植物生态学报 ›› 2018, Vol. 42 ›› Issue (3): 327-336.DOI: 10.17521/cjpe.2017.0067
所属专题: 碳循环
出版日期:
2018-03-20
发布日期:
2018-03-27
通讯作者:
王忠武,韩国栋
基金资助:
YAN Bao-Long,WANG Zhong-Wu*(),QU Zhi-Qiang,WANG Jing,HAN Guo-Dong*()
Online:
2018-03-20
Published:
2018-03-27
Contact:
Zhong-Wu WANG,Guo-Dong HAN
Supported by:
摘要:
草地生态系统是巨大的碳库, 在全球碳循环中起着重要的作用。该研究以内蒙古中温带草地区典型草原和荒漠草原为研究对象, 测定了两种草原类型围封与放牧后地上生物量碳密度、地下生物量碳密度和土壤碳密度, 探讨围封对两种草原类型植被-土壤系统碳密度的影响。结果表明: (1)围封显著地增加了典型草原地上和地下生物量的碳密度, 对荒漠草原地上生物量碳密度增加影响显著, 对地下生物量碳密度增加影响不显著; (2)围封显著地增加了典型草原土壤碳密度, 使荒漠草原土壤碳密度有增加的趋势, 但影响不显著; (3)典型草原围封样地地下生物量和土壤碳密度的垂直分布显著高于放牧样地, 而荒漠草原围封样地地下生物量和土壤碳密度的垂直分布与放牧样地的差异不显著; (4)围封分别提高了典型草原和荒漠草原植被-土壤系统碳密度的2.2倍和1.6倍, 典型草原和荒漠草原分别有超过65%和89%的碳储存在土壤中, 两种草原类型的地下生物量碳库均占总生物量碳库的90%以上。研究结果表明围封能够有效地增加草原生态系统的碳储量。
闫宝龙, 王忠武, 屈志强, 王静, 韩国栋. 围封对内蒙古典型草原与荒漠草原植被-土壤系统碳密度的影响. 植物生态学报, 2018, 42(3): 327-336. DOI: 10.17521/cjpe.2017.0067
YAN Bao-Long, WANG Zhong-Wu, QU Zhi-Qiang, WANG Jing, HAN Guo-Dong. Effects of enclosure on carbon density of plant-soil system in typical steppe and desert steppe in Nei Mongol, China. Chinese Journal of Plant Ecology, 2018, 42(3): 327-336. DOI: 10.17521/cjpe.2017.0067
图1 2001-2012年各研究区域平均降水量和平均气温。实点代表气温, 空点代表降水量。
Fig. 1 Mean precipitation and air temperature of each study site from 2001 to 2012. Solid dots indicate air temperature, and the empty ones indicate precipitation.
草原类型 Steppe type | 利用方式 Utilization pattern | 经度 Longitude (° E) | 纬度 Latitude (° N) | 海拔 Altitude (m) | 行政区域 Administrative division | 土壤类型 Soil type | 植物群落 Plant community |
---|---|---|---|---|---|---|---|
典型草原 Typical steppe | 全年放牧 Year-round grazing | 112.43 | 43.10 | 1 081 | SY | 草原风沙土 Grassland sand soil | 冷蒿 Artemisia frigida |
113.16 | 42.12 | 1 362 | SY | 淡栗钙土 Light chestnut soil | 羊草 Leymus chinensis | ||
113.84 | 43.83 | 1 135 | SZ | 淡栗钙土 Light chestnut soil | 西北针茅+冷蒿 Stipa sareptana var. krylovii + Artemisia frigida | ||
114.00 | 42.54 | 1 196 | XH | 栗钙土 Chestnut soil | 小叶锦鸡儿+大针茅 Caragana microphylla + Stipa grandis | ||
114.40 | 42.43 | 1 258 | XH | 栗褐土 Cinnamon soil | 西北针茅+糙隐子草 Stipa sareptana var. krylovii + Cleistogenes squarrosa | ||
禁牧 Ungrazing | 114.43 | 42.47 | 1 216 | XH | 栗钙土 Chestnut soil | 冷蒿 Artemisia frigida | |
115.04 | 42.26 | 1 397 | ZB | 栗钙土 Chestnut soil | 西北针茅 Stipa sareptana var. krylovii | ||
115.10 | 42.60 | 1 266 | ZB | 栗褐土 Chestnut soil | 西北针茅+冰草 Stipa sareptana var. krylovii + Agropyron cristatum | ||
115.14 | 42.31 | 1 334 | ZB | 栗钙土 Chestnut soil | 西北针茅+小叶锦鸡儿 Stipa sareptana var. krylovii + Caragana microphylla | ||
115.27 | 42.38 | 1 285 | ZB | 栗钙土 Chestnut soil | 西北针茅+冷蒿 Stipa sareptana var. krylovii + Artemisia frigida | ||
荒漠草原 Desert steppe | 全年放牧 Year-round grazing | 111.35 | 43.39 | 1 050 | SY | 淡栗钙土 Light chestnut soil | 小针茅+画眉草 Stipa klemenzii + Eragrostis pilosa |
