植物生态学报 ›› 2018, Vol. 42 ›› Issue (7): 703-712.DOI: 10.17521/cjpe.2018.0064
• 研究论文 • 下一篇
周序力,蔡琼,熊心雨,方文静,朱剑霄,朱江玲,方精云,吉成均()
出版日期:
2018-07-20
发布日期:
2018-06-01
通讯作者:
吉成均
基金资助:
ZHOU Xu-Li,CAI Qiong,XIONG Xin-Yu,FANG Wen-Jing,ZHU Jian-Xiao,ZHU Jiang-Ling,FANG Jing-Yun,JI Cheng-Jun()
Online:
2018-07-20
Published:
2018-06-01
Contact:
Cheng-Jun JI
Supported by:
摘要:
林龄对森林生态系统碳储量及其在不同碳组分(植被、木质残体、凋落物和土壤)中的分配有着重要影响。亚热带森林在陆地生态系统碳循环中起着重要作用, 水青冈属(Fagus)植物是我国亚热带广泛分布的重要树种, 而有关水青冈林碳储量随林龄变化的研究在我国鲜有报道。该研究选取贵州月亮山3个演替阶段(林龄分别为33年、82年和208年)的亮叶水青冈(Fagus lucida)林为研究对象, 对其生态系统全组分的碳储量及其分配格局进行了调查与估算。研究发现, 随林龄增加, 亮叶水青冈林生态系统碳储量显著增加, 33年、82年和208年林分别为(186.9 ± 46.0)、(265.8 ± 82.3)和(515.1 ± 176.4) Mg·hm -2, 且生态系统碳储量的增加主要由植被碳储量(占比由32%增长至79%)贡献。凋落物与木质残体碳储量随林龄增加亦呈增加趋势, 但二者占生态系统碳储量的比例很小(<1%)。而不同林龄土壤碳储量无显著差异, 其占比由33年林的67%降至208年林的20%。这些结果验证了林龄对森林生态系统各组分碳储量及其分配的重要影响, 同时指出干扰和土地利用历史等对森林植物残体和土壤碳积累的重要作用。
周序力, 蔡琼, 熊心雨, 方文静, 朱剑霄, 朱江玲, 方精云, 吉成均. 贵州月亮山不同演替阶段亮叶水青冈林碳储量及其分配格局. 植物生态学报, 2018, 42(7): 703-712. DOI: 10.17521/cjpe.2018.0064
ZHOU Xu-Li, CAI Qiong, XIONG Xin-Yu, FANGWen-Jing, ZHU Jian-Xiao, ZHU Jiang-Ling, FANG Jing-Yun, JI Cheng-Jun. Ecosystem carbon stock and within-system distribution in successional Fagus lucida forests in Mt. Yueliang, Guizhou, China. Chinese Journal of Plant Ecology, 2018, 42(7): 703-712. DOI: 10.17521/cjpe.2018.0064
样地编号 Stand No. | 33年林 33 a forest | 82年林 82 a forest | 208年林 208 a forest | ||||||
---|---|---|---|---|---|---|---|---|---|
YLS 1 | YLS 2 | YLS 3 | YLS 4 | YLS 5 | YLS 6 | YLS 7 | YLS 8 | YLS 9 | |
海拔 Altitude (m) | 1 422 | 1 400 | 1 405 | 1 457 | 1 451 | 1 439 | 1 474 | 1 471 | 1 469 |
森林起源 Forest origin | 次生林 Secondary forest | 次生林 Secondary forest | 次生林 Secondary forest | 原始林 Primeval forest | 原始林 Primeval forest | 原始林 Primeval forest | 原始林 Primeval forest | 原始林 Primeval forest | 原始林 Primeval forest |
林龄 Stand age (a) | 30 | 36 | 34 | 71 | 84 | 92 | 203 | 215 | 207 |
坡向 Aspect | 南偏东80度 80° SE | 南偏东25度 25° SE | 南偏东25度 25° SE | 北偏西80度 80° NW | 正西 W | 北偏西60度 60° NW | 南偏东55度 55° SE | 正北 N | 南偏西70度 70° SW |
坡度 Slope (°) | 35 | 45 | 47 | 35 | 16 | 37 | 32 | 36 | 32 |
平均胸径 Mean DBH (cm) | 8.9 | 9.2 | 8.9 | 17.0 | 17.4 | 14.6 | 16.1 | 19.2 | 18.9 |
最大胸径 DBHmax (cm) | 25.9 | 24.5 | 26.1 | 42.7 | 75.8 | 44.6 | 90.7 | 74.5 | 71.6 |
平均树高 Mean Height (m) | 7.7 | 7.7 | 7.5 | 10.6 | 13.7 | 9.9 | 8.1 | 11.7 | 9.9 |
最大树高 Heightmax (m) | 12 | 12 | 13 | 16 | 25 | 21 | 17 | 23 | 24 |
