植物生态学报 ›› 2018, Vol. 42 ›› Issue (8): 831-840.DOI: 10.17521/cjpe.2018.0058
所属专题: 碳储量
陈科宇1,字洪标1,阿的鲁骥1,胡雷1,王根绪2,王长庭1,*()
收稿日期:
2018-03-13
出版日期:
2018-08-20
发布日期:
2018-09-26
通讯作者:
王长庭
基金资助:
CHEN Ke-Yu1,ZI Hong-Biao1,ADE Luji1,HU Lei1,WANG Gen-Xu2,WANG Chang-Ting1,*()
Received:
2018-03-13
Online:
2018-08-20
Published:
2018-09-26
Contact:
Chang-Ting WANG
Supported by:
摘要:
为阐明青海省森林生态系统乔木层植被碳储量现状及其分布特征, 该研究利用240个标准样地实测的乔木数据, 估算出青海省森林生态系统不同林型处于不同龄级阶段的平均碳密度, 并结合青海省森林资源清查资料所提供的不同龄级的各林型面积, 估算了青海省森林生态系统乔木层的固碳现状、速率和潜力。结果表明: 1) 2011年青海省森林乔木层平均碳密度为76.54 Mg·hm -2, 总碳储量为27.38 Tg。云杉(Picea spp.)林、柏木(Cupressus funebris)林、桦木(Betula spp.)林、杨树(Populus spp.)林是青海地区的主要林型, 占青海省森林面积的96.23%, 占青海省乔木层碳储量的86.67%, 其中云杉林的碳储量(14.78 Tg)和碳密度(106.93 Mg·hm -2)最高。按龄级划分, 乔木层碳储量表现为过熟林>中龄林>成熟林>近熟林>幼龄林。2)青海省乔木层总碳储量从2003年的23.30 Tg增加到2011年的27.38 Tg, 年平均碳增量为0.51 Tg·a -1。乔木层固碳速率为1.06 Mg·hm -2·a -1, 其中柏木林的固碳速率最大(0.44 Mg·hm -2·a -1); 桦木林的固碳速率为负值(-1.06 Mg·hm -2·a -1)。3)青海省乔木层植被固碳潜力为8.50 Tg, 其中云杉林固碳潜力最高(3.40 Tg)。该研究结果表明青海省乔木层具有较大的固碳潜力, 若对现有森林资源进行合理管理和利用, 将会增加青海省森林的碳固存能力。
陈科宇, 字洪标, 阿的鲁骥, 胡雷, 王根绪, 王长庭. 青海省森林乔木层碳储量现状及固碳潜力. 植物生态学报, 2018, 42(8): 831-840. DOI: 10.17521/cjpe.2018.0058
CHEN Ke-Yu, ZI Hong-Biao, ADE Luji, HU Lei, WANG Gen-Xu, WANG Chang-Ting. Current stocks and potential of carbon sequestration of the forest tree layer in Qinghai Province, China. Chinese Journal of Plant Ecology, 2018, 42(8): 831-840. DOI: 10.17521/cjpe.2018.0058
森林类型 Forest type | 器官 Organ | 生物量方程 Biomass equation | R2 | 胸径 Diameter at breast height (cm) |
---|---|---|---|---|
云杉林 Picea forest | 干 Stem | WS = 0.0447(D2H)0.8564 | 0.986 | 1.0-88.0 |
枝 Branch | WB = 0.0184(D2H)0.8539 | 0.988 | ||
叶 Leaf | WL = 0.012(D2H)0.8654 | 0.992 | ||
根 Root | WR = 0.0084(D2H)0.9405 | 0.992 | ||
杨树林 Populus forest | 干 Stem | WS = 0.0417(D2H)0.866 | 0.992 | 7.2-21.0 |
枝 Branch | WB = 0.0095(D2H)0.8951 | 0.986 | ||
叶 Leaf | WL = 0.0035(D2H)0.8774 | 0.990 | ||
根 Root | WR = 0.0289(D2H)0.786 | 0.886 | ||
针叶混交林 Mixed coniferous forest | 干 Stem | WS = 0.0373(D2H)0.9758 | 0.784 | 3.0-178.5 |
枝 Branch | WB = 0.0082(D2H)1.08419 | 0.662 | ||
叶 Leaf | WL = 0.0207(D2H)0.8481 | 0.619 | ||
根 Root | WR = 0.0379(D2H)0.7321 | 0.542 | ||
阔叶混交林 Mixed broad-leaved forest | 干 Stem | WS = 0.0401(D2H)0.8514 | 0.933 | 1.4-67.5 |
枝 Branch | WB = 0.0079(D2H)1.007 | 0.901 | ||
叶 Leaf | WL = 0.0075(D2H)0.8592 | 0.846 | ||
根 Root | WR = 0.0176(D2H)0.8841 | 0.917 | ||
针阔混交林 Mixed coniferous and broad-leaved forest | 干 Stem | WS = 0.0287(D2H)0.9953 | 0.801 | 1.4-178.5 |
枝 Branch | WB = 0.0067(D2H)1.0999 | 0.696 | ||
叶 Leaf | WL = 0.013(D2H)0.8888 | 0.656 | ||
根 Root | WR = 0.0299(D2H)0.7547 | 0.609 |
