植物生态学报 ›› 2016, Vol. 40 ›› Issue (4): 318-326.DOI: 10.17521/cjpe.2015.1080
所属专题: 碳循环
赵玮1,2, 胡中民1, 杨浩1,*(), 张雷明1, 郭群1, 乌志颜3, 刘德义3, 李胜功1
收稿日期:
2015-03-10
接受日期:
2015-09-08
出版日期:
2016-04-29
发布日期:
2016-04-30
通讯作者:
杨浩
基金资助:
Wei ZHAO1,2, Zhong-Min HU1, Hao YANG1,*(), Lei-Ming ZHANG1, Qun GUO1, Zhi-Yan WU3, De-Yi LIU3, Sheng-Gong LI1
Received:
2015-03-10
Accepted:
2015-09-08
Online:
2016-04-29
Published:
2016-04-30
Contact:
Hao YANG
摘要:
榆树(Ulmus pumila)疏林是浑善达克沙地的地带性隐域植被, 小叶杨(Populus simonii)是该区域主要的防风固沙造林树种。该文通过测定两种森林生态系统乔木层(叶、枝、干、根)、草本层(地上植被和地下根系)和土壤层(0-100 cm)的碳含量, 比较了两种森林生态系统的碳密度及其分配特征, 并运用空间代替时间的方法, 阐明了乔木层、土壤层和总碳密度随林龄增加的变化特征, 估算了两种森林生态系统的固碳速率。结果表明, 榆树疏林乔木层和土壤层平均碳含量都低于小叶杨人工林, 榆树疏林生态系统总碳密度是小叶杨人工林的1/2。两种森林生态系统的总碳密度中, 乔木层碳密度和土壤层碳密度总占比98%以上; 土壤层与植被层碳密度的比值随林龄的增加而降低, 过熟林时该比值分别为1.66 (榆树疏林)和1.87 (小叶杨人工林); 榆树疏林和小叶杨人工林的乔木层、土壤层和生态系统的总碳密度随林龄的增加而增加, 其中乔木层碳密度及榆树疏林总碳密度与林龄均呈现出显著的线性正相关关系。小叶杨人工林乔木层的固碳速率约为榆树疏林的5倍, 榆树疏林生态系统和小叶杨人工林生态系统的总固碳速率分别为0.81 Mg C·hm-2·a-1和5.35 Mg C·hm-2·a-1。这一研究结果有利于估算沙地森林生态系统的碳储量, 为区域生态环境恢复和增加碳汇的政策制定提供依据。
赵玮, 胡中民, 杨浩, 张雷明, 郭群, 乌志颜, 刘德义, 李胜功. 浑善达克沙地榆树疏林和小叶杨人工林碳密度特征及其与林龄的关系. 植物生态学报, 2016, 40(4): 318-326. DOI: 10.17521/cjpe.2015.1080
Wei ZHAO, Zhong-Min HU, Hao YANG, Lei-Ming ZHANG, Qun GUO, Zhi-Yan WU, De-Yi LIU, Sheng-Gong LI. Carbon density characteristics of sparse Ulmus pumila forest and Populus simonii plantation in Onqin Daga Sandy Land and their relationships with stand age. Chinese Journal of Plant Ecology, 2016, 40(4): 318-326. DOI: 10.17521/cjpe.2015.1080
样地位置 Plot location | 类型 Type | 林龄 Stand age (a) | 龄组1) Stand age group1) | 龄组代码 Code of stand age group | 平均胸径 Mean DBH (cm) | 平均树高 Mean tree height (m) | 乔木平均密度 (ind.·hm-2) Mean density of trees |
---|---|---|---|---|---|---|---|
多伦 Duolun | 小叶杨人工林 Populus simonii plantation | 9 | 幼龄林 Young forest | P-1 | 7.66 ± 0.15 | 5.22 ± 0.10 | 746 ± 51 |
18 | 近熟林 Nearly-mature forest | P-2 | 13.05 ± 0.18 | 10.09 ± 0.14 | 616 ± 62 | ||
30 | 成熟林 Mature forest | P-3 | 14.33 ± 0.18 | 11.36 ± 0.09 | 661 ± 67 | ||
49 | 过熟林 Over-mature forest | P-4 | 27.52 ± 0.81 | 21.02 ± 0.43 | 488 ± 63 | ||
西乌珠穆沁旗 Xiwuzhumuqin | 榆树疏林 Sparse Ulmus pumila forest | 15 | 幼龄林 Young forest | E-1 | 6.81 ± 0.22 | 2.93 ± 0.34 | 367 ± 22 |
33 | 中龄林 Middle-age forest | E-2 | 12.79 ± 0.21 | 3.88 ± 0.08 | 402 ± 56 | ||
48 | 近熟林 Nearly-mature forest | E-3 | 19.83 ± 0.35 | 6.83 ± 0.10 | 506 ± 23 | ||
90 | 过熟林 Over-mature forest | E-4 | 24.76 ± 1.11 | 7.90± 0.24 | 206 ± 23 |
表1 榆树疏林和小叶杨人工林林分乔木层特征(平均值±标准误差)