112.34 | 43.27 | 1 016 | SY | 棕钙土 Brown soil | 小针茅+多根葱 Stipa klemenzii + Allium polyrhizum | ||
112.58 | 42.95 | 1 094 | SY | 淡栗钙土 Light chestnut soil | 小针茅+无芒隐子草 Stipa klemenzii + Cleistogenes songorica | ||
113.37 | 43.41 | 1 060 | SY | 淡栗钙土 Light chestnut soil | 小针茅 Stipa klemenzii | ||
112.66 | 44.57 | 1 193 | SZ | 棕钙土 Brown soil | 西北针茅 Stipa sareptana var. krylovii | ||
113.34 | 43.95 | 949 | SZ | 棕钙土 Brown soil | 西北针茅+小叶锦鸡儿 Stipa sareptana var. krylovii + Caragana microphylla | ||
113.63 | 43.62 | 1 096 | SZ | 淡栗钙土 Light chestnut soil | 西北针茅 Stipa sareptana var. krylovii | ||
113.83 | 43.50 | 1 036 | SZ | 淡栗钙土 Light chestnut soil | 西北针茅+狭叶锦鸡儿 Stipa sareptana var. krylovii + Caragana microphylla | ||
禁牧 Ungrazing | 112.74 | 42.77 | 1 097 | SY | 淡栗钙土 Light chestnut soil | 西北针茅 Stipa sareptana var. krylovii |
表1 研究地点和生态系统特征
Table 1 Study locations and ecosystem characteristics
草原类型 Steppe type | 利用方式 Utilization pattern | 经度 Longitude (° E) | 纬度 Latitude (° N) | 海拔 Altitude (m) | 行政区域 Administrative division | 土壤类型 Soil type | 植物群落 Plant community |
---|---|---|---|---|---|---|---|
典型草原 Typical steppe | 全年放牧 Year-round grazing | 112.43 | 43.10 | 1 081 | SY | 草原风沙土 Grassland sand soil | 冷蒿 Artemisia frigida |
113.16 | 42.12 | 1 362 | SY | 淡栗钙土 Light chestnut soil | 羊草 Leymus chinensis | ||
113.84 | 43.83 | 1 135 | SZ | 淡栗钙土 Light chestnut soil | 西北针茅+冷蒿 Stipa sareptana var. krylovii + Artemisia frigida | ||
114.00 | 42.54 | 1 196 | XH | 栗钙土 Chestnut soil | 小叶锦鸡儿+大针茅 Caragana microphylla + Stipa grandis | ||
114.40 | 42.43 | 1 258 | XH | 栗褐土 Cinnamon soil | 西北针茅+糙隐子草 Stipa sareptana var. krylovii + Cleistogenes squarrosa | ||
禁牧 Ungrazing | 114.43 | 42.47 | 1 216 | XH | 栗钙土 Chestnut soil | 冷蒿 Artemisia frigida | |
115.04 | 42.26 | 1 397 | ZB | 栗钙土 Chestnut soil | 西北针茅 Stipa sareptana var. krylovii | ||
115.10 | 42.60 | 1 266 | ZB | 栗褐土 Chestnut soil | 西北针茅+冰草 Stipa sareptana var. krylovii + Agropyron cristatum | ||
115.14 | 42.31 | 1 334 | ZB | 栗钙土 Chestnut soil | 西北针茅+小叶锦鸡儿 Stipa sareptana var. krylovii + Caragana microphylla | ||
115.27 | 42.38 | 1 285 | ZB | 栗钙土 Chestnut soil | 西北针茅+冷蒿 Stipa sareptana var. krylovii + Artemisia frigida | ||
荒漠草原 Desert steppe | 全年放牧 Year-round grazing | 111.35 | 43.39 | 1 050 | SY | 淡栗钙土 Light chestnut soil | 小针茅+画眉草 Stipa klemenzii + Eragrostis pilosa |
112.34 | 43.27 | 1 016 | SY | 棕钙土 Brown soil | 小针茅+多根葱 Stipa klemenzii + Allium polyrhizum | ||
112.58 | 42.95 | 1 094 | SY | 淡栗钙土 Light chestnut soil | 小针茅+无芒隐子草 Stipa klemenzii + Cleistogenes songorica | ||
113.37 | 43.41 | 1 060 | SY | 淡栗钙土 Light chestnut soil | 小针茅 Stipa klemenzii | ||
112.66 | 44.57 | 1 193 | SZ | 棕钙土 Brown soil | 西北针茅 Stipa sareptana var. krylovii | ||
