植物生态学报 ›› 2016, Vol. 40 ›› Issue (4): 416-424.DOI: 10.17521/cjpe.2015.0382
所属专题: 碳储量
• 研究论文 • 上一篇
收稿日期:
2015-10-22
接受日期:
2016-03-25
出版日期:
2016-04-29
发布日期:
2016-04-30
通讯作者:
黄玫
基金资助:
Mei HUANG1,*(), Jing HOU1,2, Xu-Li TANG3, Man HAO1,2
Received:
2015-10-22
Accepted:
2016-03-25
Online:
2016-04-29
Published:
2016-04-30
Contact:
Mei HUANG
摘要:
基于B2气候变化情景数据, 利用大气-植被相互作用模式AVIM2, 模拟预测了1981-2040年中国成熟林植被和土壤固碳速率的时空变化特征及其对气候变化的响应。结果表明, 中国森林区域平均气温从1981年的7.8 ℃增加到2040年的9.0 ℃, 森林区域降水量略有增加。成熟林植被碳总量从8.56 Pg C增加到9.7 Pg C, 植被固碳速率在-0.054-0.076 Pg C·a-1之间波动, 平均值为0.022 Pg C·a-1。成熟林土壤碳总量从30.2 Pg C增加到30.72 Pg C, 土壤固碳速率在-0.035-0.072 Pg C·a-1之间波动, 平均值为0.010 Pg C·a-1。虽然研究时段内中国植被和土壤固碳总量均没有显著变化趋势, 但区域植被和土壤固碳速率对气候变化的响应具有显著空间差异。未来在气温增幅较大的东北和东南林区, 特别是在东北的长白山林区, 森林植被和土壤固碳速率将大大降低; 而在气温增幅不大的西南林区南部和其他林区, 植被和土壤固碳速率将提高。统计结果表明未来气候变暖不利于成熟林固碳。
黄玫, 侯晶, 唐旭利, 郝曼. 中国成熟林植被和土壤固碳速率对气候变化的响应. 植物生态学报, 2016, 40(4): 416-424. DOI: 10.17521/cjpe.2015.0382
Mei HUANG, Jing HOU, Xu-Li TANG, Man HAO. Response of vegetation and soil carbon accumulation rate for China’s mature forest on climate change. Chinese Journal of Plant Ecology, 2016, 40(4): 416-424. DOI: 10.17521/cjpe.2015.0382
图1 碳密度观测值与模拟值的比较。A, 植被。B, 土壤。RMSE, 均方根误差。
Fig. 1 Comparison of the simulated and observed carbon density. A, Vegetation. B, Soil. RMSE, root mean square error.
植被类型 Vegetation type | 网格点数 No. of sites | 平均林龄 Mean stand age (a) | 植被碳 Vegetation carbon (kg C·m-2) | 土壤碳 Soil carbon (kg C·m-2) | |||||
---|---|---|---|---|---|---|---|---|---|
观测 Observed | 模拟 Simulated | 相对偏差 Relative deviation (%) | 观测 Observed | 模拟 Simulated | 相对偏差 Relative deviation (%) | ||||
常绿针叶林 Evergreen coniferous forest | 4 | 82 | 7.8 | 8.4 | 7.7 | 13.4 | 14.3 | 6.7 | |
常绿阔叶林 Evergreen broad-leaved forest | 4 | 100 | 8.6 | 9.8 | 13.2 | 11.3 | 15.5 | 37.0 | |
落叶针叶林 Deciduous coniferous forest | 3 | 85 | 10.8 | 13.6 | 25.9 | 15.3 | 18.7 | 22.0 | |
落叶阔叶林 Deciduous broad-leaved forest | 22 | 102 | 6.3 | 6.8 | 7.6 | 12.0 | 11.3 | -5.8 | |
混交林 Mixed forest | 30 | 85 | 6.7 | 7.7 | 15.4 | 16.5 | 20.7 | 25.5 |
表1 森林类型平均观测与模拟的植被和土壤碳密度比较