表1 青海省优势树种不同器官生物量异速生长方程
Table 1 Biomass equations for different organs (stem, branches, leaves, and roots) of dominant trees (groups) in Qinghai Province
森林类型 Forest type | 器官 Organ | 生物量方程 Biomass equation | R2 | 胸径 Diameter at breast height (cm) |
---|---|---|---|---|
云杉林 Picea forest | 干 Stem | WS = 0.0447(D2H)0.8564 | 0.986 | 1.0-88.0 |
枝 Branch | WB = 0.0184(D2H)0.8539 | 0.988 | ||
叶 Leaf | WL = 0.012(D2H)0.8654 | 0.992 | ||
根 Root | WR = 0.0084(D2H)0.9405 | 0.992 | ||
杨树林 Populus forest | 干 Stem | WS = 0.0417(D2H)0.866 | 0.992 | 7.2-21.0 |
枝 Branch | WB = 0.0095(D2H)0.8951 | 0.986 | ||
叶 Leaf | WL = 0.0035(D2H)0.8774 | 0.990 | ||
根 Root | WR = 0.0289(D2H)0.786 | 0.886 | ||
针叶混交林 Mixed coniferous forest | 干 Stem | WS = 0.0373(D2H)0.9758 | 0.784 | 3.0-178.5 |
枝 Branch | WB = 0.0082(D2H)1.08419 | 0.662 | ||
叶 Leaf | WL = 0.0207(D2H)0.8481 | 0.619 | ||
根 Root | WR = 0.0379(D2H)0.7321 | 0.542 | ||
阔叶混交林 Mixed broad-leaved forest | 干 Stem | WS = 0.0401(D2H)0.8514 | 0.933 | 1.4-67.5 |
枝 Branch | WB = 0.0079(D2H)1.007 | 0.901 | ||
叶 Leaf | WL = 0.0075(D2H)0.8592 | 0.846 | ||
根 Root | WR = 0.0176(D2H)0.8841 | 0.917 | ||
针阔混交林 Mixed coniferous and broad-leaved forest | 干 Stem | WS = 0.0287(D2H)0.9953 | 0.801 | 1.4-178.5 |
枝 Branch | WB = 0.0067(D2H)1.0999 | 0.696 | ||
叶 Leaf | WL = 0.013(D2H)0.8888 | 0.656 | ||
根 Root | WR = 0.0299(D2H)0.7547 | 0.609 |
林型 Forest type | 幼龄林 Young forest | 中龄林 Middle-aged forest | 近熟林 Near-mature forest | 成熟林 Mature forest | 过熟林 Over-mature forest |
---|---|---|---|---|---|
云杉林 Picea forest | ≤60 | 61-100 | 101-120 | 121-160 | ≥161 |
柏木林 Cupressus funebris forest | ≤60 | 6-100 | 101-120 | 121-160 | ≥161 |
桦木林 Betula forest | ≤30 | 31-50 | 51-60 | 61-80 | ≥81 |
杨树林 Populus forest | ≤10 | 11-15 | 16-20 | 21-30 | ≥31 |
表2 青海省主要森林类型林龄组划分标准(a)
Table 2 Criteria of forest age group classification for major forest types in Qinghai Province (a)
林型 Forest type | 幼龄林 Young forest | 中龄林 Middle-aged forest | 近熟林 Near-mature forest | 成熟林 Mature forest | 过熟林 Over-mature forest |
---|---|---|---|---|---|
云杉林 Picea forest | ≤60 | 61-100 | 101-120 | 121-160 | ≥161 |
柏木林 Cupressus funebris forest | ≤60 | 6-100 | 101-120 | 121-160 | ≥161 |
桦木林 Betula forest | ≤30 | 31-50 | 51-60 | 61-80 | ≥81 |
杨树林 Populus forest | ≤10 | 11-15 | 16-20 | 21-30 | ≥31 |
图2 不同龄级乔木碳储量、面积和蓄积量占总量的比例。I, 幼龄林; II, 中龄林; III, 近熟林; IV, 成熟林; V, 过熟林。
Fig. 2 The frequency distribution of carbon storage, area and accumulation among different forest age classes. I, young forest; II, middle-aged forest; III, near-mature forest; IV, mature forest; V, over-mature forest.