Table 1 The characteristics of tree layer of sparse Ulmus pumila forests and Populus simonii plantations (mean ± SE)
样地位置 Plot location | 类型 Type | 林龄 Stand age (a) | 龄组1) Stand age group1) | 龄组代码 Code of stand age group | 平均胸径 Mean DBH (cm) | 平均树高 Mean tree height (m) | 乔木平均密度 (ind.·hm-2) Mean density of trees |
---|---|---|---|---|---|---|---|
多伦 Duolun | 小叶杨人工林 Populus simonii plantation | 9 | 幼龄林 Young forest | P-1 | 7.66 ± 0.15 | 5.22 ± 0.10 | 746 ± 51 |
18 | 近熟林 Nearly-mature forest | P-2 | 13.05 ± 0.18 | 10.09 ± 0.14 | 616 ± 62 | ||
30 | 成熟林 Mature forest | P-3 | 14.33 ± 0.18 | 11.36 ± 0.09 | 661 ± 67 | ||
49 | 过熟林 Over-mature forest | P-4 | 27.52 ± 0.81 | 21.02 ± 0.43 | 488 ± 63 | ||
西乌珠穆沁旗 Xiwuzhumuqin | 榆树疏林 Sparse Ulmus pumila forest | 15 | 幼龄林 Young forest | E-1 | 6.81 ± 0.22 | 2.93 ± 0.34 | 367 ± 22 |
33 | 中龄林 Middle-age forest | E-2 | 12.79 ± 0.21 | 3.88 ± 0.08 | 402 ± 56 | ||
48 | 近熟林 Nearly-mature forest | E-3 | 19.83 ± 0.35 | 6.83 ± 0.10 | 506 ± 23 | ||
90 | 过熟林 Over-mature forest | E-4 | 24.76 ± 1.11 | 7.90± 0.24 | 206 ± 23 |
器官 Organ | 榆树 Ulmus pumila | 小叶杨 Populus simonii |
---|---|---|
叶 Leaf | W = 0.033 × D1.7241 | W = 0.63 × (D2H)1.17 |
枝 Twig | W = 0.0303 × D2.3445 | W = 1.2 × (D2H)1.13 |
干 Stem | W = 0.0146 × D2.5837 | W = 23.11 × (D2H)0.93 |
根 Root | W = 0.0146 × D2.893 | W = 4.02 × (D2H)2.86 |
表2 榆树和小叶杨的异速生长方程(李刚, 2006; 查同刚, 2007)
Table 2 The allometric equations for estimating Ulmus pumila and Populus simonii tree biomass (Li, 2006; Zha, 2007)
器官 Organ | 榆树 Ulmus pumila | 小叶杨 Populus simonii |
---|---|---|
叶 Leaf | W = 0.033 × D1.7241 | W = 0.63 × (D2H)1.17 |
枝 Twig | W = 0.0303 × D2.3445 | W = 1.2 × (D2H)1.13 |
干 Stem | W = 0.0146 × D2.5837 | W = 23.11 × (D2H)0.93 |
根 Root | W = 0.0146 × D2.893 | W = 4.02 × (D2H)2.86 |
图1 榆树疏林和小叶杨人工林乔木层各器官碳含量(平均值±标准误差)。不同的大写字母表示榆树疏林不同器官间碳含量差异显著(p < 0.05); 不同的小写字母表示小叶杨人工林不同器官间碳含量差异显著(p < 0.05)。*表示两种生态系统相同器官碳含量的差异性(ns, p > 0.05; *, p < 0.05; **, p < 0.01)。
Fig. 1 Carbon content of different tree organs of sparse Ulmus pumila forests and Populus simonii plantations (mean ± SE). Different capital letters indicate significant differences in the organ carbon content of sparse Ulmus pumila forests (p < 0.05). Different lowercase letters indicate significant differences in the organ carbon content of Populus simonii plantations (p < 0.05). Asterisks indicate significant differences between the carbon content of same organ in sparse Ulmus pumila forests and Populus simonii plantations (ns, not significant, p > 0.05; *, p < 0.05; **, p < 0.01).