总胸高断面积 TBA (m2·hm-2) | 24.7 | 25.1 | 27.5 | 41.4 | 65.0 | 52.5 | 79.0 | 49.3 | 63.2 |
密度 Stand density (No.· hm-2) | 3 200 | 3 167 | 3 483 | 1 500 | 1 850 | 2 300 | 1 800 | 1 000 | 1 400 |
乔木种数 Number of trees | 21 | 19 | 23 | 17 | 19 | 24 | 18 | 21 | 19 |
灌木种数 Number of shrubs | 48 | 52 | 44 | 49 | 70 | 70 | 47 | 52 | 55 |
草本种数 Number of herbs | 27 | 20 | 24 | 22 | 23 | 25 | 15 | 22 | 24 |
表1 贵州月亮山水青冈林9个样方样地信息表
Table 1 Characteristics of the nine stands of Fagus lucida forest in Mt. Yueliang
样地编号 Stand No. | 33年林 33 a forest | 82年林 82 a forest | 208年林 208 a forest | ||||||
---|---|---|---|---|---|---|---|---|---|
YLS 1 | YLS 2 | YLS 3 | YLS 4 | YLS 5 | YLS 6 | YLS 7 | YLS 8 | YLS 9 | |
海拔 Altitude (m) | 1 422 | 1 400 | 1 405 | 1 457 | 1 451 | 1 439 | 1 474 | 1 471 | 1 469 |
森林起源 Forest origin | 次生林 Secondary forest | 次生林 Secondary forest | 次生林 Secondary forest | 原始林 Primeval forest | 原始林 Primeval forest | 原始林 Primeval forest | 原始林 Primeval forest | 原始林 Primeval forest | 原始林 Primeval forest |
林龄 Stand age (a) | 30 | 36 | 34 | 71 | 84 | 92 | 203 | 215 | 207 |
坡向 Aspect | 南偏东80度 80° SE | 南偏东25度 25° SE | 南偏东25度 25° SE | 北偏西80度 80° NW | 正西 W | 北偏西60度 60° NW | 南偏东55度 55° SE | 正北 N | 南偏西70度 70° SW |
坡度 Slope (°) | 35 | 45 | 47 | 35 | 16 | 37 | 32 | 36 | 32 |
平均胸径 Mean DBH (cm) | 8.9 | 9.2 | 8.9 | 17.0 | 17.4 | 14.6 | 16.1 | 19.2 | 18.9 |
最大胸径 DBHmax (cm) | 25.9 | 24.5 | 26.1 | 42.7 | 75.8 | 44.6 | 90.7 | 74.5 | 71.6 |
平均树高 Mean Height (m) | 7.7 | 7.7 | 7.5 | 10.6 | 13.7 | 9.9 | 8.1 | 11.7 | 9.9 |
最大树高 Heightmax (m) | 12 | 12 | 13 | 16 | 25 | 21 | 17 | 23 | 24 |
总胸高断面积 TBA (m2·hm-2) | 24.7 | 25.1 | 27.5 | 41.4 | 65.0 | 52.5 | 79.0 | 49.3 | 63.2 |
密度 Stand density (No.· hm-2) | 3 200 | 3 167 | 3 483 | 1 500 | 1 850 | 2 300 | 1 800 | 1 000 | 1 400 |
乔木种数 Number of trees | 21 | 19 | 23 | 17 | 19 | 24 | 18 | 21 | 19 |
灌木种数 Number of shrubs | 48 | 52 | 44 | 49 | 70 | 70 | 47 | 52 | 55 |
草本种数 Number of herbs | 27 | 20 | 24 | 22 | 23 | 25 | 15 | 22 | 24 |
物种 Species | 地上生物量 AGB (kg) | 地下生物量 BGB (kg) | 本文主要对应树种 Species in this study | 参考文献 References |
---|---|---|---|---|
锥属 Castanopsis | AGB = 0.0177(D2H)1.0168 + 0.0364(D2H)0.6530 + 0.1533(D2H)0.2948 | BGB = 0.00911(D2H)0.933951 | 锥属 Castanopsis | Qiu et al., 1984 |
水青冈属 Fagus | AGB = 0.0125(D2H)1.05 + 0.000933(D 2H)1.23 + 0.000294(D 2H)1.20 | BGB = 0.00322(D2H)1.13 | 亮叶水青冈 Fagus lucida | |
