植物生态学报 ›› 2017, Vol. 41 ›› Issue (9): 953-963.DOI: 10.17521/cjpe.2017.0102
所属专题: 碳储量
李茜1,2, 王芳3, 曹扬4,5, 彭守璋4,5, 陈云明4,5,*()
收稿日期:
2017-04-14
修回日期:
2017-07-09
出版日期:
2017-09-10
发布日期:
2017-10-23
通讯作者:
陈云明
基金资助:
Xi LI1,2, Fang WANG3, Yang CAO4,5, Shou-Zhang PENG4,5, Yun-Ming CHEN4,5,*()
Received:
2017-04-14
Revised:
2017-07-09
Online:
2017-09-10
Published:
2017-10-23
Contact:
Yun-Ming CHEN
摘要:
森林土壤碳库在全球碳循环中发挥着重要的作用。为明确陕西省森林土壤固碳特征及其影响因素, 基于2009年森林清查资料和2011年样地实测数据, 分析了陕西省森林土壤碳储量、碳密度及其分布特征和影响因素。结果表明: 陕西省森林土壤碳储量为579.68 Tg, 以软阔与硬阔类林土壤碳储量占比最大, 占全省森林土壤碳储量的36.35%。天然林的碳储量为467.17 Tg, 是人工林的4.15倍。各龄组中, 幼龄林和中龄林是陕西省森林土壤总碳储量的主要贡献者, 约占总碳储量的57.30%。陕西省森林土壤平均碳密度为90.68 t∙hm-2, 以桦木林最高, 为141.74 t∙hm-2。不同龄组森林的土壤碳密度以中龄林最高; 同一龄组中, 天然林的土壤碳密度高于人工林, 说明天然林的碳固存能力高于人工林。陕西省森林土壤碳储量和碳密度的地理空间分布格局不尽相同, 体现了森林覆盖面积对土壤碳储量的影响, 其中, 榆林市的森林土壤碳储量和碳密度均处于陕西省最低水平, 在此地可适当加强人工造林, 科学管理森林能显著提升区域的碳汇能力。陕西省森林土壤碳密度随经纬度和年平均气温的增加逐渐降低, 随海拔高度与年降水量的增加逐渐升高。该研究为我国省域尺度上森林土壤碳库的精确估算提供了一定的数据基础。
李茜, 王芳, 曹扬, 彭守璋, 陈云明. 陕西省森林土壤固碳特征及其影响因素. 植物生态学报, 2017, 41(9): 953-963. DOI: 10.17521/cjpe.2017.0102
Xi LI, Fang WANG, Yang CAO, Shou-Zhang PENG, Yun-Ming CHEN. Soil carbon storage and its determinants in the forests of Shaanxi Province, China. Chinese Journal of Plant Ecology, 2017, 41(9): 953-963. DOI: 10.17521/cjpe.2017.0102
林型(代码) Forest type (Code) | 主要树种 Dominant tree species | 样点数 No. of plots |
---|---|---|
辽东栎林 Forest of Quercus wutaishanica (A) | 辽东栎 Quercus wutaishanica | 13 |
栓皮栎林 Forest of Quercus variabilis (B) | 栓皮栎 Quercus variabilis | 24 |
其他栎类林 Other quercus forests (C) | 槲栎 Quercus aliena, 麻栎 Quercus acutissima | 15 |
桦木林 Forest of Betula spp. (D) | 白桦 Betula platyphylla, 红桦 Betula albosinensis | 7 |
杨树林 Forest of Populus spp. (E) | 毛白杨 Populus tomentosa, 山杨 Populus davidiana, 青杨 Populus tcathayana | 13 |
刺槐林 Forest of Robinia pseudoacacia (F) | 刺槐 Robinia pseudoacacia | 12 |
油松林 Forest of Pinus tabuliformis (G) | 油松 Pinus tabuliformis | 12 |
其他松类林 Forest of other pines and conifer (H) | 巴山松 Pinus henryi, 华山松 Pinus armandi, 马尾松 Pinus massoniana | 9 |
其他针叶林 Forest of other conifer (I) | 刺柏 Juniperus formosana, 侧柏 Platycladus orientalis | 3 |
软阔与硬阔类林 Forest of softwood and hardwood (J) | 椿树 Ailanthus altissima, 栾树 Koelreuteria paniculata, 板栗 Castanea mollissima, 木姜子 Litsea pungens | 10 |
针阔混交林 Mixed coniferous and broad-leaf forest (K) | 油松与辽东栎 Pinus tabulaeformis and Quercus wutaishanica, 油松与栓皮栎 Pinus tabuliformis and Quercus wutaishanica | 3 |