图3 青海省不同林龄森林碳密度(平均值±标准偏差)。I, 幼龄林; II, 中龄林; III, 近熟林; IV, 成熟林; V, 过熟林。
Fig. 3 Carbon density of tree layer among different forest age classes in Qinghai Province (mean ± SD). I, young forest; II, middle-aged forest; III, near-mature forest; IV, mature forest; V, over-mature forest.
林型 Forest type | 平均碳密度 Carbon density (Mg·hm-2) | 面积 Area (×104 hm2 ) | 碳储量 Carbon storage (Tg) |
---|---|---|---|
云杉林 Picea forest | 106.93 | 10.38 | 14.78 |
柏木林 Cupressus funebris forest | 38.31 | 13.83 | 5.29 |
桦树林 Betula forest | 43.55 | 6.06 | 2.63 |
杨树林 Populus forest | 34.76 | 4.16 | 0.40 |
表3 青海省不同林型占地面积、碳密度和碳储量
Table 3 The area, carbon density and storage of different forest types in Qinghai Province
林型 Forest type | 平均碳密度 Carbon density (Mg·hm-2) | 面积 Area (×104 hm2 ) | 碳储量 Carbon storage (Tg) |
---|---|---|---|
云杉林 Picea forest | 106.93 | 10.38 | 14.78 |
柏木林 Cupressus funebris forest | 38.31 | 13.83 | 5.29 |
桦树林 Betula forest | 43.55 | 6.06 | 2.63 |
杨树林 Populus forest | 34.76 | 4.16 | 0.40 |
林型 Forest type | 碳储量 Carbon storage (Tg) | 固碳速率 Carbon sequestration rate (Mg·hm-2·a-1) | 年均碳增量 Average annual growth of carbon (Tg·a-1) | |
---|---|---|---|---|
2003 | 2011 | |||
云杉林 Picea forest | 14.00 | 14.78 | 0.34 | 0.09 |
柏木林 Cupressus funebris forest | 3.00 | 5.29 | 0.44 | 0.10 |
桦树林 Betula forest | 4.50 | 2.63 | -1.06 | -0.04 |
杨树林 Populus forest | 0.30 | 0.40 | 0.27 | 0.01 |
表4 2003-2011年青海省乔木林平均年固碳量和固碳速率
Table 4 Mean annual carbon sequestration and carbon sequestration rate of forest arbor from 2003 to 2011 in Qinghai Province
林型 Forest type | 碳储量 Carbon storage (Tg) | 固碳速率 Carbon sequestration rate (Mg·hm-2·a-1) | 年均碳增量 Average annual growth of carbon (Tg·a-1) | |
---|---|---|---|---|
2003 | 2011 | |||
云杉林 Picea forest | 14.00 | 14.78 | 0.34 | 0.09 |
柏木林 Cupressus funebris forest | 3.00 | 5.29 | 0.44 | 0.10 |
桦树林 Betula forest | 4.50 | 2.63 | -1.06 | -0.04 |
杨树林 Populus forest | 0.30 | 0.40 | 0.27 | 0.01 |
图4 不同林型固碳潜力。a, 云杉林; b, 柏木林; c, 桦木林; d, 杨树林。
Fig. 4 Carbon sequestration potential of different forest types. a, Picea forest; b, Sabina chinensis forest; c, Betula forest; d, Populus forest.