樟科 Lauraceae | AGB = 0.055603(D2H)0.850193 + 0.014757(D2H)0.808395 + 0.006652(D2H)1.051841 + 0.059871(D2H)0.574327 | BGB = 0.184736(D2H)0.616421 | 木姜子属 Litsea | Yao et al., 2003 |
枫香 Liquidambar formosana | AGB = 0.174(D2H)0.7661 + 3 × 10-8(D2H)2 + 0.001(D2H) + 9.7883 + 0.0002(D2H)1.2696 + 0.0002D3.2304 + 3 × 10-7(D2H)1.5626 | BGB = 0.0094(D2H)0.9538 | 枫香树 Liquidambar formosana | Ming et al., 2012 |
柯属 Lithocarpus | AGB = 0.0347(D2H)0.9470 + 0.0084(D2H)0.9112 + 0.0072(D2H)0.6893 | BGB = 0.01534(D2H)0.95121 | 柯属 Lithocarpus | Qiu et al., 1984 |
木兰科 Magnoliaceae | AGB = 0.502921(D2H)0.56821 + 0.007183(D2H)0.92191 + 0.02252(D2H)0.62601 | BGB = 0.0364(D2H)0.79111 | 木兰属 Magnolia | Qiu et al., 1984 |
落叶阔叶树 Deciduous broad-leaved trees | AGB = 0.0650(D2H)0.84 + 1.59(D2H)0.38 + 0.218(D2H)0.34 | BGB = 0.291(D2H)0.55 | 鹅耳枥属 Carpinus, 槭属 Acer | Wang et al., 2007 |
常绿阔叶树 Evergreen broad-leaved trees | AGB = 0.17686(D2H)0.75995 + 0.11499(D2H)0.69997 + 0.107513(D2H)0.53231 | BGB = 0.095827(D2H)0.7165 | 青冈属 Cyclobalanopsis, 冬青属 Ilex | Deng et al., 2000 |
落叶小乔木 Small deciduous trees | AGB = 0.0434(D2H)0.91 + 0.000902(D2H)1.31 + 0.000790(D2H)1.05 | BGB = 0.000781(D2H)1.05 | 尖叶四照花 Dendrobenthamia angustata, 贵州桤叶树 Clethra kaipoensis | Wang et al., 2007 |
常绿小乔木 Small evergreen trees | AGB = 0.190(D2H)0.663 + 0.123(D2H)1.023 + 0.00728(D2H)0.548 | BGB = 0.0557(D2H)0.622 | 川桂 Cinnamomum wilsonii, 杜鹃属 Rhododendron | Wang et al., 2007 |
表2 乔木层树种生物量方程
Table 2 Allometric equations for calculating aboveground biomass (AGB) and belowground biomass (BGB) of dominant tree species in this study
物种 Species | 地上生物量 AGB (kg) | 地下生物量 BGB (kg) | 本文主要对应树种 Species in this study | 参考文献 References |
---|---|---|---|---|
锥属 Castanopsis | AGB = 0.0177(D2H)1.0168 + 0.0364(D2H)0.6530 + 0.1533(D2H)0.2948 | BGB = 0.00911(D2H)0.933951 | 锥属 Castanopsis | Qiu et al., 1984 |
水青冈属 Fagus | AGB = 0.0125(D2H)1.05 + 0.000933(D 2H)1.23 + 0.000294(D 2H)1.20 | BGB = 0.00322(D2H)1.13 | 亮叶水青冈 Fagus lucida | |
樟科 Lauraceae | AGB = 0.055603(D2H)0.850193 + 0.014757(D2H)0.808395 + 0.006652(D2H)1.051841 + 0.059871(D2H)0.574327 | BGB = 0.184736(D2H)0.616421 | 木姜子属 Litsea | Yao et al., 2003 |
枫香 Liquidambar formosana | AGB = 0.174(D2H)0.7661 + 3 × 10-8(D2H)2 + 0.001(D2H) + 9.7883 + 0.0002(D2H)1.2696 + 0.0002D3.2304 + 3 × 10-7(D2H)1.5626 | BGB = 0.0094(D2H)0.9538 | 枫香树 Liquidambar formosana | Ming et al., 2012 |