Table 1 Comparison of the simulated and observed mean vegetation and soil carbon density among various forest types
植被类型 Vegetation type | 网格点数 No. of sites | 平均林龄 Mean stand age (a) | 植被碳 Vegetation carbon (kg C·m-2) | 土壤碳 Soil carbon (kg C·m-2) | |||||
---|---|---|---|---|---|---|---|---|---|
观测 Observed | 模拟 Simulated | 相对偏差 Relative deviation (%) | 观测 Observed | 模拟 Simulated | 相对偏差 Relative deviation (%) | ||||
常绿针叶林 Evergreen coniferous forest | 4 | 82 | 7.8 | 8.4 | 7.7 | 13.4 | 14.3 | 6.7 | |
常绿阔叶林 Evergreen broad-leaved forest | 4 | 100 | 8.6 | 9.8 | 13.2 | 11.3 | 15.5 | 37.0 | |
落叶针叶林 Deciduous coniferous forest | 3 | 85 | 10.8 | 13.6 | 25.9 | 15.3 | 18.7 | 22.0 | |
落叶阔叶林 Deciduous broad-leaved forest | 22 | 102 | 6.3 | 6.8 | 7.6 | 12.0 | 11.3 | -5.8 | |
混交林 Mixed forest | 30 | 85 | 6.7 | 7.7 | 15.4 | 16.5 | 20.7 | 25.5 |
图2 1981-2040年中国成熟林气温、降水量、碳总量和固碳速率变化。A, 年平均气温。B, 年降水量。C, 植被碳总量。D, 土壤碳总量。E, 植被固碳速率。F, 土壤固碳速率。
Fig. 2 The variations of air temperature, precipitation, total carbon amount and carbon accumulation for China’s mature forests from 1981-2040. A, Annual mean air temperature. B, Annual precipitation. C, Total vegetation carbon stock. D, Total soil carbon stock. E, Vegetation carbon accumulation rate. F, Soil carbon accumulation rate.
图3 1981-2010年平均成熟林固碳速率的空间分布。A, 植被固碳速率。B, 土壤固碳速率。
Fig. 3 The spatial distribution of forest carbon accumulation rate averaged over 1981-2010. A, Vegetation carbon accumulation rate. B, Soil carbon accumulation rate.
图4 2011-2040年与1981-2010年平均固碳速率之差。A, 植被固碳速率差。B, 土壤固碳速率差。
Fig. 4 The difference of average carbon accumulation rate between 2011-2040 and 1981-2010. A, Difference of vegetation carbon accumulation rate. B, Difference of soil carbon accumulation rate.
图5 固碳速率对年平均气温差的敏感性。A, 植被固碳速率。B, 土壤固碳速率。
Fig. 5 The sensitivity of carbon accumulation rate to mean annual air temperature difference. A, Vegetation carbon accumulation rate. B, Soil carbon accumulation rate.
图6 森林区域2011-2040年平均气温与1981-2010年平均气温之差的空间分布。
Fig. 6 The spatial distribution of air temperature difference between 2011-2040 and 1981-2010 across forested area.