[1] |
Akselsson C, Berg B, Meentemeyer V, Westling O ( 2005). Carbon sequestration rates in organic layers of boreal and temperate forest soils—Sweden as a case study. Global Ecology and Biogeography, 14, 77-84.
DOI URL |
[2] |
Chen WN, Wu N, Luo P, Yan ZL ( 2003). Species diversity and arbor population distribution pattern of Sabina przewalskll community in the forest-grassland ecotone in the watershed of upper Minjiang River. Chinese Journal of Applied Environmental Biology, 9, 221-225.
DOI URL |
[ 陈文年, 吴宁, 罗鹏, 晏兆莉 ( 2003). 岷江上游林草交错带祁连山圆柏群落的物种多样性及乔木种群的分布格局. 应用与环境生物学报, 9, 221-225.]
DOI URL |
|
[3] |
Dixon RK, Solomon AM, Browm S, Houghton RA, Trexier MC, Wisniewski J ( 1994). Carbon pools and fluxes of global forest ecosystems. Science, 263, 185-190.
DOI URL PMID |
[4] | Dong M ( 1997). Survey, Observation and Analysis of Terrestrial Biocenosis. Standards Press of China, Beijing. |
[ 董鸣 ( 1997). 陆地生物群落调查观测与分析. 中国标准出版社, 北京.] | |
[5] |
Dong X ( 2009). Evaluation of forest resources in Qinghai Province. Journal of Anhui Agricultural Sciences, 37, 5727-5728.
DOI URL |
[ 董旭 ( 2009). 青海省森林资源评价. 安徽农业科学, 37, 5727-5728.]
DOI URL |
|
[6] |
Fang J, Chen A, Peng C, Zhao S, Ci L ( 2001). Changes in forest biomass carbon storage in China between 1949 and 1998. Science, 292, 2320-2322.
DOI URL |
[7] |
Fang JY, Guo ZD ( 2007). Looking for missing carbon sinks from terrestrial ecosystems. Chinese Journal of Nature, 29, 1-6.
DOI URL |
[ 方精云, 郭兆迪 ( 2007). 寻找失去的陆地碳汇. 自然杂志, 29, 1-6.]
DOI URL |
|
[8] |
Fang JY, Guo ZD, Piao SL, Chen AP ( 2007). Estimation of carbon sink in China land from 1981 to 2000. Scientia Sinica (Terrae), 37, 804-812.
DOI URL |
[ 方精云, 郭兆迪, 朴世龙, 陈安平 ( 2007). 1981-2000年中国陆地植被碳汇的估算. 中国科学: 地球科学, 37, 804-812.]
DOI URL |
|
[9] | Fang JY, Xu SL ( 1996). Biomass and net production of forest vegetation in China. Acta Ecologica Sinica, 16, 497-508. |
[ 方精云, 徐嵩龄 ( 1996). 我国森林植被的生物量和净生产量. 生态学报, 16, 497-508.] | |
[10] |
Guan JH, Du S, Cheng JM, Wu CR, Li GQ, Deng L, Zhang JG, He QY, Shi WY ( 2016). Current stocks and rate of sequestration of forest carbon in Gansu Province, China. Chinese Journal of Plant Ecology, 40, 304-317.
DOI URL |
[ 关晋宏, 杜盛, 程积民, 吴春荣, 李国庆, 邓磊, 张建国, 何秋月, 时伟宇 ( 2016). 甘肃省森林碳储量现状与固碳速率. 植物生态学报, 40, 304-317.]
DOI URL |
|
[11] |
Guo YP ( 2015). Thinking on the sustainable management of forest resources in Xinjiang. Forestry of Xinjiang,( 1), 18-20.
DOI URL |
[ 郭远平 ( 2015). 关于新疆森林资源可持续经营的思考. 新疆林业, ( 1), 18-20.]
DOI URL |
|
[12] |
Hu L, Wang CT, Wang GX, Liu W, ADe LJ ( 2015). Carbon sequestration of forest ecosystem vegetation in Qinghai Province. Southwest China Journal of Agricultural Sciences, 28, 826-832.