柯属 Lithocarpus | AGB = 0.0347(D2H)0.9470 + 0.0084(D2H)0.9112 + 0.0072(D2H)0.6893 | BGB = 0.01534(D2H)0.95121 | 柯属 Lithocarpus | Qiu et al., 1984 |
木兰科 Magnoliaceae | AGB = 0.502921(D2H)0.56821 + 0.007183(D2H)0.92191 + 0.02252(D2H)0.62601 | BGB = 0.0364(D2H)0.79111 | 木兰属 Magnolia | Qiu et al., 1984 |
落叶阔叶树 Deciduous broad-leaved trees | AGB = 0.0650(D2H)0.84 + 1.59(D2H)0.38 + 0.218(D2H)0.34 | BGB = 0.291(D2H)0.55 | 鹅耳枥属 Carpinus, 槭属 Acer | Wang et al., 2007 |
常绿阔叶树 Evergreen broad-leaved trees | AGB = 0.17686(D2H)0.75995 + 0.11499(D2H)0.69997 + 0.107513(D2H)0.53231 | BGB = 0.095827(D2H)0.7165 | 青冈属 Cyclobalanopsis, 冬青属 Ilex | Deng et al., 2000 |
落叶小乔木 Small deciduous trees | AGB = 0.0434(D2H)0.91 + 0.000902(D2H)1.31 + 0.000790(D2H)1.05 | BGB = 0.000781(D2H)1.05 | 尖叶四照花 Dendrobenthamia angustata, 贵州桤叶树 Clethra kaipoensis | Wang et al., 2007 |
常绿小乔木 Small evergreen trees | AGB = 0.190(D2H)0.663 + 0.123(D2H)1.023 + 0.00728(D2H)0.548 | BGB = 0.0557(D2H)0.622 | 川桂 Cinnamomum wilsonii, 杜鹃属 Rhododendron | Wang et al., 2007 |
图1 不同演替阶段月亮山亮叶水青冈林不同植被组成的碳储量(平均值+标准误差)。A, 不同生活型碳储量。B, 植被地上碳储量和地下碳储量。
Fig. 1 Changes in vegetation carbon density of the nine successional Fagus lucida forests in Mt. Yueliang (mean + SE). A, Carbon density in different life forms (trees, shrubs and herbs). B, Above- and below-ground carbon density.
图2 不同演替阶段亮叶水青冈林凋落物和木质残体的碳储量。A, 植物残体碳储量绝对值(平均值+标准误差)。B, 植物残体碳储量相对值。
Fig. 2 Absolute (mean + SE) (A) and relative distribution of carbon density (B) of plant debris in the nine successional Fagus lucida forests in Mt. Yueliang. CWD, coarse woody debris; FWD, fine woody debris.
图3 不同演替阶段亮叶水青冈林土壤碳储量。A, 土壤碳储量绝对值(平均值+标准误差)。B, 土壤碳储量相对值。
Fig. 3 Absolute (mean + SE) (A) and relative distribution of soil carbon density (B) by soil depth in the nine successional Fagus lucida forests of Mt. Yueliang.
图4 不同演替阶段亮叶水青冈林生态系统碳储量。A, 生态系统碳储量绝对值(平均值+标准误差)。B, 生态系统碳储量相对值。
Fig. 4 Absolute (mean + SE) (A) and relative distribution of ecosystem carbon density (B) in the nine successional Fagus lucida forests of Mt. Yueliang.
[1] |
Aplet GH, Vitousek PM ( 1994). An age-altitude matrix analysis of Hawaiian rain-forest succession. Journal of Ecology, 82, 137-147.
DOI URL |
[2] |
Bradford JB, Kastendick DN ( 2010). Age-related patterns of forest complexity and carbon storage in pine and aspen-?birch ecosystems of northern Minnesota, USA. Canadian Journal of Forest Research, 40, 401-409.