1 | Ding YH, Ren GY, Shi GY, Gong P, Zheng XH, Zhai PM, Zhang DE, Zhao ZC, Wang SW, Wang HJ, Luo Y, Chen DL, Gao XJ, Dai XS (2006). National assessment report of climate change (I): Climate change in China and its future trend.Advances in Climate Change Research, 2(1), 3-8. |
2 | Fang JY, Chen AP, Peng CH, Zhao SQ, Ci LJ (2001). Changes in forest biomass carbon storage in China between 1949 and 1998.Science, 292, 2320-2322. |
3 | Fang JY, Guo ZD, Piao SL, Chen AP (2007). Terrestrial vegetation carbon sinks in China, 1981-2000.Science in China Series D: Earth Sciences, 50, 1341-1350. |
4 | Fang JY, Piao SL, Field CB, Pan YD, Guo QH, Zhou LM, Peng CH, Tao S (2003). Increasing net primary production in China from1982 to 1999.Frontiers in Ecology and the Environment, 1, 293-297. |
5 | Huang M, Ji JJ, Cao MK, Li KR (2006). Modeling study of ve- getation shoot and root biomass in China.Acta Ecologica Sinica, 26, 4156-4163. (in Chinese with English abstract)[黄玫, 季劲钧, 曹明奎, 李克让 (2006). 中国区域植被地上与地下生物量模拟. 生态学报, 26, 4156-4163.] |
6 | IPCC (Intergovernmental Panel on Climate Change) (2007). Contribution of working group 1 to the fourth assessment report of the intergovernmental panel on climate change. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL eds. Climate Change in 2007: The Physical Science Basis. Cambridge University Press, Cambridge, UK. |
7 | Ji JJ, Huang M, Li KR (2008). Prediction of carbon exchanges between China terrestrial ecosystem and atmosphere in 21st century. Science in China Series D: Earth Sciences, 51, 885-898. |
8 | Ji JJ, Huang M, Liu Q (2005). Modeling studies of response mechanism of steppe productivity to climate change in middle latitude semiarid regions in China.Acta Meteorologica Sinica, 63, 257-266. (in Chinese with English abstract)[季劲钧, 黄玫, 刘青 (2005). 气候变化对我国中纬度半干旱草原生产力影响机理的模拟研究. 气象学报, 63, 257-266.] |
9 | Ju WM, Chen JM, Harvey D, Wang S (2007). Future carbon balance of China’s forests under climate change and increasing CO2.Journal of Environmental Management, 85, 538-562. |
10 | Lenihan JM, Drapek R, Bachelet D, Neilson RP (2003). Climate change effects on vegetation distribution, carbon, and fire in California.Ecological Applications, 13, 1667-1681. |
11 | Li NY, Yang YZ, Chen XT (2010). Develop carbon sequestration forestry for combating climate change: The practice and management of carbon sequestration forestry in China.Science of Soil and Water Conservation, 8, 13-16. (in Chinese with English abstract)[李怒云, 杨炎朝, 陈叙图 (2010). 发展碳汇林业应对气候变化——中国碳汇林业的实践与管理. 中国水土保持科学, 8, 13-16.] |
12 | Li YP, Ji JJ (2001). Simulations of carbon exchange between global terrestrial ecosystem and the atmosphere.Acta Geographica Sinica, 56, 379-389. (in Chinese with English abstract)[李银鹏, 季劲钧 (2001). 全球陆地生态系统与大气之间碳交换的模拟研究. 地理学报, 56, 379-389.] |
13 | Lindner M, Maroschek M, Netherer S, Kremer A, Barbati A, Garcia-Gonzalo J, Seidl R, Delzon S, Corona P, Kolström M, Lexer MJ, Marchetti M (2010). Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems.Forest Ecology Management, 259, 698-709. |