表1 陕西省主要森林类型及主要树种
Table 1 The forest types and their dominant tree species in Shaanxi Province
林型(代码) Forest type (Code) | 主要树种 Dominant tree species | 样点数 No. of plots |
---|---|---|
辽东栎林 Forest of Quercus wutaishanica (A) | 辽东栎 Quercus wutaishanica | 13 |
栓皮栎林 Forest of Quercus variabilis (B) | 栓皮栎 Quercus variabilis | 24 |
其他栎类林 Other quercus forests (C) | 槲栎 Quercus aliena, 麻栎 Quercus acutissima | 15 |
桦木林 Forest of Betula spp. (D) | 白桦 Betula platyphylla, 红桦 Betula albosinensis | 7 |
杨树林 Forest of Populus spp. (E) | 毛白杨 Populus tomentosa, 山杨 Populus davidiana, 青杨 Populus tcathayana | 13 |
刺槐林 Forest of Robinia pseudoacacia (F) | 刺槐 Robinia pseudoacacia | 12 |
油松林 Forest of Pinus tabuliformis (G) | 油松 Pinus tabuliformis | 12 |
其他松类林 Forest of other pines and conifer (H) | 巴山松 Pinus henryi, 华山松 Pinus armandi, 马尾松 Pinus massoniana | 9 |
其他针叶林 Forest of other conifer (I) | 刺柏 Juniperus formosana, 侧柏 Platycladus orientalis | 3 |
软阔与硬阔类林 Forest of softwood and hardwood (J) | 椿树 Ailanthus altissima, 栾树 Koelreuteria paniculata, 板栗 Castanea mollissima, 木姜子 Litsea pungens | 10 |
针阔混交林 Mixed coniferous and broad-leaf forest (K) | 油松与辽东栎 Pinus tabulaeformis and Quercus wutaishanica, 油松与栓皮栎 Pinus tabuliformis and Quercus wutaishanica | 3 |
林型 Forest type | 土壤碳密度 Carbon density in soil (t∙hm-2) | |||||
---|---|---|---|---|---|---|
I (0-10 cm) | II (10-20 cm) | III (20-30 cm) | IV (30-50 cm) | V (50-100 cm) | 合计 Total | |
A | 23.91 ± 1.06ab | 14.13 ± 0.65bc | 10.11 ± 0.57c | 14.66 ± 0.84bc | 24.20 ± 2.17b | 87.01 ± 3.81bc |
B | 21.29 ± 1.06ab | 14.02 ± 0.66bc | 11.11 ± 0.57c | 17.86 ± 1.12bc | 33.81 ± 2.11ab | 98.10 ± 4.58bc |
C | 18.76 ± 0.86ab | 11.49 ± 0.68bc | 7.99 ± 0.52c | 11.61 ± 0.90bc | 21.09 ± 1.61b | 70.94 ± 3.50c |
D | 29.93 ± 2.37a | 21.95 ± 2.11a | 19.58 ± 1.63a | 28.47 ± 3.21a | 41.81 ± 3.00a | 141.74 ± 10.28a |
E | 20.44 ± 1.19ab | 13.06 ± 0.91bc | 9.30 ± 0.77c | 14.04 ± 1.19bc | 31.27 ± 2.96ab | 88.10 ± 5.31bc |
F | 14.86 ± 1.41b | 7.87 ± 0.88c | 6.34 ± 0.73c | 9.51 ± 0.92c | 19.67 ± 1.74b | 58.26 ± 5.16c |
G | 19.01 ± 0.97ab | 12.45 ± 1.00bc | 9.44 ± 0.61c | 13.06 ± 0.86bc | 28.34 ± 2.52b | 82.29 ± 4.73bc |
H | 21.70 ± 1.44ab | 13.68 ± 1.19bc | 9.91 ± 0.97c | 15.24 ± 2.45bc | 27.16 ± 3.95b | 87.69 ± 8.79bc |
I | 20.47 ± 1.57ab | 11.88 ± 1.49bc | 7.66 ± 1.05c | 12.70 ± 2.58bc | 26.02 ± 5.29b | 78.73 ± 10.73bc |
J | 23.41 ± 2.44ab | 16.53 ± 1.87ab | 12.99 ± 1.50b | 19.54 ± 2.64b | 34.98 ± 3.96ab | 107.46 ± 10.77ab |