DOI URL |
[3] | Chapin III FS, Matson PA, Mooney HA ( 2002). Principles of Terrestrial Ecosystem Ecology. Springer-Verlag, New York. |
[4] |
Deng SJ, Liao LP, Wang SL, Gao H, Lin B ( 2000). Bioproductivity of Castanopsis hysrix-Cyclobalanopsis glauca-?Machilus pauhoi community in Huitong, Hunan. Chinese Journal of Applied Ecology, 11, 651-654.
DOI URL |
[ 邓仕坚, 廖利平, 汪思龙, 高洪, 林柏 ( 2000). 湖南会同红栲-青冈-刨花楠群落生物生产力的研究. 应用生态学报, 11, 651-654.]
DOI URL |
|
[5] |
Fang JY, Lechowicz MJ ( 2006). Climatic limits for the present distribution of beech ( Fagus L.) species in the world. Journal of Biogeography, 33, 1804-1819.
DOI URL |
[6] |
Fu WB, Peng WX, Song TQ, Zeng FP, Du H, Wen YG, Xu HF ( 2014). Biomass and its allocation characteristics of Eucalyptus urophylla × E. grandis plantations at different stand ages. Acta Ecologica Sinica, 34, 5234-5241.
DOI URL |
[ 付威波, 彭晚霞, 宋同清, 曾馥平, 杜虎, 温远光, 徐慧芳 ( 2014). 不同林龄尾巨桉人工林的生物量及其分配特征. 生态学报, 34, 5234-5241.]
DOI URL |
|
[7] | Gong C, Wang SL, Zeng ZQ, Deng SJ, Chen JP, Long KS ( 2011). Carbon storage and its distribution of evergreen broad-leaved forests at different succession stages in mid-subtropical China. Chinese Journal of Ecology, 30, 1935-1941. |
[ 宫超, 汪思龙, 曾掌权, 邓仕坚, 陈建平, 龙康寿 ( 2011). 中亚热带常绿阔叶林不同演替阶段碳储量与格局特征. 生态学杂志, 34, 1935-1941.] | |
[8] |
Gower ST, Vogel JG, Norman JM, Kucharik CJ, Steele SJ, Stow TK ( 1997). Carbon distribution and aboveground net primary production in aspen, jack pine, and black spruce stands in Saskatchewan and Manitoba, Canada. Journal of Geophysical Research Atmospheres, 102, 29029-29042.
DOI URL |
[9] |
Harmon ME, Franklin JF, Swanson FJ, Sollins P, Gregory SV, Lattin JD, Anderson NH, Cline SP, Aumen NG, Sedell JR, Lienkaemper GW, Cromack K, Cummins KW ( 1986). Ecology of coarse woody debris in temperate ecosystems. Advances in Ecological Research, 15, 133-302.
DOI URL |
[10] |
Hooker TD, Compton JE ( 2003). Forest ecosystem carbon and nitrogen accumulation during the first century after agricultural abandonment. Ecological Applications, 13, 299-313.
DOI URL |
[11] | IPCC ( 2013). Intergovernmental Panel on Climate Change 2013. Cambridge University Press, Cambridge. |
[12] |
Jandl R, Lindner M, Vesterdal L, Bauwens B, Baritz R, Hagedorn F, Johnson DW, Minkkinen K, Byrne KA ( 2007). How strongly can forest management influence soil carbon sequestration? Geoderma, 137, 253-268.
DOI URL |
[13] |
Kakubari Y ( 1991). Primary productivity changes for a fifteen-year period in a natural beech ( Fagus crenata) forest in the Naeba mountains. Journal of the Japanese Forestry Society, 73, 370-374.
DOI |
[14] |
Li X, Yi MJ, Son Y, Park PS, Lee KH, Son Y M, Jeong MJ ( 2011). Biomass and carbon storage in an age-sequence of Korean pine (Pinus koraiensis) plantation forests in central Korea. Journal of Plant Biology, 54, 33-42.
DOI URL |
[15] |
Ma SH, He F, Tian D, Zou DT, Yan ZB, Yang YL, Zhou TC, Huang KY, Shen HH, Fang JY ( 2018). Variations and determinants of carbon content in plants: A global synthesis. Biogeosciences Discussions, 15, 1-22.
