植物生态学报 ›› 2018, Vol. 42 ›› Issue (3): 288-296.DOI: 10.17521/cjpe.2017.0068
出版日期:
2018-03-20
发布日期:
2017-06-16
通讯作者:
王增如
基金资助:
YANG Hao-Tian,WANG Zeng-Ru*(),JIA Rong-Liang
Online:
2018-03-20
Published:
2017-06-16
Contact:
Zeng-Ru WANG
Supported by:
摘要:
荒漠生态系统环境的复杂性及其高度的空间异质性是土壤碳储量估算结果不确定性的重要因素。通过调查取样和室内分析, 研究了腾格里沙漠东南缘10种主要荒漠草地群落各土壤层(0-5、5-10、10-20、20-30、30-50、50-70和70-100 cm土层)的土壤有机碳(SOC)含量、垂直分布特征和影响因素, 以及0-5、0-20、0-50和0-100 cm土层剖面的土壤有机碳密度(SOCD)。结果显示, 灌木群落是SOC含量的重要影响因素, 各土层SOC含量在10种群落间均存在显著差异。从土壤表层到深层, SOC含量主要表现为由高至低和先升高后降低两种特征。SOC含量与黏粉粒含量、全氮(N)、全磷(P)和电导率呈显著的正相关关系, 与砂粒含量呈显著的负相关关系。各群落之间, 0-5、0-20、0-50和0-100 cm土层剖面的SOCD均存在显著差异, 其平均值分别为0.118、0.478、1.159和1.936 kg·m -2。这一结果低于全球和全国草地SOCD的平均值, 利用全国数据或该研究的平均值可能会高估或低估区域土壤有机碳储量, 因此利用不同群落的SOCD能增加荒漠地区土壤有机碳储量估算的确定性。
杨昊天, 王增如, 贾荣亮. 腾格里沙漠东南缘荒漠草地不同群落类型土壤有机碳分布及储量特征. 植物生态学报, 2018, 42(3): 288-296. DOI: 10.17521/cjpe.2017.0068
YANG Hao-Tian, WANG Zeng-Ru, JIA Rong-Liang. Distribution and storage of soil organic carbon across the desert grasslands in the southeastern fringe of the Tengger Desert, China. Chinese Journal of Plant Ecology, 2018, 42(3): 288-296. DOI: 10.17521/cjpe.2017.0068
群落类型 Community type | 土壤深度 Soil depth (cm) | ||||||
---|---|---|---|---|---|---|---|
0-5 | 5-10 | 10-20 | 20-30 | 30-50 | 50-70 | 70-100 | |
AM | 1.014 ± 0.186de | 0.951 ± 0.183de | 0.846 ± 0.154fg | 0.913 ± 0.463de | 0.663 ± 0.140d | 0.591 ± 0.471e | 0.649 ± 0.470bc |
CLA | 3.440 ± 1.312bc | 2.411 ± 1.104bc | 1.962 ± 0.738de | 1.796 ± 0.922cd | 1.469 ± 0.443cd | 0.912 ± 0.199de | 1.288 ± 0.533b |
KF | 2.960 ± 1.050c | 3.700 ± 1.667a | 4.660 ± 1.228a | 5.460 ± 2.281a | 4.040 ± 1.504a | 4.080 ± 1.270a | 2.420 ± 1.240a |
NT | 1.200 ± 0.346de | 1.350 ± 0.311cde | 1.200 ± 0.245ef | 0.960 ± 0.288de | 0.880 ± 0.295d | 0.900 ± 0.361de | 0.760 ± 0.114bc |
OAL | 0.439 ± 0.113e | 0.278 ± 0.050e | 0.254 ± 0.057g | 0.300 ± 0.101e | 0.438 ± 0.122d | 0.323 ± 0.075e | 0.393 ± 0.157c |
PM | 1.720 ± 0.396d | 2.880 ± 0.814ab | 3.720 ± 0.444b | 3.780 ± 0.476b | 2.280 ± 0.228bc | 1.780 ± 0.311bc | 1.180 ± 0.476b |
RS | 0.838 ± 0.094e | 1.700 ± 1.144cd | 2.445 ± 1.094cd | 3.376 ± 0.255b | 2.959 ± 0.313ab | 2.227 ± 0.213b | 2.322 ± 0.200a |
RSK | 4.660 ± 0.720a | 3.760 ± 1.064a | 2.980 ± 0.268bc | 2.180 ± 0.192c | 2.580 ± 1.972bc | 1.180 ± 0.217cde | 1.080 ± 0.444bc |