113.34 | 43.95 | 949 | SZ | 棕钙土 Brown soil | 西北针茅+小叶锦鸡儿 Stipa sareptana var. krylovii + Caragana microphylla | ||
113.63 | 43.62 | 1 096 | SZ | 淡栗钙土 Light chestnut soil | 西北针茅 Stipa sareptana var. krylovii | ||
113.83 | 43.50 | 1 036 | SZ | 淡栗钙土 Light chestnut soil | 西北针茅+狭叶锦鸡儿 Stipa sareptana var. krylovii + Caragana microphylla | ||
禁牧 Ungrazing | 112.74 | 42.77 | 1 097 | SY | 淡栗钙土 Light chestnut soil | 西北针茅 Stipa sareptana var. krylovii |
图2 围封与放牧对生物量碳密度的影响(平均值±标准偏差)。A, 地上。B, 地下。***, p < 0.000 1。
Fig. 2 The effects of enclosure and grazing on the carbon density of biomass (mean ± SD). A, Aboveground. B, Belowground. ***, p < 0.000 1.
图3 围封与放牧对典型草原和荒漠草原土壤碳密度的影响(平均值±标准偏差)。**, p < 0.01。
Fig. 3 The effects of enclosure and grazing on soil carbon density in the typical and desert steppes (mean ± SD). **, p < 0.01.
图4 围封与放牧对地下生物量碳密度垂直分布的影响(平均值±标准偏差)。A, 典型草原。B, 荒漠草原。***, p < 0.000 1; **, p < 0.01。
Fig. 4 The effects of enclosure and grazing on the vertical distribution of belowground biomass carbon density (mean ± SD). A, Typical steppe. B, Desert steppe. ***, p < 0.000 1; **, p < 0.01.
影响因子 Impact factor | 典型草原 Typical steppe | 荒漠草原 Desert steppe | ||||||
---|---|---|---|---|---|---|---|---|
地下生物量碳密度 Belowground biomass carbon density (g·m-2) | 土壤碳密度 Soil carbon density (kg·m-2) | 地下生物量碳密度 Belowground biomass carbon density (g·cm-3) | 土壤碳密度 Soil carbon density (kg·m-2) | |||||
F | p | F | p | F | p | F | p | |
放牧利用 Grazing | 164.48 | <0.000 1 | 126.39 | <0.000 1 | 33.82 | <0.000 1 | 0.04 | 0.832 7 |
土层深度 Soil depth | 40.31 | <0.000 1 | 6.88 | <0.000 1 | 0.20 | 0.655 6 | 9.86 | <0.000 1 |
放牧利用×土层深度 Grazing × Soil depth | 22.41 | <0.000 1 | 1.95 | 0.086 1 | 1.05 | 0.393 4 | 0.59 | 0.711 2 |
表2 放牧与土壤深度的交互作用对地下碳密度的影响
Table 2 The effects of interaction between grazing and soil depth on belowground carbon density
影响因子 Impact factor | 典型草原 Typical steppe | 荒漠草原 Desert steppe | ||||||
---|---|---|---|---|---|---|---|---|
地下生物量碳密度 Belowground biomass carbon density (g·m-2) | 土壤碳密度 Soil carbon density (kg·m-2) | 地下生物量碳密度 Belowground biomass carbon density (g·cm-3) | 土壤碳密度 Soil carbon density (kg·m-2) | |||||
F | p | F | p | F | p | F | p | |
放牧利用 Grazing | 164.48 | <0.000 1 | 126.39 | <0.000 1 | 33.82 | <0.000 1 | 0.04 | 0.832 7 |
土层深度 Soil depth | 40.31 | <0.000 1 | 6.88 | <0.000 1 | 0.20 | 0.655 6 | 9.86 | <0.000 1 |
放牧利用×土层深度 Grazing × Soil depth | 22.41 | <0.000 1 | 1.95 | 0.086 1 | 1.05 | 0.393 4 | 0.59 | 0.711 2 |
图5 围封与放牧对土壤碳密度垂直分布的影响(平均值±标准偏差)。A, 典型草原。B, 荒漠草原。***, p < 0.000 1; **, p < 0.01; *, p < 0.05。
Fig. 5 The effects of enclosure and grazing on the vertical distribution of soil carbon density (mean ± SD). A, Typical steppe. B, Desert steppe. ***, p < 0.000 1; **, p < 0.01 *, p < 0.05.