DOI URL |
[ 胡雷, 王长庭, 王根绪, 刘伟, 阿的鲁骥 ( 2015). 青海省森林生态系统植被固碳现状研究. 西南农业学报, 28, 826-832.]
DOI URL |
|
[13] |
Huang CD, Zhang J, Yang WQ, Tang X, Zhang GQ ( 2009). Spatial differentiation characteristics of forest vegetation carbon stock in Sichuan Province. Acta Ecologica Sinica, 29, 5115-5121.
DOI URL |
[ 黄从德, 张健, 杨万勤, 唐宵, 张国庆 ( 2009). 四川省森林植被碳储量的空间分异特征. 生态学报, 29, 5115-5121.]
DOI URL |
|
[14] | Huang CD, Zhang J, Yang WQ, Tang X, Zhao AJ ( 2008). Dynamics on forest carbon stock in Sichuan Province and Chongqing City. Acta Ecologica Sinica, 28, 966-975. |
[ 黄从德, 张健, 杨万勤, 唐宵, 赵安玖 ( 2008). 四川省及重庆地区森林植被碳储量动态. 生态学报, 28, 966-975.] | |
[15] |
Huang XQ, Xin CL, Hu ZM, Li GT, Zhang TH, Zhao W, Yang H, Zhang LM, Guo Q, Yue YJ, Gao RH, Wu ZY, Yan ZG, Liu XP, Li YQ, Li SG ( 2016). Carbon storage of the forests and its spatial pattern in Nei Mongol, China. Chinese Journal of Plant Ecology, 40, 327-340.
DOI URL |
[ 黄晓琼, 辛存林, 胡中民, 李钢铁, 张铜会, 赵玮, 杨浩, 张雷明, 郭群, 岳永杰, 高润红, 乌志颜, 闫志刚, 刘新平, 李玉强, 李胜功 ( 2016). 内蒙古森林生态系统碳储量及其空间分布. 植物生态学报, 40, 327-340.]
DOI URL |
|
[16] |
Kauppi PE, Mielikäinen K, Kuusela K ( 1992). Biomass and carbon budget of European forests, 1971 to 1990. Science, 256, 70-74.
DOI URL PMID |
[17] |
LI KR, Wang SQ, Cao MK ( 2004). Vegetation and soil carbon storage in China. Science in China, 47, 49-57.
DOI URL |
[18] |
Li Y, Chen GL, Lin DM, Chen B, Gao LM, Jian X ( 2016). Carbon storage and its distribution of forest ecosystems in Zhejiang Province, China. Chinese Journal of Plant Ecology, 40, 354-363.
DOI URL |
[ 李银, 陈国科, 林敦梅, 陈彬, 高雷明, 简兴 ( 2016). 浙江省森林生态系统碳储量及其分布特征. 植物生态学报, 40, 354-363.]
DOI URL |
|
[19] |
Liu GH, Fu BJ, Fang JY ( 2000). Carbon dynamics of Chinese forests and its contribution to global carbon balance. Acta Ecologica Sinic, 20, 733-740.
DOI URL |
[ 刘国华, 傅伯杰, 方精云 ( 2000). 中国森林碳动态及其对全球碳平衡的贡献. 生态学报, 20, 733-740.]
DOI URL |
|
[20] |
Liu XM, Gao XH, Ma YC ( 2017). Spatio-temporal evolution of vegetation coverage in Qinghai Province, China during the periods from 2002 to 2015. Arid Zone Research, 34, 1345-1352.
DOI URL |
[ 刘雪梅, 高小红, 马元仓 ( 2017). 2002-2015年青海省不同气候区植被覆盖时空变化. 干旱区研究, 34, 1345-1352.]
DOI URL |
|
[21] | Lü CQ, Sun SC ( 2004). A review on the distribution patterns of carbon density in terrestrial ecosystems. Acta Phytoecologica Sinica, 28, 692-703. |
[ 吕超群, 孙书存 ( 2004). 陆地生态系统碳密度格局研究概述. 植物生态学报, 28, 692-703.] | |
[22] | Lu H, Liu K, Wu JH ( 2013). Change of carbon storage in forest vegetation and current situation analysis of Qinghai Province in recent 20 years. Resources and Environment in the Yangtze Basin, 22, 1333-1338. |
[ 卢航, 刘康, 吴金鸿 ( 2013). 青海省近20年森林植被碳储量变化及其现状分析. 长江流域资源与环境, 22, 1333-1338.] | |
[23] |
Luan JW, Liu SR, Zhu XL, Wang JX ( 2011). Soil carbon stocks and fluxes in a warm-temperate oak chronosequence in China. Plant and Soil, 347, 243-253.