SP | 3.860 ± 0.684ab | 2.880 ± 0.676ab | 3.180 ± 0.756bc | 2.800 ± 1.037bc | 2.400 ± 1.384bc | 1.400 ± 0.447cd | 1.100 ± 0.728bc |
ZX | 0.887 ± 0.265e | 1.301 ± 0.404cde | 1.511 ± 0.416ef | 1.703 ± 0.129cd | 1.571 ± 0.197cd | 1.352 ± 0.228cd | 1.166 ± 0.193b |
表1 不同类型群落土壤有机碳含量(g·kg-1) (平均值±标准偏差)
Table 1 Soil organic carbon content (g·kg-1) of different communities (mean ± SD)
群落类型 Community type | 土壤深度 Soil depth (cm) | ||||||
---|---|---|---|---|---|---|---|
0-5 | 5-10 | 10-20 | 20-30 | 30-50 | 50-70 | 70-100 | |
AM | 1.014 ± 0.186de | 0.951 ± 0.183de | 0.846 ± 0.154fg | 0.913 ± 0.463de | 0.663 ± 0.140d | 0.591 ± 0.471e | 0.649 ± 0.470bc |
CLA | 3.440 ± 1.312bc | 2.411 ± 1.104bc | 1.962 ± 0.738de | 1.796 ± 0.922cd | 1.469 ± 0.443cd | 0.912 ± 0.199de | 1.288 ± 0.533b |
KF | 2.960 ± 1.050c | 3.700 ± 1.667a | 4.660 ± 1.228a | 5.460 ± 2.281a | 4.040 ± 1.504a | 4.080 ± 1.270a | 2.420 ± 1.240a |
NT | 1.200 ± 0.346de | 1.350 ± 0.311cde | 1.200 ± 0.245ef | 0.960 ± 0.288de | 0.880 ± 0.295d | 0.900 ± 0.361de | 0.760 ± 0.114bc |
OAL | 0.439 ± 0.113e | 0.278 ± 0.050e | 0.254 ± 0.057g | 0.300 ± 0.101e | 0.438 ± 0.122d | 0.323 ± 0.075e | 0.393 ± 0.157c |
PM | 1.720 ± 0.396d | 2.880 ± 0.814ab | 3.720 ± 0.444b | 3.780 ± 0.476b | 2.280 ± 0.228bc | 1.780 ± 0.311bc | 1.180 ± 0.476b |
RS | 0.838 ± 0.094e | 1.700 ± 1.144cd | 2.445 ± 1.094cd | 3.376 ± 0.255b | 2.959 ± 0.313ab | 2.227 ± 0.213b | 2.322 ± 0.200a |
RSK | 4.660 ± 0.720a | 3.760 ± 1.064a | 2.980 ± 0.268bc | 2.180 ± 0.192c | 2.580 ± 1.972bc | 1.180 ± 0.217cde | 1.080 ± 0.444bc |
SP | 3.860 ± 0.684ab | 2.880 ± 0.676ab | 3.180 ± 0.756bc | 2.800 ± 1.037bc | 2.400 ± 1.384bc | 1.400 ± 0.447cd | 1.100 ± 0.728bc |
ZX | 0.887 ± 0.265e | 1.301 ± 0.404cde | 1.511 ± 0.416ef | 1.703 ± 0.129cd | 1.571 ± 0.197cd | 1.352 ± 0.228cd | 1.166 ± 0.193b |
图1 土壤有机碳含量与pH值、电导率、砂粒含量、黏粉粒含量、全氮(N)和磷(P)含量的关系。
Fig. 1 The relationships between soil organic carbon content and pH value, conductivity, sand content, clay and silt content, total nitrogen (N) and total phosphorus (P) content.
图2 不同类型群落土壤有机碳密度特征(平均值±标准偏差)。群落类型代码见表1。不同字母表示不同群落土壤有机碳密度差异显著(p < 0.05)。
Fig. 2 Soil organic carbon density in different depth for different community types (mean ± SD). The abbreviations of community types are the same as in Table 1. Different superscript letters indicate significant difference of soil organic carbon density between different communities (p < 0.05).