图6 围封与放牧对典型草原和荒漠草原凋落物的影响(平均值±标准偏差)。**, p < 0.01。
Fig. 6 The effects of enclosure and grazing on litter mass in the typical and desert steppes (mean ± SD). **, p < 0.01.
[1] | Amula, Zhao ML, Han GD, Jia L, Dong T ( 2011). Influences of grazing intensity on carbon and nitrogen contents in desert steppe. Chinese Journal of Grassland, 33, 115-118. |
阿穆拉, 赵萌莉, 韩国栋, 贾乐, 董亭 ( 2011). 放牧强度对荒漠草原地区土壤有机碳及全氮含量的影响. 中国草地学报, 33, 115-118. | |
[2] |
Ao YM, Jiao Y, Xu Z ( 2011). The changes of carbon and nitrogen storage of plant-soil system of enclosure years in typical steppe. Ecology and Environmental Sciences, 20, 1403-1410.
DOI URL |
敖伊敏, 焦燕, 徐柱 ( 2011). 典型草原不同围封年限植被-土壤系统碳氮贮量的变化. 生态环境学报, 20, 1403-1410.
DOI URL |
|
[3] |
Bai Y, Han X, Wu J, Chen Z, Li L ( 2004). Ecosystem stability and compensatory effects in the Inner Mongolia grassland. Nature, 431, 181-184.
DOI URL PMID |
[4] |
Bakker ES, Olff H, Boekhoff M, Gleichman JM, Berendse F ( 2004). Impact of herbivores on nitrogen cycling: Contrasting effects of small and large species. Oecologia, 138, 91-101.
DOI URL PMID |
[5] |
Bond WJ ( 2005). Large parts of the world are brown or black: A different view on the “Green World” hypothesis. Journal of Vegetation Science, 16, 261-266.
DOI URL |
[6] |
Burke IC, Lauenroth WK, Vinton MA, Hook PB, Kelly RH, Epstein HE, Aguiar MR, Robles MD, Aguilera MO, Murphy KL ( 1998). Plant-soil interactions in temperate grasslands. Biogeochemistry, 42, 121-143.
DOI URL |
[7] |
Derner JD, Boutton TW, Briske DD ( 2006). Grazing and ecosystem carbon storage in the North American Great Plains. Plant and Soil, 280, 77-90.
DOI URL |
[8] |
Derner JD, Schuman GE ( 2007). Carbon sequestration and rangelands: A synthesis of land management and precipitation effects. Journal of Soil & Water Conservation, 62, 77-85.
DOI URL |
[9] |
Fan J, Zhong H, Harris W, Yu G, Wang S, Hu Z, Yue Y ( 2008). Carbon storage in the grasslands of China based on field measurements of above- and below-ground biomass. Climatic Change, 86, 375-396.
DOI URL |
[10] | Fang JY, Yang YH, Ma WH, Mohhamot A, Shen HH ( 2010). Carbon pool and its variation of grassland ecosystem in China. Chinese Science: Life Sciences, 40, 566-576. |
(in Chinese) [ 方精云, 杨元合, 马文红, 安尼瓦尔·买买提, 沈海花 ( 2010). 中国草地生态系统碳库及其变化. 中国科学: 生命科学, 40, 566-576. | |
[11] |
Frank DA, Groffman PM ( 1998). Ungulate vs. landscape control of soil C and N processes in grasslands of Yellowstone National Park. Ecology, 79, 2229-2241.
DOI URL |
[12] |
Grace J ( 2004). Presidential address: Understanding and managing the global carbon cycle. Journal of Ecology, 92, 189-202.