DOI URL |
[16] | Ming AG, Jia HY, Tao Y, Lu LH, Su JM, Shi ZM ( 2012). Biomass and its allocation in a 28-year-old Mytilaria laosensis plantation in southwest Guangxi. Chinese Journal of Ecology, 31, 1050-1056. |
[ 明安刚, 贾宏炎, 陶怡, 卢立华, 苏建苗, 史作民 ( 2012). 桂西南28年生米老排人工林生物量及其分配特征. 生态学杂志, 31, 1050-1056.] | |
[17] | Ming AG, Jia HY, Tian ZW, Tao Y, Lu LH, Cai DX, Shi ZM, Wang WX ( 2014). Characteristics of carbon storage and its allocation in Erythrophleum fordii plantations with different ages. Chinese Journal of Applied Ecology, 25, 940-946. |
[ 明安刚, 贾宏炎, 田祖为, 陶怡, 卢立华, 蔡道雄, 史作民, 王卫霞 ( 2014). 不同林龄格木人工林碳储量及其分配特征. 应用生态学报, 25, 940-946.] | |
[18] | Mund M ( 2004). Carbon Pools of European Beech Forests (Fagus sylvatica) under Different Silvicultural Management. PhD dissertation, University of G?ttingen, Goettingen. |
[19] |
Myneni RB, Dong J, Tucker CJ, Kaufmann RK, Kauppi PE, Liski J, Zhou L, Alexeyev V, Hughes MK ( 2001). A large carbon sink in the woody biomass of northern forests. Proceedings of the National Academy of Sciences of the United States of America, 98, 14784-14789.
DOI URL PMID |
[20] |
Nave LE, Vance ED, Swanston CW, Curtis PS ( 2010). Harvest impacts on soil carbon storage in temperate forests. Forest Ecology and Management, 259, 857-866.
DOI URL |
[21] | Noh NJ, Son Y, Lee SK, Seo KW, Heo SJ, Yi MJ, Lee KH ( 2010). Carbon and nitrogen storage in an age-sequence of Pinus densiflora stands in Korea. Science China Life Sciences, 53, 822-830. |
[22] |
Pan YD, Birdsey RA, Fang JY, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, Ciais P, Jackson RB, Pacala SW, McGuire AD, Piao SL, Rautiainen A, Sitch S, Hayes D ( 2011). A large and persistent carbon sink in the world’s forests. Science, 333, 988-993.
DOI URL PMID |
[23] |
Paul KI, Polglase PJ, Nyakuengama JG, Khanna PK ( 2002). Change in soil carbon following afforestation. Forest Ecology and Management, 168, 241-257.
DOI URL |
[24] |
Peichl M, Arain MA ( 2006). Above- and belowground ecosystem biomass and carbon pools in an age-sequence of temperate pine plantation forests. Agricultural and Forest Meteorology, 140, 51-63.
DOI URL |
[25] |
Peltoniemi M, Mäkipää R, Liski J, Tamminen P ( 2004). Changes in soil carbon with stand age—An evaluation of a modelling method with empirical data. Global Change Biology, 10, 2078-2091.
DOI |
[26] |
Pregitzer KS, Euskirchen ES ( 2004). Carbon cycling and storage in world forests: Biome patterns related to forest age. Global Change Biology, 10, 2052-2077.
DOI URL |
[27] | Qiu XZ, Xie SC, Jing GF ( 1984). A preliminary study on biomass of Dendrobium candidum in Yunnan Ailaoshan Xujiaba Area. Acta Botanica Yunnanica, 6, 85-92. |
[ 邱学忠, 谢寿昌, 荆桂芬 ( 1984). 云南哀牢山徐家坝地区木果石栎林生物量的初步研究. 云南植物研究, 6, 85-92.] | |
[28] |
Sigurdsson BD, Magnusson B, Elmarsdottir A, Bjarnadottir B ( 2005). Biomass and composition of understory vegetation and the forest floor carbon stock across Siberian larch and mountain birch chronosequences in Iceland. Annals of Forest Science, 62, 881-888.
DOI URL |
[29] |
Spies TA, Franklin JF, Thomas TB ( 1988). Coarse woody debris in Douglas-fir forests of western Oregon and Washington. Ecology, 69, 1689-1702.
DOI URL |
[30] |
Sturtevant BR, Bissonette JA, Long JN, Roberts DW ( 1997). Coarse woody debris as a function of age, stand structure, and disturbance in boreal Newfoundland. Ecological Applications, 7, 702-712.
