月亮山不同演替阶段亮叶水青冈林碳储量及其分配格局[J]. 植物生态学报, 2018, 42(7): 703-712. |
[5] | 杨昊天, 王增如, 贾荣亮. 腾格里沙漠东南缘荒漠草地不同群落类型土壤有机碳分布及储量特征[J]. 植物生态学报, 2018, 42(3): 288-296. |
[6] | 张静, 刘耘华, 盛建东, 柴强, 李瑞霞, 赵丹. 新疆北部草地典型灌木的碳氮特征[J]. 植物生态学报, 2018, 42(3): 307-316. |
[7] | 陈日升, 康文星, 周玉泉, 田大伦, 项文化. 杉木人工林养分循环随林龄变化的特征[J]. 植物生态学报, 2018, 42(2): 173-184. |
[8] | 李茜, 王芳, 曹扬, 彭守璋, 陈云明. 陕西省森林土壤固碳特征及其影响因素[J]. 植物生态学报, 2017, 41(9): 953-963. |
[9] | 邢娟, 郑成洋, 冯婵莹, 曾发旭. 河北塞罕坝樟子松人工林生长及碳储量的变化[J]. 植物生态学报, 2017, 41(8): 840-849. |
[10] | 李登秋, 张春华, 居为民, 刘丽娟. 江西省森林净初级生产力动态变化特征及其驱动因子分析[J]. 植物生态学报, 2016, 40(7): 643-657. |
[11] | 赵玮, 胡中民, 杨浩, 张雷明, 郭群, 乌志颜, 刘德义, 李胜功. 浑善达克沙地榆树疏林和小叶杨人工林碳密度特征及其与林龄的关系[J]. 植物生态学报, 2016, 40(4): 318-326. |
[12] | 汲玉河, 郭柯, 倪健, 徐小牛, 王志高, 王树东. 安徽省森林碳储量现状及固碳潜力[J]. 植物生态学报, 2016, 40(4): 395-404. |
[13] | 王建, 王根绪, 王长庭, 冉飞, 常瑞英. 青藏高原高寒区阔叶林植被固碳现状、速率和潜力[J]. 植物生态学报, 2016, 40(4): 374-384. |
[14] | 范春楠, 韩士杰, 郭忠玲, 郑金萍, 程岩. 吉林省森林植被固碳现状与速率[J]. 植物生态学报, 2016, 40(4): 341-353. |
[15] | 黄晓琼, 辛存林, 胡中民, 李钢铁, 张铜会, 赵玮, 杨浩, 张雷明, 郭群, 岳永杰, 高润宏, 乌志颜, 闫志刚, 刘新平, 李玉强, 李胜功. 内蒙古森林生态系统碳储量及其空间分布[J]. 植物生态学报, 2016, 40(4): 327-340. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19