DOI URL |
[13] |
Han GD, Jiao SY, Bili getu, Aodeng gaowa ( 2007). Effects of plant species diversity and productivity under different stocking rates in the Stipa breviflora Griseb. desert steppe. Acta Ecologica Sinica, 27, 182-188.
DOI URL |
韩国栋, 焦树英, 毕力格图, 敖登高娃 ( 2007). 短花针茅草原不同载畜率对植物多样性和草地生产力的影响. 生态学报, 27, 182-188.
DOI URL |
|
[14] |
Hu Z, Li S, Guo Q, Niu S, He N, Li L, Yu G ( 2015). A synthesis of the effect of grazing exclusion on carbon dynamics in grasslands in China. Global Change Biology, 22, 1385.
DOI URL PMID |
[15] |
Hu XM, Hou XY, Ding Y, Chen HJ, Yun XJ, Wu ZN ( 2014). Dynamics of organic carbon storage in Stipa breviflora desert steppe ecosystem under different grazing systems. Chinese Journal of Grassland, 36, 13-17.
DOI URL |
胡向敏, 侯向阳, 丁勇, 陈海军, 运向军, 武自念 ( 2014). 不同放牧制度下短花针茅荒漠草原生态系统碳储量动态. 中国草地学报, 36, 13-17.
DOI URL |
|
[16] | Hou XY, Ding Y ( 2014). Carbon Sequestration Potential of Different Protection and Construction Technology in the Main Types of Grasslands in Inner Mongolia. Science Press, Beijing. |
(in Chinese) [ 侯向阳, 丁勇 ( 2014). 内蒙古主要草原类型区保护建设技术固碳潜力研究. 科学出版社, 北京. | |
[17] |
Li XB, Fan RX, Liu XD ( 2014). Advance in studies on carbon storage and carbon process in grassland ecosystem of China. Ecology and Environmental Sciences, 11, 1845-1851.
DOI URL |
李学斌, 樊瑞霞, 刘学东 ( 2014). 中国草地生态系统碳储量及碳过程研究进展. 生态环境学报, 11, 1845-1851.
DOI URL |
|
[18] | Li Y, Han GD ( 2011). Effects of different grazing intensities on the under ground biomass and its vertical distribution of the typical Stipa grandis steppe. Journal of Inner Mongolia Agricultural University, 32, 89-92. |
李怡, 韩国栋 ( 2011). 放牧强度对内蒙古大针茅典型草原地下生物量及其垂直分布的影响. 内蒙古农业大学学报(自然科学版), 32, 89-92. | |
[19] | Liu N, Zhang YJ ( 2010). Effects of grazing on soil organic carbon and total nitrogen in typical steppe. Pratacultural Science, 27(4), 11-14. |
刘楠, 张英俊 ( 2010). 放牧对典型草原土壤有机碳及全氮的影响. 草业科学, 27(4), 11-14. | |
[20] |
Liu PT, Yang TT, Yao GZ, Li P, Wu H, He J ( 2014). Change of carbon density in desert steppe under different grazing intensities. Journal of Northwest A&F University (Natural Science Edition), 42, 157-162.
DOI URL |
刘朋涛, 杨婷婷, 姚国征, 李鹏, 吴昊, 贺晶 ( 2014). 不同放牧强度下荒漠草原碳密度的变化. 西北农林科技大学学报(自然科学版), 42, 157-162.
DOI URL |
|
[21] | Liu SL, Lin L, Guo XW, Li J, Ouyang JZ, Du YG, Zhang FW, Li YK, Cao GM ( 2014). The variation feature of soil inorganic carbon storage in alpine grassland in Qinghai Province. Acta Ecologica Sinica, 34, 5953-5961. |
刘淑丽, 林丽, 郭小伟, 李婧, 欧阳经政, 杜岩功, 张法伟, 李以康, 曹广民 ( 2014). 青海省高寒草地土壤无机碳储量空间分异特征. 生态学报, 34, 5953-5961. | |
[22] |
Ma WH, Han M, Lin X, Ren YL, Wang ZH, Fang JY ( 2006). Carbon storage in vegetation of grasslands in Inner Mongolia. Journal of Arid Land Resources and Environment, 20, 192-195.
DOI URL |
马文红, 韩梅, 林鑫, 任艳林, 王志恒, 方精云 ( 2006). 内蒙古温带草地植被的碳储量. 干旱区资源与环境, 20, 192-195.