DOI URL |
[24] |
Luo TX, Li W, Zhu H, Leng YF, Yue YZ ( 1998). Estimation of total biomass and potential distribution of net primary productivity in the Tibetan Plateau. Geographical Research, 17, 337-344.
DOI URL |
[ 罗天祥, 李文华, 冷允法, 岳燕珍 ( 1998). 青藏高原自然植被总生物量的估算与净初级生产量的潜在分布. 地理研究, 17, 337-344.]
DOI URL |
|
[25] |
Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, Ciais P, Jackson RB, Pacala SW, McGuire AD, Piao S, Rautiainen A, Sitch S, Hayes D ( 2011). A large and persistent carbon sink in the world’s forests. Science, 333, 988-993.
DOI URL PMID |
[26] |
Pan Y, Birdsey RA, Phillips OL, Jackson RB ( 2013). The structure, distribution, and biomass of the world’s forests. Annual Review of Ecology, Evolution, and Systematics, 44, 593-622.
DOI URL |
[27] |
Rice AH, Pyle EH, Saleska SR, Hutyra L, Palace M, Keller M, Camargo PB, Portilho K, Marques DF, Wofsy SC ( 2004). Carbon balance and vegetation dynamics in an old-growth Amazonian forest. Ecological Applications, 14, S55-S71.
DOI URL |
[28] |
Schlesinger WH ( 1977). Carbon balance in terrestrial detritus. Annual Review of Ecology and Systematics, 8, 51-81.
DOI URL |
[29] | Shen B, Dang KL, Wu PH, Zhu CG ( 2015). Organic carbon density in Pinus tabulaeformis forest ecosystem on the south slope of the middle Qinling Mountains, China. Acta Ecologica Sinica, 35, 1798-1806. |
[ 沈彪, 党坤良, 武朋辉, 朱成功 ( 2015). 秦岭中段南坡油松林生态系统碳密度. 生态学报, 35, 1798-1806.] | |
[30] |
Sleutel S, de Neve S, Hofman G, Boeckx P, Beheydt D, van Cleemput O, Mestdagh I, Lootens P, Carlier L, van Camp N, Verbeeck H, Vande Walle I, Samson R, Lust N, Le-meur R ( 2003). Carbon stock changes and carbon seques-tration potential of flemish cropland soils. Global Change Biology, 9, 1193-1203.
DOI URL |
[31] |
Sun SQ, Wang SH, Chen YQ, Zou T ( 2008). The research on carbon fixation of high wood in Anhui. Environmental Science and Management, 33, 144-147.
DOI URL |
[ 孙世群, 王书航, 陈月庆, 邹婷 . ( 2008). 安徽省乔木林固碳能力研究. 环境科学与管理, 33, 144-147.]
DOI URL |
|
[32] |
Tang X, Zhao X, Bai Y, Tang Z, Wang W, Zhao Y, Wan H, Xie Z, Shi X, Wu B, Wang G, Yan J, Ma K, Du S, Li S, Han S, Ma Y, Hu H, He N, Yang Y, Han W, He H, Yu G, Fang J, Zhou G ( 2018). Carbon pools in China’s terrestrial ecosystems: New estimates based on an intensive field survey. Proceedings of the National Academy of Sciences of the United States of America, 115, 4021-4026.
DOI URL |
[33] |
Tans PP, Thoning KW, Elliott WP, Conway TJ ( 1990). Error estimates of background atmospheric CO2, patterns from weekly flask samples. Journal of Geophysical Research Atmospheres, 95, 14063-14070.