图2 榆树疏林(A)和小叶杨人工林(B)土壤碳含量随林龄和土壤深度的变化(平均值±标准误差)。不同的大写字母表示土壤碳含量在不同林龄间差异显著(p < 0.05); 不同的小写字母表示土壤碳含量在不同深度之间差异显著(p < 0.05)。图例代码说明见表1中龄组代码。
Fig. 2 The variation of soil carbon content with stand age and soil depth for sparse Ulmus pumila forests (A) and Populus simonii plantations (B) (mean ± SE). Different capital letters indicate significant differences in soil carbon content among stand ages (p < 0.05). Different lowercase letters indicate significant differences in soil carbon content among soil depths (p < 0.05). For explanation of the legend symbols, see Table 1 (code of stand age group).
图3 榆树疏林(A, C)和小叶杨人工林(B, D)生态系统碳密度和各组分(草本层、乔木层和土壤层)碳密度及其所占比例(平均值±标准误差)。*, p < 0.05; **, p < 0.01; ***, p < 0.001。图例代码说明见表1中龄组代码。
Fig. 3 Carbon density of ecosystem and its component (herb layer, tree layer and soil layer) carbon density and their proportion for sparse Ulmus pumila forests (A, C) and Populus simonii plantations (B, D) (mean ± SE). *, p < 0.05; **, p < 0.01; ***, p < 0.001. For explanation of the legend symbols, see Table 1 (code of stand age group).
图4 榆树疏林(●)和小叶杨人工林(▽)土壤层与植被层碳密度比值随林龄的变化。横坐标代码说明见表1中龄组代码。
Fig. 4 Variation of the carbon density ratios of soil to vegetation with stand age of sparse Ulmus pumila forests (●) and Populus simonii plantations (▽). For explanation of the symbols in x-axis, see Table 1 (code of stand age group).
图5 榆树疏林(○)和小叶杨人工林(△)碳密度与林龄的关系(平均值±标准误差)。
Fig. 5 The relationship between the carbon density and stand age for sparse Ulmus pumila forests (○) and Populus simonii plantations (△) (mean ± SE).
1 | Ahlström A, Raupach MR, Schurgers G, Smith B, Arneth A, Jung M, Reichstein M, Canadell JG, Friedlingstein P, Jain AK, Kato E, Poulter B, Sitch S, Stocker BD, Viovy N, Wang YP, Wiltshire A, Zaehle S, Zeng N (2015). The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink.Science, 348, 895-899. |
2 | Anderson TM, Dong Y, McNaughton SJ (2006). Nutrient acquisition and physiological responses of dominant Serengeti grasses to variation in soil texture and grazing.Journal of Ecology, 94, 1164-1175. |
3 | Bao SD (2000). Soil Agricultural Chemistry Analysis. 3rd edn. China Agriculture Press, Beijing. (in Chinese)[鲍士旦 (2000). 土壤农化分析. 第3版. 中国农业出版社, 北京.] |
4 | Bárcena TG, Kiær LP, Vesterdal L, Stefánsdóttir HM, Gundersen P, Sigurdsson BD (2014). Soil carbon stock change following afforestation in Northern Europe: A meta-analysis.Global Change Biology, 20, 2393-2405. |
5 | Dixon RK, Solomon AM, Brown S, Houghton RA, Trexler MC, Wisniewski J (1994). Carbon pools and flux of global forest ecosystems.Science, 263, 185-190. |
6 | Eaton JM, Lawrence D (2009). Loss of carbon sequestration potential after several decades of shifting cultivation in the Southern Yucatán.Forest Ecology and Management, 258, 949-958. |