DOI URL |
|
[23] |
Mekuria W, Veldkamp E, Haile M, Nyssen J, Muys B, Gebrehiwot K ( 2007). Effectiveness of exclosures to restore degraded soils as a result of overgrazing in Tigray, Ethiopia. Journal of Arid Environments, 69, 270-284.
DOI URL |
[24] | Mu SJ, Zhou KX, Chen YZ, Sun JM, Li JL ( 2014). Research progress on the carbon cycle and impact factors of grassland ecosystem. Acta Agrestia Sinica, 22, 439-447. |
穆少杰, 周可新, 陈奕兆, 孙成明, 李建龙 ( 2014). 草地生态系统碳循环及其影响因素研究进展. 草地学报, 22, 439-447. | |
[25] | Nosetto MD, Jobbagy EG, Paruelo JM ( 2006). Carbon sequestration in semi-arid rangelands: Comparison of Pinus ponderosa plantations and grazing exclusion in NW Patagonia. Journal of Arid Environments, 67, 142-156. |
[26] | Piao SL, Fang JY, He JS, Xiao Y ( 2004). Spatial distribution of grassland biomass in China. Acta Phytoecologica Sinica, 28, 491-498. |
朴世龙, 方精云, 贺金生, 肖玉 ( 2004). 中国草地植被生物量及其空间分布格局. 植物生态学报, 28, 491-498. | |
[27] |
Piao S, Fang J, Zhou L, Tan K, Tao S ( 2007). Changes in biomass carbon stocks in China’s grasslands between 1982 and 1999. Global Biogeochemical Cycles, 21, 1-10.
DOI URL |
[28] |
Raiesi F, Asadi E ( 2006). Soil microbial activity and litter turnover in native grazed and ungrazed rangelands in a semiarid ecosystem. Biology and Fertility of Soils, 43, 76-82.
DOI URL |
[29] |
Reeder JD, Schuman GE ( 2002). Influence of livestock grazing on C sequestration in semi-arid mixed-grass and short-grass rangelands. Environmental Pollution, 116, 457-463.
DOI URL PMID |
[30] |
Ren HY, Zheng SX, Bai YF ( 2009). Effects of grazing on foliage biomass allocation of grassland communities in Xilin River Basin, Inner Mongolia. Chinese Journal of Plant Ecology, 33, 1065-1074.
DOI URL |
任海彦, 郑淑霞, 白永飞 ( 2009). 放牧对内蒙古锡林河流域草地群落植物茎叶生物量资源分配的影响. 植物生态学报, 33, 1065-1074.
DOI URL |
|
[31] |
Sarula, Hou XY, Li JX, Ding Y, Wu XY, Yun XJ ( 2013). Organic carbon storage in vegetation-soil systems of typical grazing degraded steppe. Acta Agrestia Sinica, 22(5), 18-26.
DOI |
萨茹拉, 侯向阳, 李金祥, 丁勇, 吴新宏, 运向军 ( 2013). 不同放牧退化程度典型草原植被—土壤系统的有机碳储量. 草业学报, 22(5), 18-26.
DOI |
|
[32] |
Sang YY, Ni HC, Qu HL ( 2006). Surveying biomass of degraded grassland for forbidden grazing and enclosing after three years. Qinghai Prataculture, 15(3), 7-9.
DOI URL |
桑永燕, 宁洪才, 屈海林 ( 2006). 禁牧封育3年后退化草地生物量测定. 青海草业, 15(3), 7-9.
DOI URL |
|
[33] |
Scurlock JMO, Hall DO ( 1998). The global carbon sink: A grassland perspective. Global Change Biology, 4, 229-233.
DOI URL |
[34] |
Scurlock JMO, Johnson K, Olson RJ ( 2002). Estimating net primary productivity from grassland biomass dynamics measurements. Global Change Biology, 8, 736-753.
DOI URL |
[35] |
Shrestha G, Stahl P ( 2008). Carbon accumulation and storage in semi-arid sagebrush steppe: Effects of long-term grazing exclusion. Agriculture Ecosystems & Environment, 125, 173-181.
DOI URL |
[36] |
Steffens M, K?lbl A, Kai UT, K?gel-Knabner I ( 2008). Grazing effects on soil chemical and physical properties in a semiarid steppe of Inner Mongolia (P. R. China). Geoderma, 143, 63-72.