K | 30.63 ± 4.63a | 13.63 ± 1.36bc | 9.57 ± 0.90c | 13.89 ± 1.65bc | 23.64 ± 3.08b | 91.36 ± 9.35bc |
表2 不同森林类型土壤层碳密度(平均值±标准误差)
Table 2 Carbon density in different soil layers and different forests (mean ± SE)
林型 Forest type | 土壤碳密度 Carbon density in soil (t∙hm-2) | |||||
---|---|---|---|---|---|---|
I (0-10 cm) | II (10-20 cm) | III (20-30 cm) | IV (30-50 cm) | V (50-100 cm) | 合计 Total | |
A | 23.91 ± 1.06ab | 14.13 ± 0.65bc | 10.11 ± 0.57c | 14.66 ± 0.84bc | 24.20 ± 2.17b | 87.01 ± 3.81bc |
B | 21.29 ± 1.06ab | 14.02 ± 0.66bc | 11.11 ± 0.57c | 17.86 ± 1.12bc | 33.81 ± 2.11ab | 98.10 ± 4.58bc |
C | 18.76 ± 0.86ab | 11.49 ± 0.68bc | 7.99 ± 0.52c | 11.61 ± 0.90bc | 21.09 ± 1.61b | 70.94 ± 3.50c |
D | 29.93 ± 2.37a | 21.95 ± 2.11a | 19.58 ± 1.63a | 28.47 ± 3.21a | 41.81 ± 3.00a | 141.74 ± 10.28a |
E | 20.44 ± 1.19ab | 13.06 ± 0.91bc | 9.30 ± 0.77c | 14.04 ± 1.19bc | 31.27 ± 2.96ab | 88.10 ± 5.31bc |
F | 14.86 ± 1.41b | 7.87 ± 0.88c | 6.34 ± 0.73c | 9.51 ± 0.92c | 19.67 ± 1.74b | 58.26 ± 5.16c |
G | 19.01 ± 0.97ab | 12.45 ± 1.00bc | 9.44 ± 0.61c | 13.06 ± 0.86bc | 28.34 ± 2.52b | 82.29 ± 4.73bc |
H | 21.70 ± 1.44ab | 13.68 ± 1.19bc | 9.91 ± 0.97c | 15.24 ± 2.45bc | 27.16 ± 3.95b | 87.69 ± 8.79bc |
I | 20.47 ± 1.57ab | 11.88 ± 1.49bc | 7.66 ± 1.05c | 12.70 ± 2.58bc | 26.02 ± 5.29b | 78.73 ± 10.73bc |
J | 23.41 ± 2.44ab | 16.53 ± 1.87ab | 12.99 ± 1.50b | 19.54 ± 2.64b | 34.98 ± 3.96ab | 107.46 ± 10.77ab |
K | 30.63 ± 4.63a | 13.63 ± 1.36bc | 9.57 ± 0.90c | 13.89 ± 1.65bc | 23.64 ± 3.08b | 91.36 ± 9.35bc |
图2 不同森林类型土壤各层10 cm厚度的碳密度(平均值±标准误差)。林型见表1。
Fig. 2 Mean soil carbon density of soil 10 cm thickness in different forest types (mean ± SE). Forest types are shown in Table 1.
图4 陕西省天然林和人工林各龄组土壤碳密度(A)和碳储量(B)。
Fig. 4 Soil carbon density (A) and soil carbon storage (B) in natural forests and plantations with different stand ages in Shaanxi Province. MAF, middle-aged forest; MF, mature forest; NAF, near-mature forest; OMF, over-mature forest; YF, young forest.
图6 陕西省森林土壤碳密度与经度、纬度及海拔的相关关系。R表示回归方程的拟合程度。
Fig. 6 Relationships between forest soil carbon density and longitude, latitude and elevation in Shaanxi Province. R show the fitting degree of regression equation.
图7 陕西省森林土壤碳密度与气候因子的相关关系。R表示回归方程的拟合程度。
Fig. 7 Relationships between forest soil carbon density and climatic factors in Shaanxi Province. R show the fitting degree of regression equation.