群落类型 Community type | 土层 Soil layer | ||
---|---|---|---|
0-5 | 0-20 | 0-50 | |
AM | 0.071 | 0.256 | 0.562 |
CLA | 0.104 | 0.306 | 0.622 |
KF | 0.036 | 0.197 | 0.535 |
NT | 0.063 | 0.248 | 0.541 |
OAL | 0.062 | 0.174 | 0.500 |
PM | 0.046 | 0.284 | 0.674 |
RS | 0.018 | 0.151 | 0.520 |
RSK | 0.113 | 0.348 | 0.715 |
SP | 0.089 | 0.299 | 0.682 |
ZX | 0.033 | 0.193 | 0.543 |
平均值 Mean | 0.061 | 0.247 | 0.599 |
表2 不同土层土壤有机碳密度占0-100 cm土层有机碳密度的比率
Table 2 The ratio of soil organic carbon density of 0-5, 0-20, and 0-50 cm soil profile to soil organic carbon density of 0-100 cm soil profile
群落类型 Community type | 土层 Soil layer | ||
---|---|---|---|
0-5 | 0-20 | 0-50 | |
AM | 0.071 | 0.256 | 0.562 |
CLA | 0.104 | 0.306 | 0.622 |
KF | 0.036 | 0.197 | 0.535 |
NT | 0.063 | 0.248 | 0.541 |
OAL | 0.062 | 0.174 | 0.500 |
PM | 0.046 | 0.284 | 0.674 |
RS | 0.018 | 0.151 | 0.520 |
RSK | 0.113 | 0.348 | 0.715 |
SP | 0.089 | 0.299 | 0.682 |
ZX | 0.033 | 0.193 | 0.543 |
平均值 Mean | 0.061 | 0.247 | 0.599 |
[1] | Bao SD ( 2000). Agricultural Chemistry Analysis of Soil. China Agriculture Press, Beijing. |
鲍士旦 ( 2000). 土壤农化分析. 中国农业出版社, 北京. | |
[2] |
Batjes NH ( 1996). Total carbon and nitrogen in the soils of the world. European Journal of Soil Science, 47, 151-163.
DOI URL |
[3] |
Davidson EA, Trumbore SE, Amundson R ( 2000). Biogeochemistry: Soil warming and organic carbon content. Nature, 408, 789-790.
DOI URL PMID |
[4] |
Ding YK, Yang J, Song BY, Hu GJLT, Zhang L ( 2012). Effect of different vegetation types on soil organic carbon in Mu Us Desert. Acta Prataculturae Sinica, 21(2), 18-25.
DOI URL |
丁越岿, 杨劼, 宋炳煜, 呼格吉勒图, 张琳 ( 2012). 不同植被类型对毛乌素沙地土壤有机碳的影响. 草业学报, 21(2), 18-25.
DOI URL |
|
[5] |
Evans RD, Koyama A, Sonderegger DL, Chen X, Maisupova B, Madaminov AA, Han Q, Djenbaev BM ( 2014). Greater ecosystem carbon in the Mojave Desert after ten years exposure to elevated CO2. Nature Climate Change, 4, 394-397.
DOI URL |
[6] | Fang JY, Yang YH, Ma WH, Mohhamot A, Shen HH ( 2010). Ecosystem carbon stocks and their changes in China’s grasslands. Scientia Sinica Vitae, 40, 566-576. |
方精云, 杨元合, 马文红, 安尼瓦尔·买买提, 沈海花 ( 2010). 中国草地生态系统碳库及其变化. 中国科学: 生命科学, 40, 566-576. | |
[7] |
Gao YH, Li XR, Liu LC, Jia RL, Yang HT, Li G, Wei Y ( 2012). Seasonal variation of carbon exchange from a revegetation area in a Chinese desert. Agricultural and Forest Meteorology, 156, 134-142.
DOI URL |
[8] |
Hastings SJ, Oechel WC, Muhlia-Melo A ( 2005). Diurnal, seasonal and annual variation in the net ecosystem CO2 exchange of a desert shrub community (Sarcocaulescent) in Baja California, Mexico. Global Change Biology, 11, 927-939.
DOI URL |
[9] | Hou XY ( 1982). Vegetation Map of the People’s Republic of China and Its Illustration. China Cartographic Publishing House, Beijing. |
侯学煜 ( 1982). 中华人民共和国植被图简要说明. 地图出版社, 北京. | |
[10] |
Janzen HH ( 2004). Carbon cycling in earth systems—A soil science perspective. Agriculture Ecosystems & Environment, 104, 399-417.
DOI URL |
[11] |
Jasoni RL, Smith SD, Arnone JA ( 2005). Net ecosystem CO2 exchange in Mojave Desert shrublands during the eighth year of exposure to elevated CO2. Global Change Biology, 11, 749-756.
DOI URL |
[12] |
Jobbágy EG, Sala OE ( 2000). Controls of grass and shrub aboveground production in the Patagonian steppe. Ecological Applications, 10, 541-549.
DOI URL |
[13] |
Kirschbaum MUF ( 2000). Will changes in soil organic carbon act as a positive or negative feedback on global warming? Biogeochemistry, 48, 21-51.