DOI URL |
[37] |
Tanentzap AJ, Coomes DA ( 2011). Carbon storage in terrestrial ecosystems: Do browsing and grazing herbivores matter? Biological Reviews of the Cambridge Philosophical Society, 87, 72-94.
DOI URL PMID |
[38] |
Wang JL, Chang TY, Li P, Cheng HH, Fang HL ( 2009). The vegetation carbon reserve and its spatial distribution configuration of grassland ecosystem in Tibet. Acta Ecologica Sinica, 29, 931-938.
DOI URL |
王建林, 常天军, 李鹏, 成海宏, 方华丽 ( 2009). 西藏草地生态系统植被碳贮量及其空间分布格局. 生态学报, 29, 931-938.
DOI URL |
|
[39] |
Wang W, Fang JY ( 2009). Soil respiration and human effects on global grasslands. Global & Planetary Change, 67, 20-28.
DOI URL |
[40] | Welker JM, Fahnestock JT, Povirk KL, Bilbrough CJ, Piper RE ( 2004). Alpine Grassland CO2 exchange and nitrogen cycling: Grazing history effects, medicine bow range, Wyoming, U.S.A. Arctic Antarctic & Alpine Research, 36, 11-20. |
[41] |
Wilcox BP ( 2007). Does rangeland degradation have implications for global streamflow? Hydrological Processes, 21, 2961-2964.
DOI URL |
[42] | Wu GL, Du GZ, Liu ZH, Thirgood S ( 2009). Effect of fencing and grazing on a Kobresia-dominated meadow in the Qinghai-Tibetan Plateau. Plant and Soil, 319, 115-126. |
[43] |
Wu GL, Liu ZH, Zhang L, Chen JM, Hu TM ( 2010). Long-term fencing improved soil properties and soil organic carbon storage in an alpine swamp meadow of western China. Plant and Soil, 332, 331-337.
DOI URL |
[44] | Xu ZQ, Li WH, Xu Q, Min QW, Wang YS, Wu XB ( 2009). The impacts of human disturbances on soil carbon density and ecosystem storage of carbon of typical steppe. Journal of Natural Resources, 2, 621-629. |
许中旗, 李文华, 许晴, 闵庆文, 王英舜, 吴雪宾 ( 2009). 人为干扰对典型草原土壤碳密度及生态系统碳贮量的影响. 自然资源学报, 2, 621-629. | |
[45] |
Yan YC, Tang HP ( 2008). Restoration of degraded grassland communities and its contribution to carbon sequestration under enclosure in typical steppe of Inner Mongolia. Progress in Natural Science, 18, 546-551.
DOI URL |
(in Chinese) [ 闫玉春, 唐海萍 ( 2008). 围封下内蒙古典型草原区退化草原群落的恢复及其对碳截存的贡献. 自然科学进展, 18, 546-551.
DOI URL |
|
[46] |
Yu J, Fang L, Bian ZF, Wang Q, Yu YC ( 2014). A review of the composition of soil carbon pool. Acta Ecologica Sinica, 34, 4829-4838.
DOI URL |
余健, 房莉, 卞正富, 汪青, 俞元春 ( 2014). 土壤碳库构成研究进展. 生态学报, 34, 4829-4838.
DOI URL |
|
[47] |
Zhang BB, Liu F, Ding JZ, Fang K, Yang GB, Liu L, Chen YL, Li F, Yang YH ( 2016). Soil inorganic carbon stock in alpine grasslands on the Qinghai-Xizang Plateau: An updated evaluation using deep cores. Chinese Journal of Plant Ecology, 40, 93-101.
DOI URL |
张蓓蓓, 刘芳, 丁金枝, 房凯, 杨贵彪, 刘莉, 陈永亮, 李飞, 杨元合 ( 2016). 青藏高原高寒草地3米深度土壤无机碳库及分布特征. 植物生态学报, 40, 93-101.
DOI URL |
|
[48] |
Zhang J, Zhang L, Liu W, Yue QI, Xiao WO ( 2014). Livestock-carrying capacity and overgrazing status of alpine grassland in the Three-River Headwaters region, China. Journal of Geographical Sciences, 24, 303-312.
DOI URL |
[49] |
Zhao HL, Zhao XY, Zhou RL, Zhang TH, Drake S ( 2005). Desertification processes due to heavy grazing in sandy rangeland, Inner Mongolia. Journal of Arid Environments, 62, 309-319.