14 | Liu SN, Zhou T, Wei LY, Shu Y (2012). The spatial distribution of forest carbon sinks and sources in China.Chinese Science Bulletin, 57, 1699-1707. |
15 | Lu JH, Ji JJ (2006). A simulation and mechanism analysis of long-term variations at land surface over arid/semi-arid area in north China.Journal of Geophysical Research, 111, D09306, doi: 10.1029/2005JD006252. |
16 | Matala J, Ojansuu R, Peltola H, Sievänen R, Kellomäki S (2005). Introducing effects of temperature and CO2 elevation on tree growth into a statistical growth and yield model.Ecological Modelling, 181, 173-190. |
17 | Pan YD, Birdsey RA, Fang JY, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, Ciais P, Jackson RB, Pacala SW, McGuire AD, Piao SL, Rautiainen A, Sitch S, Hayes D (2011). A large and persistent carbon sink in the world’s forests. Science, 333, 988-993. |
18 | Pan YD, Luo TX, Birdsey R, Hom J, Melillo J (2004). New estimates of carbon storage and sequestration in China’s forests: Effects of age-class and method on inventory- based carbon estimation.Climatic Chang, 67, 211-236. |
19 | Peng CH, Zhou XL, Zhao SQ, Wang XP, Zhu B, Piao SL, Fang JY (2009). Quantifying the response of forest carbon balance to future climate change in Northeastern China: Model validation and prediction.Global and Planetary Change, 66, 179-194. |
20 | Piao SL, Fang JY, Ciais P, Peylin P, Huang Y, Sitch S, Wang T (2009). The Carbon balance of terrestrial ecosystems in China.Nature, 458, 1009-1013. |
21 | Piao SL, Fang JY, Zhu B, Tan K (2005). Forest biomass carbon stocks in China over the past 2 decades: Estimation based on integrated inventory and satellite data. Journal of Geophysical Research, 110, G01006, doi: 10.1029/2005JG000014. |
22 | Schimel DS, House JI, Hibbard KA, Bousquet P, Ciais P, Peylin P, Braswell BH, Apps MJ, Baker D, Bondeau A, Canadell J, Churkina G, Cramer W, Denning AS, Field CB, Friedlingstein P, Goodale C, Heimann M, Houghton RA, Melillo JM, Moore III B, Murdiyarso D, Noble I, Pacala SW, Prentice IC, Raupach MR, Rayner PJ, Scholes RJ, Steffen WL, Wirth C (2001). Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems.Nature, 414, 169-172. |
23 | Xie ZB, Zhu JG, Liu G, Cadisch G, Hasegawa T, Chen CM, Sun HF, Tang HY, Zeng Q (2007). Soil organic carbon stocks in China and changes from 1980s to 2000s.Global Change Biology, 13, 1989-2007. |
24 | Xu B, Guo ZD, Piao SL, Fang JY (2010). Biomass carbon stocks in China’s forests between 2000 and 2050: A prediction based on forest biomass-age relationships.Science China Life Sciences, 53, 776-783. |
25 | Xu XL, Cao MK, Li KR (2007). Temporal-spatial dynamics of carbon storage of forest vegetation in China.Progress in Geography, 26(6), 1-10. (in Chinese with English abstract)[徐新良, 曹明奎, 李克让 (2007). 中国森林生态系统植被碳储量时空动态变化研究. 地理科学进展, 26(6), 1-10.] |
26 | Xu YL, Huang XY, Zhang Y, Lin WT, Lin ED (2005). Statistical analyses of climate change scenarios over China in the 21st Century.Advances in Climate Change Research, 1(2), 80-83. (in Chinese with English abstract)[许吟隆, 黄晓莹, 张勇, 林万涛, 林而达 (2005). 中国21世纪气候变化情景的统计分析. 气候变化研究进展, 1(2), 80-83.] |