7 | Fang JY, Guo ZD, Piao SL, Chen AP (2007a). Terrestrial vegetation carbon sinks in China, 1981-2000.Science in China Series D: Earth Sciences, 50, 1341-1350. |
8 | Fang JY, Liu GH, Zhu B, Wang XK, Liu SH (2007b). Carbon budgets of three temperate forest ecosystems in Dongling Mt., Beijing, China.Science in China Series D: Earth Sciences, 50, 92-101. |
9 | Foote RL, Grogan P (2010). Soil carbon accumulation during temperate forest succession on abandoned low productivity agricultural lands.Ecosystems, 13, 795-812. |
10 | Huygens D, Boeckx P, van Cleemput O, Oyarzún C, Godoy R (2005). Aggregate and soil organic carbon dynamics in South Chilean Andisols.Biogeosciences, 2, 159-174. |
11 | Jackson RB, Mooney HA, Schulze ED (1997). A global budget for fine root biomass, surface area, and nutrient contents.Proceedings of the National Academy of Sciences of the United States of America, 94, 7362-7366. |
12 | Jobbagy EG, Jackson RB (2000). The vertical distribution of soil organic carbon and its relation to climate and vegetation.Ecological Applications, 10, 423-436. |
13 | Johnson SL, Jones JA (2000). Stream temperature responses to forest harvest and debris flows in western Cascades, Oregon.Canadian Journal of Fisheries and Aquatic Sciences, 57, 30-39. |
14 | Lal R (2004). Carbon sequestration in dryland ecosystems.Environmental Management, 33, 528-544. |
15 | Lal R (2005). Forest soils and carbon sequestration.Forest Ecology and Management, 220, 242-258. |
16 | Li G (2006). Biomass, Net Primary Productivity, and Ecological Restoration of Sparse Forest Grassland Ecosystem of Hunshandake Sandy Land. PhD dissertation, Graduate School, the Chinese Academy of Sciences, Beijing. (in Chinese with English abstract)[李刚 (2006). 浑善达克沙地稀树疏林草地生态系统研究: 生物量、生产力与生态恢复途径. 博士学位论文, 中国科学院研究生院, 北京.] |
17 | Li GT, Wang YS, Yu XX, Li QX, Yue YJ (2011). Spatial patterns of elm density in Otingdag Sandy Land.Journal of Arid Land Resources and Environment, 25(3), 141-145. (in Chinese with English abstract)[李钢铁, 王永胜, 余新晓, 李清雪, 岳永杰 (2011). 浑善达克沙地不同密度榆树种群空间格局. 干旱区资源与环境, 25(3), 141-145.] |
18 | Li YG, Jiang GM, Gao LM, Niu SL, Liu MZ, Yu SL, Peng Y (2003). Impacts of human disturbance on elms-motte-veldt in Hunshandak Sandland.Acta Phytoecologica Sinica, 27, 829-834. (in Chinese with English abstract)[李永庚, 蒋高明, 高雷明, 牛书丽, 刘美珍, 于顺利, 彭羽 (2003). 人为干扰对浑善达克沙地榆树疏林的影响. 植物生态学报, 27, 829-834.] |
19 | Liu MZ (2004). The Restoration of Degraded Ecosytem in Hunshandak Sandland Through Natural Process. PhD dissertation, Graduate School, Chinese Academy of Sciences, Beijing. (in Chinese with English abstract)[刘美珍 (2004). 浑善达克退化生态系统恢复研究——自然力在沙地草地恢复中的应用. 博士学位论文, 中国科学院研究生院, 北京.] |
20 | Liu YC, Yu GY, Wang QF, Zhang YJ (2014). How temperature, precipitation and stand age control the biomass carbon density of global mature forests.Global Ecology and Biogeography, 23, 323-333. |