DOI URL |
[34] | Technical Manual Writing Group of Ecosystem Carbon Sequestration Project ( 2015). Observation and Investigation for Carbon Sequestration in Terrestrial Ecosystems. Science Press, Beijing. |
[ 生态系统固碳项目技术规范编写组 ( 2015). 生态系统固碳观测与调查技术规范. 科学出版社, 北京.] | |
[35] |
Wang J, Wang GX, Wang CT, Ran F, Chang RY ( 2016). Carbon storage and potentials of the broad-leaved forest in alpine region of the Qinghai-Xizang Plateau, China. Chinese Journal of Plant Ecology, 40, 374-384.
DOI URL |
[ 王建, 王根绪, 王长庭, 冉飞, 常瑞英 ( 2016). 青藏高原高寒区阔叶林植被固碳现状、速率和潜力. 植物生态学报, 40, 374-384.]
DOI URL |
|
[36] |
Wang XK, Bai YY, Ouyang ZY, Miao H ( 2002). Missing sink in global carbon cycle and its causes. Acta Ecologica Sinica, 22, 94-103.
DOI URL |
[ 王效科, 白艳莹, 欧阳志云, 苗鸿 ( 2002). 全球碳循环中的失汇及其形成原因. 生态学报, 22, 94-103.]
DOI URL |
|
[37] |
Wang XK, Feng ZW, Ouyang ZY ( 2001). Vegetation carbon storage and density of forest ecosystems in China. Chinese Journal of Applied Ecology, 12, 13-16.
DOI URL |
[ 王效科, 冯宗炜, 欧阳志云 ( 2001). 中国森林生态系统的植物碳储量和碳密度研究. 应用生态学报, 12, 13-16.]
DOI URL |
|
[38] | Wang XY, Sun YJ ( 2008). Review on research and estimation methods of carbon storage in forest ecosystem. World Forestry Research, 21(5), 24-29. |
[ 王秀云, 孙玉军 ( 2008). 森林生态系统碳储量估测方法及其研究进展. 世界林业研究, 21(5), 24-29.] | |
[39] | Wang Y, Wang MB, Zhu SZ, Zhao TL ( 2015). Carbon densities of major tree species in forests in southern Lüliang Mountains of Shanxi Province, China. Chinese Journal of Ecology, 34, 333-340. |
[ 王琰, 王孟本, 朱世忠, 赵天梁 ( 2015). 山西吕梁山南段森林乔木层碳密度. 生态学杂志, 34, 333-340.] | |
[40] |
Wani AA, Joshi PK, Singh O, Bhat JA ( 2014). Estimating soil carbon storage and mitigation under temperate coniferous forests in the southern region of Kashmir Himalayas. Mitigation and Adaptation Strategies for Global Change, 19, 1179-1194.
DOI URL |
[41] |
Yang HX, Wu B, Zhang JT, Lin DR, Chang SL ( 2005). Progress of research into carbon fixation and storage of forest ecosystems. Journal of Beijing Normal University (Natural Science), 41, 172-177.
DOI URL |
[ 杨洪晓, 吴波, 张金屯, 林德荣, 常顺利 ( 2005). 森林生态系统的固碳功能和碳储量研究进展. 北京师范大学学报,自然科学版, 41, 172-177.]
DOI URL |
|
[42] |
Zhang P, Wang G, Zhang T, Chen NL ( 2010). Responses of foliar δ 13C in Sabina przewalskii and Picea crassifolia to altitude and its mechanism in the Qilian Mountains, China. Chinese Journal of Plant Ecology , 34, 125-133.
DOI URL |
[ 张鹏, 王刚, 张涛, 陈年来 ( 2010). 祁连山两种优势乔木叶片δ 13C的海拔响应及其机理 . 植物生态学报, 34, 125-133.]
DOI URL |
|
[43] |
Zhang WX, Zhou YD, Huang QL, Zhou YW, Mo LJ ( 2012). Advances in estimation of vegetation carbon stocks of forest ecosystem in China. Forest and Environmental Science, 28(4), 50-55.
DOI URL |
[ 张玮辛, 周永东, 黄倩琳, 周永文, 莫罗坚 ( 2012). 我国森林生态系统植被碳储量估算研究进展. 林业与环境科学, 28(4), 50-55.]
DOI URL |
|
[44] |
Zhang YL, Yang FW, Lu SW ( 2007). Estimation on the economic values of the forest ecosystem service function in Qinghai Province. Journal of Northeast Forestry University, 35(11), 74-76.