DOI URL |
[14] |
Li C, Zhang C, Luo G, Chen X, Maisupova B, Madaminov AA, Han Q, Djenbaev BM ( 2015). Carbon stock and its responses to climate change in Central Asia. Global Change Biology, 21, 1951-1967.
DOI URL PMID |
[15] |
Li D, Huang Y, Wu Q, Ming Z, Jin DY ( 2010). Modeling dynamics of soil organic carbon in an alpine meadow ecosystem on Qinghai-Tibetan Plateau using the Century model. Acta Prataculturae Sinica, 19(2), 160-168.
DOI |
李东, 黄耀, 吴琴, 明珠, 靳代樱 ( 2010). 青藏高原高寒草甸生态系统土壤有机碳动态模拟研究. 草业学报, 19(2), 160-168.
DOI |
|
[16] | Li XR ( 2012). Eco-hydrology of Biological Soil Crusts in Desert Regions of China. Higher Education Press, Beijing. |
李新荣 ( 2012). 荒漠生物土壤结皮生态与水文学研究. 高等教育出版社, 北京. | |
[17] |
Li XR, He MZ, Duan ZH, Xiao HL, Jia XH ( 2007a ). Recovery of topsoil physicochemical properties in revegetated sites in the sand-burial ecosystems of the Tengger Desert, northern China. Geomorphology, 88, 254-265.
DOI URL |
[18] |
Li XR, Kong DS, Tan HJ, Wang XP ( 2007b ). Changes in soil and vegetation following stabilisation of dunes in the southeastern fringe of the Tengger Desert, China. Plant and Soil, 300, 221-231.
DOI URL |
[19] | Li XR, Zhang ZS, Liu YB, Li XJ, Yang HT ( 2016). Fundamental Ecohydrology of Ecological Restoration and Recovery in Sandy Desert Regions of China. Science Press, Beijing. |
李新荣, 张志山, 刘玉冰, 李小军, 杨昊天 ( 2016). 中国沙区生态重建与恢复的生态水文学基础. 科学出版社, 北京. | |
[20] |
Luyssaert S, Ingliina I, Jung M, Richardson A, Reichstein M, Papale D, Piao S, Schulze ED, Wingate L, Matteucci G ( 2007). CO2 balance of boreal, temperate, and tropical forests derived from a global database. Global Change Biology, 13, 2509-2537.
DOI URL |
[21] | Ma WH ( 2006). Carbon Storage of Grasslands in Inner Mongolia. PhD dissertation, Peking University, Beijing. |
马文红 ( 2006). 内蒙古温带草地碳储量. 博士学位论文, 北京大学, 北京. | |
[22] | Men XH ( 2013). The Spatial Distribution Characteristics of Biomass and Carbon Density of Temperate Desert Grassland in Northern Xinjiang. Master degree dissertation, Xinjiang Agricultural University, ürümqi. |
门学慧 ( 2013). 北疆温性荒漠类草地生物量与碳密度空间分布特征. 硕士学位论文, 新疆农业大学, 乌鲁木齐. ] | |
[23] | Mohhamot A ( 2006). Carbon and Nitrogen Storage of Grassland Ecosystem in Xinjiang. PhD dissertation, Peking University, Beijing. |
安尼瓦尔·买买提 ( 2006). 新疆草地生态系统碳、氮储量的研究. 博士学位论文, 北京大学, 北京.] | |
[24] |
Post WM, Emanuel WR, Zinke PJ, Stangenberger AG ( 1982). Soil carbon pools and world life zones. Nature, 298, 156-159.
DOI URL |
[25] | Post WM, Peng TH, Emanuel WR, King AW, Dale VH, DeAngelis DL ( 1990). The global carbon cycle. American Scientist, 78, 310-326. |
[26] |
Rotenberg E, Yakir D ( 2010). Contribution of semi-arid forests to the climate system. Science, 327, 451-454.
DOI URL PMID |
[27] |
Schlesinger WH, Belnap J, Marion G ( 2009). On carbon sequestration in desert ecosystems. Global Change Biology, 15, 1488-1490.
DOI URL |
[28] |
Stone R ( 2008). Have desert researchers discovered a hidden loop in the carbon cycle? Science, 320, 1409-1410.
DOI URL PMID |
[29] | Wang M ( 2014). Vegetation Biomass and Soil Organic Carbon Storage in Desert Grasslands of Hexi Corridor. PhD dissertation, University of Chinese Academy of Sciences, Beijing. |
王敏 ( 2014). 河西走廊荒漠草地生物量和土壤有机碳储量. 博士学位论文, 中国科学院大学, 北京. | |
[30] |
Wohlfahrt Q, Fenstermaker LF, Arnone JA ( 2008). Large annual net ecosystem CO2 uptake of a Mojave Desert ecosystem. Global Change Biology, 14, 1475-1487.