DOI URL |
[50] |
Zhou ZY, Li FR, Chen SK, Zhang HR, Li G ( 2011). Dynamics of vegetation and soil carbon and nitrogen accumulation over 26 years under controlled grazing in a desert shrubland. Plant and Soil, 341, 257-268.
DOI URL |
[1] | 萨其拉, 张霞, 朱琳, 康萨如拉. 长期不同放牧强度下荒漠草原优势种无芒隐子草叶片解剖结构变化[J]. 植物生态学报, 2024, 48(3): 331-340. |
[2] | 茹雅倩, 薛建国, 葛萍, 李钰霖, 李东旭, 韩鹏, 杨天润, 储伟, 陈章, 张晓琳, 李昂, 黄建辉. 高频轮牧对典型草原生产生态效果的影响[J]. 植物生态学报, 2024, 48(2): 171-179. |
[3] | 李冰, 朱湾湾, 韩翠, 余海龙, 黄菊莹. 降水量变化下荒漠草原土壤呼吸及其影响因素[J]. 植物生态学报, 2023, 47(9): 1310-1321. |
[4] | 吴晨, 陈心怡, 刘源豪, 黄锦学, 熊德成. 增温对森林细根生长、死亡及周转特征影响的研究进展[J]. 植物生态学报, 2023, 47(8): 1043-1054. |
[5] | 张雅琪, 庞丹波, 陈林, 曹萌豪, 何文强, 李学斌. 荒漠草原土壤氨氧化细菌群落结构对氮添加和枯落物输入的响应[J]. 植物生态学报, 2023, 47(5): 699-712. |
[6] | 陈心怡, 吴晨, 黄锦学, 熊德成. 增温对林木细根物候影响的研究进展[J]. 植物生态学报, 2023, 47(11): 1471-1482. |
[7] | 郑宁, 李素英, 王鑫厅, 吕世海, 赵鹏程, 臧琛, 许玉珑, 何静, 秦文昊, 高恒睿. 基于环境因子对叶绿素影响的典型草原植物生活型优势研究[J]. 植物生态学报, 2022, 46(8): 951-960. |
[8] | 田磊, 朱毅, 李欣, 韩国栋, 任海燕. 不同降水条件下内蒙古荒漠草原主要植物物候对长期增温和氮添加的响应[J]. 植物生态学报, 2022, 46(3): 290-299. |
[9] | 张景慧, 王铮, 黄永梅, 陈慧颖, 李智勇, 梁存柱. 草地利用方式对温性典型草原优势种植物功能性状的影响[J]. 植物生态学报, 2021, 45(8): 818-833. |
[10] | 马龙龙, 杜灵通, 丹杨, 王乐, 乔成龙, 吴宏玥. 基于茎流-蒸渗仪法的荒漠草原带人工灌丛群落蒸散特征[J]. 植物生态学报, 2020, 44(8): 807-818. |
[11] | 熊星烁, 蔡宏宇, 李耀琪, 马文红, 牛克昌, 陈迪马, 刘娜娜, 苏香燕, 景鹤影, 冯晓娟, 曾辉, 王志恒. 内蒙古典型草原植物叶片碳氮磷化学计量特征的季节动态[J]. 植物生态学报, 2020, 44(11): 1138-1153. |
[12] | 温超,单玉梅,晔薷罕,张璞进,木兰,常虹,任婷婷,陈世苹,白永飞,黄建辉,孙海莲. 氮和水分添加对内蒙古荒漠草原放牧生态系统土壤呼吸的影响[J]. 植物生态学报, 2020, 44(1): 80-92. |
[13] | 苗百岭, 梁存柱, 史亚博, 梁茂伟, 刘钟龄. 降水变化对内蒙古典型草原地上生物量的影响[J]. 植物生态学报, 2019, 43(7): 557-565. |
[14] | 汤永康, 武艳涛, 武魁, 郭之伟, 梁存柱, 王敏杰, 常佩静. 放牧对草地生态系统服务和功能权衡关系的影响[J]. 植物生态学报, 2019, 43(5): 408-417. |
[15] | 陈林, 王磊, 杨新国, 宋乃平, 李月飞, 苏莹, 卞莹莹, 祝忠有, 孟文婷. 荒漠草原猪毛蒿种群繁殖特征的土壤驱动因子分析[J]. 植物生态学报, 2019, 43(1): 65-76. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19