DOI URL |
[31] |
Tang XL, Zhou GY ( 2005). Coarse woody debris biomass and its potential contribution to the carbon cycle in successional subtropical forests of Southern China. Acta Phytoecologica Sinca, 29, 559-568.
DOI URL |
[ 唐旭利, 周国逸 ( 2005). 南亚热带典型森林演替类型粗死木质残体贮量及其对碳循环的潜在影响. 植物生态学报, 29, 559-568.]
DOI URL |
|
[32] |
Wang XY, Hu D, He JS ( 2007). Study of the biomass of Cyclobalanopsis glauca and Sharptooth Oak forests in Shennongjia area. Journal of Capital Normal University (Natural Science Edition), 28(2), 62-67.
DOI URL |
[ 王向雨, 胡东, 贺金生 ( 2007). 神农架地区米心水青冈林和锐齿槲栎林生物量的研究. 首都师范大学学报(自然科学版), 28(2), 62-67.]
DOI URL |
|
[33] | Wang ZX, Fujiwara K ( 2003). A preliminary vegetation study of Fagus forests in central China: Species composition, structure and ecotypes. Journal of Phytogeography and Taxonomy, 51, 137-157. |
[34] | Wu KC, Wang DJ, Feng BX ( 2013). Characteristics and diversity of plant communities in the Moon Mountain in Rongjiang. Guizhou Agricultural Sciences, 41(8), 23-27. |
[ 吴开岑, 王定江, 冯邦贤 ( 2013). 榕江月亮山植物群落的特征及多样性. 贵州农业科学, 41(8), 23-27.] | |
[35] | Wu PF, Zhu B, Liu SR, Wang XG ( 2008). Carbon storage and its allocation in mixed alder-cypress plantations at different age stages. Chinese Journal of Applied Ecology, 19, 1419-1424. |
[ 吴鹏飞, 朱波, 刘世荣, 王小国 ( 2008). 不同林龄桤-柏混交林生态系统的碳储量及其分配. 应用生态学报, 19, 1419-1424.] | |
[36] | Yang YQ (1994). Scientific Survey of the Yueliangshan Forest Area, Guizhou, China. Guizhou Nationality Press, Guiyang. |
[ 杨业勤 (1994). 月亮山林区科学考察集. 贵州民族出版社, 贵阳. ] | |
[37] |
Yao YJ, Kang WX, Tian DL ( 2003). Study of the biomass and productivity of Cinnamomum camphora plantation. Journal of Central South Forestry University, 23, 1-5.
DOI URL |
[ 姚迎九, 康文星, 田大伦 ( 2003). 18年生樟树人工林生物量的结构与分布. 中南林学院学报, 23, 1-5.]
DOI URL |
|
[38] |
Yu GR, Chen Z, Piao SL, Peng CH, Ciais P, Wang QF, Li XR, Zhu XJ ( 2014). High carbon dioxide uptake by subtropical forest ecosystems in the East Asian monsoon region. Proceedings of the National Academy of Science of the United States of America, 111, 4910-4915.
DOI URL |
[39] | Zhang QZ, Wang CK ( 2010). Carbon density and distribution of six Chinese temperate forests. Scientia Sinica: Vitae, 621-631. |
[ 张全智, 王传宽 ( 2010). 6种温带森林碳密度与碳分配. 中国科学: 生命科学, 621-631.] | |
[40] |
Zhang YB, Lv WQ, Yi WY, Zhou CY, Wu YG, Zhou SQ ( 2016). Soil stoichiometry characterization of five forest types in Moon Mountain, Guizhou Province. Journal of Tropical and Subtropical Botany, 24, 617-625.
DOI URL |
[ 张亚冰, 吕文强, 易武英, 周传艳, 吴永贵, 周少奇 ( 2016). 贵州月亮山5种森林类型土壤生态化学计量特征研究. 热带亚热带植物学报, 24, 617-625.]
DOI URL |
|
[41] |
Zhu JX, Hu XY, Yao H, Liu GH, Ji CJ, Fang JY ( 2015). A significant carbon sink in temperate forests in Beijing: Based on 20-year field measurements in three stands. Scientia Sinica: Vitae, 58, 1135-1141.