DOI URL |
[31] |
Xie J, Li Y, Zhai C, Li C, Lan Z ( 2009). CO2 absorption by alkaline soils and its implication to the global carbon cycle. Environmental Geology, 56, 953-961.
DOI URL |
[32] |
Yang HT, Li XR, Wang ZR, Jia RL, Liu LC, Chen YL, Wei YP, Gao YH, Li G ( 2014). Carbon sequestration capacity of shifting sand dune after establishing new vegetation in the Tengger Desert, northern China. Science of the Total Environment, 478, 1-11.
DOI URL PMID |
[33] | Yang TT ( 2013). Study on Biomass Dynamics and Carbon Storage Distribution in Desert Steppe. PhD dissertation, Inner Mongolia Agricultural University, Huhhot. |
杨婷婷 ( 2013). 荒漠草原生物量动态及碳储量空间分布研究. 博士学位论文, 内蒙古农业大学, 呼和浩特. ] | |
[34] | Yang YH ( 2008). Carbon and Nitrogen Storage in Alpine Grasslands on the Tibetan Plateau. PhD dissertation, Peking University, Beijing. |
杨元合 ( 2008). 青藏高原高寒草地生态系统碳氮储量. 博士学位论文, 北京大学, 北京. | |
[35] |
Zhao YY, Long RJ, Lin HL, Ren JZ ( 2008). Study on pastoral security and its assessment. Acta Prataculturae Sinica, 17(2), 143-150.
DOI URL |
赵有益, 龙瑞军, 林慧龙, 任继周 ( 2008). 草地生态系统安全及其评价研究. 草业学报, 17(2), 143-150.
DOI URL |
[1] | 吴秀芝, 阎欣, 王波, 刘任涛, 安慧. 荒漠草地沙漠化对土壤-微生物-胞外酶化学计量特征的影响[J]. 植物生态学报, 2018, 42(10): 1022-1032. |
[2] | 杨路存, 李长斌, 宁祎, 聂秀青, 徐文华, 周国英. 青海高寒金露梅灌丛碳密度及其分配格局[J]. 植物生态学报, 2017, 41(1): 62-70. |
[3] | 刘文亭, 卫智军, 吕世杰, 孙世贤, 贾利娟, 张爽, 王天乐, 代景忠, 卢志宏. ·荒漠草地植物多样性对草食动物采食的响应机制[J]. 植物生态学报, 2016, 40(6): 564-573. |
[4] | 杨怀, 李意德, 任海, 骆土寿, 陈仁利, 刘文杰, 陈德祥, 许涵, 周璋, 林明献, 杨秋, 姚海荣, 周国逸. 海南岛热带原始森林主要分布区土壤有机碳密度及影响因素[J]. 植物生态学报, 2016, 40(4): 292-303. |
[5] | 赵新风, 徐海量, 张鹏, 涂文霞, 张青青. 养分与水分添加对荒漠草地植物群落结构和物种多样性的影响[J]. 植物生态学报, 2014, 38(2): 167-177. |
[6] | 赵新风, 徐海量, 张鹏, 张青青. 养分与水分添加对荒漠草地植物钠猪毛菜功能性状的影响[J]. 植物生态学报, 2014, 38(2): 134-146. |
[7] | 王敏, 苏永中, 杨荣, 杨晓. 黑河中游荒漠草地地上和地下生物量的分配格局[J]. 植物生态学报, 2013, 37(3): 209-219. |
[8] | 吴亚丛, 李正才, 程彩芳, 刘荣杰, 王斌, 格日乐图. 林下植被抚育对樟人工林生态系统碳储量的影响[J]. 植物生态学报, 2013, 37(2): 142-149. |
[9] | 冯丽, 张景光, 张志山, 郭群, 李新荣. 腾格里沙漠人工固沙植被中油蒿的生长及生物量分配动态[J]. 植物生态学报, 2009, 33(6): 1132-1139. |
[10] | 田桂泉, 白学良, 徐杰, 王先道. 腾格里沙漠固定沙丘藓类植物结皮层的自然恢复及人工培养试验研究[J]. 植物生态学报, 2005, 29(1): 164-169. |
[11] | 许鹏, 安沙舟. 荒漠草地生态优化的调控原则和总体模式[J]. 植物生态学报, 1996, 20(5): 389-396. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19