21 | Liu Z, Dong Z, Li HL, Li GT (2013). Spatial pattern of seedling regeneration of Ulmus pumila woodland in the Otindag Sandland.Acta Ecologica Sinica, 33, 294-301. (in Chinese with English abstract)[刘振, 董智, 李红丽, 李钢铁 (2013). 浑善达克沙地榆树疏林幼苗更新空间格局. 生态学报, 33, 294-301.] |
22 | Ma J, Tang HP (2011). Variations of soil respiration rate and its temperature sensitivity among different land use types in the agro-pastoral ecotone of Inner Mongolia.Chinese Journal of Plant Ecology, 35, 167-175. (in Chinese with English abstract)[马骏, 唐海萍 (2011). 内蒙古农牧交错区不同土地利用方式下土壤呼吸速率及其温度敏感性变化. 植物生态学报, 35, 167-175.] |
23 | Marín-Spiotta E, Sharma S, Ramankutty N (2013). Carbon storage in successional and plantation forest soils: A tropical analysis.Global Ecology and Biogeography, 22, 105-117. |
24 | Odum EP (1969). The strategy of ecosystem development.Science, 164, 262-270. |
25 | Pang LD, Liu GX (2010). Grassland landscape structure change and its driving factors during past twenty years in Xiwuzhumuqin, Inner Mongolia.Journal of Arid Land Resources and Environment, 24(10), 155-160. (in Chinese with English abstract)[庞立东, 刘桂香 (2010). 近二十年内蒙古西乌珠穆沁草原景观结构变化及驱动力浅析. 干旱区资源与环境, 24(10), 155-160.] |
26 | Piao SL, Fang JY, Zhu B, Tan K (2005). Forest biomass carbon stocks in China over the past 2 decades: Estimation based on integrated inventory and satellite data.Journal of Geophysical Research-Biogeosciences, 110, G01006, doi: 10.1029/2005JG000014. |
27 | Pregitzer KS, Euskirchen ES (2004). Carbon cycling and storage in world forests: Biome patterns related to forest age.Global Change Biology, 10, 2052-2077. |
28 | Shi SW, Zhang W, Zhang P, Yu YQ, Ding F (2013). A synthesis of change in deep soil organic carbon stores with afforestation of agricultural soils.Forest Ecology and Management, 296, 53-63. |
29 | Su H, Li YG, Su BY, Sun JX (2012). Effects of groundwater decline on photosynthetic characteristics and stress tolerance of Ulmus pumila in Hunshandake Sandy Land, China.Chinese Journal of Plant Ecology, 36, 177-186. (in Chinese with English abstract)[苏华, 李永庚, 苏本营, 孙建新 (2012). 地下水位下降对浑善达克沙地榆树光合及抗逆性的影响. 植物生态学报, 36, 177-186.] |
30 | Wang SQ, Zhou L, Chen JM, Ju WM, Feng XF, Wu WX (2011). Relationships between net primary productivity and stand age for several forest types and their influence on China’s carbon balance.Journal of Environmental Management, 92, 1651-1662. |
31 | Xiao XW (2005). China Forest Resource Inventory. Chinese Forestry Press, Beijing. (in Chinese)[肖兴威 (2005). 中国森林资源清查. 中国林业出版社, 北京.] |
32 | Yang YH, Mohammat A, Feng JM, Zhou R, Fang JY (2007). Storage, patterns and environmental controls of soil organic carbon in China.Biogeochemistry, 84, 131-141. |