DOI URL |
[ 张永利, 杨峰伟, 鲁绍伟 ( 2007). 青海省森林生态系统服务功能价值评估. 东北林业大学学报, 35(11), 74-76.]
DOI URL |
|
[45] | [ 赵敏, 周广胜 ( 2004). 中国森林生态系统的植物碳贮量及其影响因子分析. 地理科学, 24, 50-54.] |
Zhao M, Zhou GS ( 2004). Carbon storage of forest vegetation and its relationship with climatic factors. Scientia Geographica Sinica, 24, 50-54. |
[1] | 张智洋 赵颖慧 甄贞. 1986-2022年松花江流域陆地生态系统碳储量动态监测[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 张计深, 史新杰, 刘宇诺, 吴阳, 彭守璋. 气候变化下中国潜在自然植被生态系统碳储量动态[J]. 植物生态学报, 2024, 48(4): 428-444. |
[3] | 徐干君, 吴胜义, 李伟, 赵欣胜, 聂磊超, 唐希颖, 翟夏杰. 陕西黄河湿地自然保护区碳储量估算[J]. 植物生态学报, 2023, 47(4): 469-478. |
[4] | 张亮, 王志磊, 薛婷婷, 郝笑云, 杨晨露, 高飞飞, 王莹, 韩星, 李华, 王华. 葡萄园生态系统碳源/汇及碳减排策略研究进展[J]. 植物生态学报, 2020, 44(3): 179-191. |
[5] | 魏红, 满秀玲. 中国寒温带不同林龄白桦林碳储量及分配特征[J]. 植物生态学报, 2019, 43(10): 843-852. |
[6] | 周序力, 蔡琼, 熊心雨, 方文静, 朱剑霄, 朱江玲, 方精云, 吉成均. 贵州月亮山不同演替阶段亮叶水青冈林碳储量及其分配格局[J]. 植物生态学报, 2018, 42(7): 703-712. |
[7] | 李茜, 王芳, 曹扬, 彭守璋, 陈云明. 陕西省森林土壤固碳特征及其影响因素[J]. 植物生态学报, 2017, 41(9): 953-963. |
[8] | 邢娟, 郑成洋, 冯婵莹, 曾发旭. 河北塞罕坝樟子松人工林生长及碳储量的变化[J]. 植物生态学报, 2017, 41(8): 840-849. |
[9] | 赵玮, 胡中民, 杨浩, 张雷明, 郭群, 乌志颜, 刘德义, 李胜功. 浑善达克沙地榆树疏林和小叶杨人工林碳密度特征及其与林龄的关系[J]. 植物生态学报, 2016, 40(4): 318-326. |
[10] | 汲玉河, 郭柯, 倪健, 徐小牛, 王志高, 王树东. 安徽省森林碳储量现状及固碳潜力[J]. 植物生态学报, 2016, 40(4): 395-404. |
[11] | 黄玫, 侯晶, 唐旭利, 郝曼. 中国成熟林植被和土壤固碳速率对气候变化的响应[J]. 植物生态学报, 2016, 40(4): 416-424. |
[12] | 李银, 陈国科, 林敦梅, 陈彬, 高雷明, 简兴, 杨波, 徐武兵, 苏宏新, 赖江山, 王希华, 杨海波, 马克平. 浙江省森林生态系统碳储量及其分布特征[J]. 植物生态学报, 2016, 40(4): 354-363. |
[13] | 黄晓琼, 辛存林, 胡中民, 李钢铁, 张铜会, 赵玮, 杨浩, 张雷明, 郭群, 岳永杰, 高润宏, 乌志颜, 闫志刚, 刘新平, 李玉强, 李胜功. 内蒙古森林生态系统碳储量及其空间分布[J]. 植物生态学报, 2016, 40(4): 327-340. |
[14] | 关晋宏, 杜盛, 程积民, 吴春荣, 李国庆, 邓磊, 张建国, 何秋月, 时伟宇. 甘肃省森林碳储量现状与固碳速率[J]. 植物生态学报, 2016, 40(4): 304-317. |
[15] | 王建, 王根绪, 王长庭, 冉飞, 常瑞英. 青藏高原高寒区阔叶林植被固碳现状、速率和潜力[J]. 植物生态学报, 2016, 40(4): 374-384. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19