[1] | Cao Y, Chen YM, Jin B, Qu M (2014). Carbon storage and density of forest vegetation and its spatial distribution pattern in Shaanxi Province. Journal of Arid Land Resources and Environment, 28(9), 69-73. (in Chinese)[曹扬, 陈云明, 晋蓓, 渠美 (2014). 陕西省森林植被碳储量、碳密度及其空间分布格局. 干旱区资源与环境, 28(9), 69-73.] |
[2] | Crow SE, Lajtha K, Bowden RD, Sulzman EW (2009). Increased coniferous needle inputs accelerate decomposition of soil carbon in an old-growth forest.Forest Ecology and Management, 258, 2224-2232. |
[3] | Cui GY, Chen YM, Cao Y, An CC (2015). Analysis on carbon stock distribution patterns of forest ecosystems in Shaanxi Province.Chinese Journal of Plant Ecology, 39, 333-342. (in Chinese with English abstract)[崔高阳, 陈云明, 曹扬, 安淳淳 (2015). 陕西省森林生态系统碳储量分布格局分析. 植物生态学报, 39, 333-342.] |
[4] | Cui J, Chen YM, Huang JJ, Wang QF, Yao ZJ, Zhang F (2012). Soil carbon sequestration characteristics ofCaragana microphylla plantations and influencing factors in Loess Hilly Semiarid Region. Chinese Journal of Eco-Agriculture, 20, 1197-1203. (in Chinese with English abstract)[崔静, 陈云明, 黄佳健, 王琼芳, 姚志杰, 张飞 (2012). 黄土丘陵半干旱区人工柠条林土壤固碳特征及其影响因素. 中国生态农业学报, 20, 1197-1203.] |
[5] | Du H, Zeng FP, Wang KL, Song TQ, Wen YG, Li CG, Peng WX, Liang HW, Zhu HG, Zeng ZX (2014). Dynamics of biomass and productivity of three major plantation types in southern China.Acta Ecologica Sinica, 34, 2712-2724. (in Chinese with English abstract)[杜虎, 曾馥平, 王克林, 宋同清, 温远光, 李春干, 彭晚霞, 梁宏温, 朱宏光, 曾昭霞 (2014). 中国南方3种主要人工林生物量和生产力的动态变化. 生态学报, 34, 2712-2724.] |
[6] | Fang JY, Wang W (2007). Soil respiration as a key belowground process: Issues and perspectives.Journal of Plant Ecology (Chinese Version), 31, 345-347. (in Chinese with English abstract)[方精云, 王娓 (2007). 作为地下过程的土壤呼吸: 我们理解了多少? 植物生态学报, 31, 345-347.] |
[7] | Guan JH, Du S, Chen JM, Wu CR, Li GQ, Deng L, Zhang JG, He QY, Shi WY (2016). Current stocks and rate of sequestration of forest carbon in Gansu Province, China.Chinese Journal of Plant Ecology, 40, 304-317. (in Chinese with English abstract)[关晋宏, 杜盛, 程积民, 吴春荣, 李国庆, 邓磊, 张建国, 何秋月, 时伟宇 (2016). 甘肃省森林碳储量现状与固碳速率. 植物生态学报, 40, 304-317.] |
[8] | Huang CD, Zhang J, Yang WQ, Zhang GQ (2008). Characteristics of carbon stock in artificial forest ecosystem in Sichuan Province of China.Chinese Journal of Applied Ecology, 19, 1644-1650. (in Chinese with English abstract)[黄从德, 张健, 杨万勤, 张国庆 (2008). 四川人工林生态系统碳储量特征. 应用生态学报, 19, 1644-1650.] |
[9] | Ji YH, Guo K, Ni J, Xu XN, Wang ZG, Wang SD (2016). Current forest carbon stocks and carbon sequestration potential in Anhui Province, China.Chinese Journal of Plant Ecology, 40, 395-404. (in Chinese with English abstract)[汲玉河, 郭柯, 倪健, 徐小牛, 王志高, 王树东 (2016). 安徽省森林碳储量现状及固碳潜力. 植物生态学报, 40, 395-404.] |
[10] | Jobbágy EG, Jackson RB (2000). The vertical distribution of soil organic carbon and its relation to climate and vegetation.Ecological Applications, 10, 423-436. |
[11] | Kang YX, Liu JJ, Kang BW et al. (2010). Evaluation of Forest Ecosystem Services in Shaanxi Province. Northwest Agriculture and Forestry University Press, Yangling, Shaanxi. (in Chinese)[康永祥, 刘建军, 康博文等 (2010). 陕西省森林生态系统服务功能及其评估. 西北农林科技大学出版社, 陕西杨凌.] |
[12] | Lal R (2004). Soil carbon sequestration impacts on global climate change and food security.Science, 304, 1623-1627. |