DOI URL PMID |
[42] |
Zhu JX, Hu HF, Tao SL, Chi XL, Li P, Jiang L, Ji CJ, Zhu JL, Tang ZY, Pan YD, Birdsey RA, He XH, Fang JY ( 2017a). Carbon stocks and changes of dead organic matter in China’s forests. Nature Communications, 8, 151. DOI: 10.1038/s41467-017-00207-1.
DOI URL PMID |
[43] | Zhu JX, Zhou XL, Fang WJ, Xiong XY, Zhu B, Ji CJ, Fang JY ( 2017b). Plant debris and its contribution to ecosystem carbon storage in successional Larix gmelinii forests in northeastern China. Forests, 8, 191. DOI: 10.3390/f8060191. |
[1] | 席念勋 张原野 周淑荣. 群落生态学中的植物-土壤反馈研究[J]. 植物生态学报, 2023, 47(预发表): 0-0. |
[2] | 朱玉英 张华敏 丁明军 余紫萍. 青藏高原植被绿度变化及其对干湿变化的响应[J]. 植物生态学报, 2023, 47(1): 0-0. |
[3] | 张慧 曾文静 龚新桃 马泽清. 亚热带典型树种根毛特征及其共生真菌关系[J]. 植物生态学报, 2023, 47(1): 0-0. |
[4] | 杨元合 张典业 魏斌 刘洋 冯雪徽 毛超 徐玮婕 贺美 王璐 郑志虎 王媛媛 陈蕾伊 彭云峰. 草地群落多样性和生态系统碳氮循环对氮输入的非线性响应及其机制[J]. 植物生态学报, 2023, 47(1): 0-0. |
[5] | 王晓悦 许艺馨 李春环 余海龙 黄菊莹. 长期降水量变化下荒漠草原植物生物量、多样性及其影响因素研究[J]. 植物生态学报, 2023, 47(1): 0-0. |
[6] | 雷自然 贾国栋 余新晓 刘子赫. 植物水分来源稳定氢氧同位素偏移研究进展[J]. 植物生态学报, 2023, 47(1): 0-0. |
[7] | 李万年, 罗益敏, 黄则月, 杨梅. 望天树人工幼林混交对土壤微生物功能多样性与碳源利用的影响[J]. 植物生态学报, 2022, 46(9): 1109-1124. |
[8] | 李一丁, 桑清田, 张灏, 刘龙昌, 潘庆民, 王宇, 刘伟, 袁文平. 内蒙古半干旱地区空气和土壤加湿对幼龄樟子松生长的影响[J]. 植物生态学报, 2022, 46(9): 1077-1085. |
[9] | 冯继广, 张秋芳, 袁霞, 朱彪. 氮磷添加对土壤有机碳的影响: 进展与展望[J]. 植物生态学报, 2022, 46(8): 855-870. |
[10] | 袁春阳, 李济宏, 韩鑫, 洪宗文, 刘宣, 杜婷, 游成铭, 李晗, 谭波, 徐振锋. 树种对土壤微生物生物量碳氮的影响: 同质园实验[J]. 植物生态学报, 2022, 46(8): 882-889. |
[11] | 夏体泽, 李露双, 杨汉奇. 屏边空竹分布区海拔上下边界的土壤真菌群落特征[J]. 植物生态学报, 2022, 46(7): 823-833. |
[12] | 甘子莹, 王浩, 丁驰, 雷梅, 杨晓刚, 蔡敬琰, 丘清燕, 胡亚林. 亚热带森林不同植物及器官来源的可溶性有机质输入对土壤激发效应的影响及其作用机理[J]. 植物生态学报, 2022, 46(7): 797-810. |
[13] | 孙彩丽, 仇模升, 黄朝相, 王艺伟. 黔西南石漠化过程中土壤胞外酶活性及其化学计量变化特征[J]. 植物生态学报, 2022, 46(7): 834-845. |
[14] | 吴铠, 李凯, 贾伟瀚, 廖梦娜, 倪健. 湖泊沉积植物古DNA的现代过程[J]. 植物生态学报, 2022, 46(7): 735-752. |
[15] | 金伊丽, 王皓言, 魏临风, 侯颖, 胡景, 吴铠, 夏昊钧, 夏洁, 周伯睿, 李凯, 倪健. 青藏高原植物群落样方数据集[J]. 植物生态学报, 2022, 46(7): 846-854. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19