33 | Zha TG (2007). Carbon Balance of a Poplar Plantation Ecosystem in Daxing, Beijing. PhD dissertation, Beijing Forestry University, Beijing. (in Chinese with English abstract)[查同刚 (2007). 北京大兴杨树人工林生态系统碳平衡的研究. 博士学位论文. 北京林业大学, 北京.] |
34 | Zhang QZ, Wang CK (2010). Carbon density and distribution of six Chinese temperate forests.Science China Life Sciences, 53, 831-840. |
35 | Zhou GY, Liu SG, Li Z, Zhang DQ, Tang XL, Zhou CY, Yan JH, Mo JM (2006). Old-growth forests can accumulate carbon in soils.Science, 314, 1417. |
36 | Zhou WB (2013). Review on the study of water resources utilization efficiency in irrigation district in arid and semiarid areas of China.Journal of Arid Land Resources and Environment, 17(5), 91-96.(in Chinese with English abstract)[周维博 (2003). 干旱半干旱地域提高灌区水资源综合效益研究进展与思考. 干旱区资源与环境, 17(5), 91-96.] |
37 | Zhou YL, Lu HY, Zhang XY, Yi SW (2013). Changes of the border of Otindag Sand field (Northern China) during the Last Glacial Maximum and Holocene Optimum.Quaternary Sciences, 33, 228-242. (in Chinese with English abstract)[周亚利, 鹿化煜, 张小艳, 弋双文 (2013). 末次盛冰期和全新世大暖期浑善达克沙地边界的变化. 第四纪研究, 33, 228-242.] |
38 | Zhou YR, Yu ZL, Zhao SD (2000). Carbon storage and budget of major Chinese forest types.Acta Phytoecologica Sinica, 24, 518-522. (in Chinese with English abstract)[周玉荣, 于振良, 赵士洞 (2000). 我国主要森林生态系统碳贮量和碳平衡. 植物生态学报, 24, 518-522.] |
[1] | 罗斯生, 罗碧珍, 魏书精, 胡海清, 李小川, 吴泽鹏, 王振师, 周宇飞, 钟映霞. 中度强度森林火灾对马尾松次生林土壤有机碳密度的影响[J]. 植物生态学报, 2020, 44(10): 1073-1086. |
[2] | 魏红, 满秀玲. 中国寒温带不同林龄白桦林碳储量及分配特征[J]. 植物生态学报, 2019, 43(10): 843-852. |
[3] | 陈科宇, 字洪标, 阿的鲁骥, 胡雷, 王根绪, 王长庭. 青海省森林乔木层碳储量现状及固碳潜力[J]. 植物生态学报, 2018, 42(8): 831-840. |
[4] | 周序力, 蔡琼, 熊心雨, 方文静, 朱剑霄, 朱江玲, 方精云, 吉成均. 贵州月亮山不同演替阶段亮叶水青冈林碳储量及其分配格局[J]. 植物生态学报, 2018, 42(7): 703-712. |
[5] | 张静, 刘耘华, 盛建东, 柴强, 李瑞霞, 赵丹. 新疆北部草地典型灌木的碳氮特征[J]. 植物生态学报, 2018, 42(3): 307-316. |
[6] | 岑宇, 王成栋, 张震, 任侠, 刘美珍, 杨帆. 河北省天然草地生物量和碳密度空间分布格局[J]. 植物生态学报, 2018, 42(3): 265-276. |
[7] | 杨昊天, 王增如, 贾荣亮. 腾格里沙漠东南缘荒漠草地不同群落类型土壤有机碳分布及储量特征[J]. 植物生态学报, 2018, 42(3): 288-296. |
[8] | 闫宝龙, 王忠武, 屈志强, 王静, 韩国栋. 围封对内蒙古典型草原与荒漠草原植被-土壤系统碳密度的影响[J]. 植物生态学报, 2018, 42(3): 327-336. |
[9] | 陈日升, 康文星, 周玉泉, 田大伦, 项文化. 杉木人工林养分循环随林龄变化的特征[J]. 植物生态学报, 2018, 42(2): 173-184. |
[10] | 李茜, 王芳, 曹扬, 彭守璋, 陈云明. 陕西省森林土壤固碳特征及其影响因素[J]. 植物生态学报, 2017, 41(9): 953-963. |
[11] | 崔光帅, 张林, 沈维, 刘新圣, 王媛韬. 西藏雅鲁藏布江流域中段砂生槐灌丛生物量分配及碳密度[J]. 植物生态学报, 2017, 41(1): 53-61. |
[12] | 杨路存, 李长斌, 宁祎, 聂秀青, 徐文华, 周国英. 青海高寒金露梅灌丛碳密度及其分配格局[J]. 植物生态学报, 2017, 41(1): 62-70. |
[13] | 李登秋, 张春华, 居为民, 刘丽娟. 江西省森林净初级生产力动态变化特征及其驱动因子分析[J]. 植物生态学报, 2016, 40(7): 643-657. |
[14] | 汲玉河, 郭柯, 倪健, 徐小牛, 王志高, 王树东. 安徽省森林碳储量现状及固碳潜力[J]. 植物生态学报, 2016, 40(4): 395-404. |
[15] | 黄玫, 侯晶, 唐旭利, 郝曼. 中国成熟林植被和土壤固碳速率对气候变化的响应[J]. 植物生态学报, 2016, 40(4): 416-424. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19