[13] | Li B, Fang X, Li Y, Xiang WH, Tian DL, Chen XY, Yan WD, Deng DH (2015). Dynamic properties of soil organic carbon in Hunan’s forests.Acta Ecologica Sinica, 35, 4265-4278. (in Chinese with English abstract)[李斌, 方晰, 李岩, 项文化, 田大伦, 谌小勇, 闫文德, 邓东华 (2015). 湖南省森林土壤有机碳密度及碳库储量动态. 生态学报, 35, 4265-4278.] |
[14] | Li DK, Fan JZ, Wang J (2010). Change characteristics and their causes of fractional vegetation coverage (FVC) in Shaanxi Province.Chinese Journal of Applied Ecology, 21, 2896-2903. (in Chinese with English abstract)[李登科, 范建忠, 王娟 (2010). 陕西省植被覆盖度变化特征及其成因. 应用生态学报, 21, 2896-2903.] |
[15] | Li J (2008). Study on Soil Carbon Stock and Its Spatial Distribution, Influence Factors in the Forest of China. Master degree dissertation, Sichuan Agricultural University, Ya’an, Sichuan. 18-21. (in Chinese with English abstract)[李江 (2008). 中国主要森林群落林下土壤有机碳储量格局及其影响因子研究. 硕士学位论文, 四川农业大学, 四川雅安. 18-21.] |
[16] | Li KR, Wang SQ, Cao MK (2003). Carbon storage of vegetations and soil in China.Science in China Series D: Earth Sciences, 33, 72-80. (in Chinese)[李克让, 王绍强, 曹明奎 (2003). 中国植被和土壤碳贮量. 中国科学D辑: 地球科学, 33, 72-80.] |
[17] | Lin PS, Gao QZ (2009). Study on the soil organic carbon storage and vertical distribution of several forest types in mountain area of Northeast Guangdong.Journal of Soil and Water Conservation, 23, 243-247. (in Chinese with English abstract)[林培松, 高全洲 (2009). 粤东北山区几种森林土壤有机碳储量及其垂直分配特征. 水土保持学报, 23, 243-247.] |
[18] | Liu BY (2015). Characteristics of Carbon Storage of Forest Ecosystem in Shaanxi. Master degree dissertation, Northwest Agriculture and Forestry University, Yangling, Shaanxi. 1-69. (in Chinese with English abstract)[刘冰燕 (2015). 陕西省森林生态系统碳储量特征研究. 硕士学位论文, 西北农林科技大学, 陕西杨凌. 1-69.] |
[19] | Ma CX, Liu JJ, Kang BW, Sun SH, Ren JH (2010). Evaluation of forest ecosystem carbon fixation and oxygen release services in Shaanxi Province from 1999 to 2003.Acta Ecologica Sinica, 30, 1412-1422. (in Chinese with English abstract)[马长欣, 刘建军, 康博文, 孙尚华, 任军辉 (2010). 1999-2003年陕西省森林生态系统固碳释氧服务功能价值评估. 生态学报, 30, 1412-1422.] |
[20] | Ma Q, Liu K, Zhang H (2012). Carbon storage by forest vegetation and its spatial distribution in Shaanxi.Resource Science, 34, 1781-1789. (in Chinese with English abstract)[马琪, 刘康, 张慧 (2012). 陕西省森林植被碳储量及其空间分布. 资源科学, 34, 1781-1789.] |
[21] | Miao J, Zhou CY, LI SJ, Yan JH (2014). Accumulation of soil organic carbon and total nitrogen in Pinus yunnanensis forests at different age stages. Chinese Journal of Applied Ecology, 25, 625-631. (in Chinese with English abstract)[苗娟, 周传艳, 李世杰, 闫俊华 (2014). 不同林龄云南松林土壤有机碳和全氮积累特征. 应用生态学报, 25, 625-631.] |
[22] | Post WM, Emanuel WR, Zinke PJ, Stangenberger AG (1982). Soil carbon pools and world life zones.Nature, 298, 156-159. |
[23] | Pregitzer KS, Euskirchen ES (2004). Carbon cycling and storage in world forests: Biome patterns related to forest age. Global Change Biology, 10, 2052-2077. |
[24] | Silver WL, Lugo AE, Keller M (1999). Soi1 oxygen availability and biogeochemistry along rainfall and topographic gradients in upland wet tropical forest soil. Biogeochemistry, 44, 301-328. |
[25] | Smith P, Fang C, Dawson JJC, Moncrieff JB (2008). Impact of global warming on soil organic carbon.Advances in Agronomy, 97, 1-43. |