27 | Xu YL, Jones RG (2004). Validating PRECIS with ECMWF Reanalysis Data over China.Agricultural Meteorology, 25(1), 5-9. (in Chinese with English abstract)[许吟隆, Jones RG (2004). 利用ECMWF再分析数据验证PRECIS对中国区域气候的模拟能力. 中国农业气象, 25(1), 5-9.] |
28 | Xu YL, Zhang Y, Lin YH, Lin ED, Lin WT, Dong WJ, Jones RG, Hassell DC, Wilson S (2006). Analyses on the climate change responses over China under SRES B2 scenario using PRECIS.Chinese Science Bulletin, 51, 2068-2074. (in Chinese)[许吟隆, 张勇, 林一骅, 林而达, 林万涛, 董文杰, Jones RG, Hassell DC, Wilson S (2006). 利用PRECIS分析SRES B2情景下中国区域的气候变化响应. 科学通报, 51, 2068-2074. ] |
29 | Zhang SH, Peng GB, Huang M (2004). The feature extraction and data fusion of regional soil textures based on GIS techniques.Climatic and Environmental Research, 9(1), 65-79. (in Chinese with English abstract)[张时煌, 彭公炳, 黄玫 (2004). 基于地理信息系统技术的土壤质地分类特征提取与数据融合. 气候与环境研究, 9(1), 65-79.] |
30 | Zhao DS, Wu SH, Yin YH (2013). Responses of terrestrial ecosystems’ net primary productivity to future regional climate change in China. PLoS ONE, 8(4), e60849. doi:10.1371/journal.pone.0060849. |
31 | Zhao M, Zhou GS (2004). Carbon storage of forest vegetation and its relationship with climatic factors.Scientia Geographica Sinica, 24, 50-54. (in Chinese with English abstract)[赵敏, 周广胜 (2004). 中国森林生态系统的植物碳贮量及其影响因子分析. 地理科学, 24, 50-54.] |
32 | Zhou YR, Yu ZL, Zhao SD (2000). Carbon storage and budget of major Chinese forest types.Acta Phytoecologica Sinica, 24, 518-522. (in Chinese with English abstract)[周玉荣, 于振良, 赵士洞 (2000). 我国主要森林生态系统碳贮量和碳平衡. 植物生态学报, 24, 518-522.] |
[1] | 周建 王焓. 森林径级结构研究:从统计描述到理论演绎[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 陈以恒 玉素甫江·如素力 阿卜杜热合曼·吾斯曼. 2001-2020年天山新疆段草地植被覆盖度时空变化及驱动因素分析[J]. 植物生态学报, 2024, 48(5): 561-576. |
[3] | 张计深, 史新杰, 刘宇诺, 吴阳, 彭守璋. 气候变化下中国潜在自然植被生态系统碳储量动态[J]. 植物生态学报, 2024, 48(4): 428-444. |
[4] | 臧妙涵, 王传宽, 梁逸娴, 刘逸潇, 上官虹玉, 全先奎. 基于纬度移栽的落叶松叶、枝、根生态化学计量特征对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 469-482. |
[5] | 梁逸娴, 王传宽, 臧妙涵, 上官虹玉, 刘逸潇, 全先奎. 落叶松径向生长和生物量分配对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 459-468. |
[6] | 付粱晨, 丁宗巨, 唐茂, 曾辉, 朱彪. 北京东灵山白桦和蒙古栎的根际效应及其季节动态[J]. 植物生态学报, 2024, 48(4): 508-522. |
[7] | 盘远方, 潘良浩, 邱思婷, 邱广龙, 苏治南, 史小芳, 范航清. 中国沿海红树林树高变异与环境适应机制[J]. 植物生态学报, 2024, 48(4): 483-495. |
[8] | 吴茹茹, 刘美珍, 谷仙, 常馨月, 郭立月, 蒋高明, 祁如意. 气候变化对巨柏适宜生境分布的潜在影响和预测[J]. 植物生态学报, 2024, 48(4): 445-458. |
[9] | 杨宇萌, 来全, 刘心怡. 气候变化和人类活动对内蒙古植被总初级生产力的定量影响[J]. 植物生态学报, 2024, 48(3): 306-316. |
[10] | 张启, 程雪寒, 王树芝. 北京西山老龄树记载的森林干扰历史[J]. 植物生态学报, 2024, 48(3): 341-348. |
[11] | 杨安娜, 李曾燕, 牟凌, 杨柏钰, 赛碧乐, 张立, 张增可, 王万胜, 杜运才, 由文辉, 阎恩荣. 上海大金山岛不同植被类型土壤细菌群落的变异[J]. 植物生态学报, 2024, 48(3): 377-389. |
[12] | 李伯新, 姜超, 孙建新. CMIP6模式对中国西南部地区植被碳利用率模拟能力综合评估[J]. 植物生态学报, 2023, 47(9): 1211-1224. |
[13] | 张慧玲, 张耀艺, 彭清清, 杨静, 倪祥银, 吴福忠. 中亚热带同质园不同生活型树种微量元素重吸收效率的差异[J]. 植物生态学报, 2023, 47(7): 978-987. |
[14] | 张中扬, 宋希强, 任明迅, 张哲. 附生维管植物生境营建作用的生态学功能[J]. 植物生态学报, 2023, 47(7): 895-911. |
[15] | 赖硕钿, 吴福忠, 吴秋霞, 朱晶晶, 倪祥银. 雪被去除减缓岷江冷杉凋落叶易分解碳释放[J]. 植物生态学报, 2023, 47(5): 672-686. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19