[26] | Song C, Chen YM, Cao Y, Tang YK, Lu Y (2015). Characteristics of soil carbon sequestration in Pinus tabulaeformis plantations and influencing factors in the Loess Hilly Region. Science of Soil and Water Conservation, 13(3), 76-82. (in Chinese with English abstract)[宋超, 陈云明, 曹扬, 唐亚坤, 陆媛 (2015). 黄土丘陵区油松人工林土壤固碳特征及其影响因素. 中国水土保持科学, 13(3), 76-82.] |
[27] | Song MZ, Liu QJ, Wu ZR, Ouyang XZ (2010). Organic carbon storage of forest soil in Jiangxi Province.Journal of Nanjing Forest University: Natural Science Edition, 34(2), 6-10. (in Chinese with English abstract)[宋满珍, 刘琪璟, 吴自荣, 欧阳勋志 (2010). 江西省森林土壤有机碳储量研究. 南京林业大学学报: 自然科学版, 34(2), 6-10.] |
[28] | Song YL, Kang FF, Han HR, Cheng XQ (2015). Analysis on effect of nature factors on forest soil carbon storage in China.World Forestry Research, 28(3), 6-12. (in Chinese with English abstract)[宋娅丽, 康峰峰, 韩海荣, 程小琴 (2015). 自然因子对中国森林土壤碳储量的影响分析. 世界林业研究, 28(3), 6-12. ] |
[29] | Sun T (2011). Soil Carbon Flux and Storage Were Measured Across a Chronosequence of Secondary Forests Dominated by Betula platyphylla in Xiaoxing'an Mountain, China. Master degree dissertation, Northeast Forestry University, Harbin. 23-29.[孙涛 (2011). 小兴安岭不同年龄序列白桦天然次生林的土壤碳通量和碳贮量. 硕士学位论文, 东北林业大学, 哈尔滨. 23-29.] |
[30] | Wang QF, Chen YM, Liu XM, Cui J, Ai ZM (2013). Dynamics of soil organic carbon and its influencing factors in Artemisia gmelinii community in Loess Hilly Region. Pratcultural Science, 30(1), 1-8. (in Chinese with English abstract)[王琼芳, 陈云明, 刘小梅, 崔静, 艾泽民 (2013). 黄土丘陵区铁杆蒿群落表层土壤有机碳动态及其影响因子. 草业科学, 30(1), 1-8.] |
[31] | Wang XC, Qi G, Yu DP, Zhou L, Dai LM (2011). Carbon storage, density, and distribution in forest ecosystems in Jilin Province of Northeast China.Chinese Journal of Applied Ecology, 22, 2013-2020. (in Chinese with English abstract)[王新闯, 齐光, 于大炮, 周莉, 代力民 (2011). 吉林省森林生态系统的碳储量、碳密度及其分布. 应用生态学报, 22, 2013-2020.] |
[32] | Wei YW, Yu DP, Wang QJ, Zhou L, Zhou WM, Fang XM, Gu XP, Dai LM (2013). Soil organic carbon density and its influencing factors of major forest types in the forest region of Northeast China.Chinese Journal of Applied Ecology, 24, 3333-3340. (in Chinese with English abstract)[魏亚伟, 于大炮, 王清君, 周莉, 周旺明, 方向民, 谷晓萍, 代力民 (2013). 东北林区主要森林类型土壤有机碳密度及其影响因素. 应用生态学报, 24, 3333-3340.] |
[33] | Woodwell GM, Whittacker RH, Reiners WA, Likens GE, Delwiche CC, Botkin DB (1978). The biota and the world carbon budget.Science, 199, 141-146. |
[34] | Wynn JG, Bird MI, Vellen L, Grand-Clement E, Carter J, Berry SL (2006). Continental-scale measurement of the soil organic carbon pool with climatic, edaphic, and biotic controls. Global Biogeochemical Cycles, 20, GB1007. doi: 10.1029/2005 GB002576. |
[35] | Xu YZ, Jiang MX (2015). Forest carbon pool characteristics and advances in the researches of carbon storage and related factors.Acta Ecologica Sinica, 35, 926-933. (in Chinese with English abstract)[徐耀粘, 江明喜 (2015). 森林碳库特征及驱动因子分析研究进展. 生态学报, 35, 926-933.] |
[36] | Yang Y, Mohammat A, Feng J, Zhou R, Fang J (2007). Storage, patterns and environmental controls of soil organic carbon in China.Biogeochemistry, 84, 131-141. |
[37] | Yawei W, Maihe L, Hua C, Bernard J. Lewis, Dapao Y, Li Z, Wangming Z, Xiangmin F, Wei Z, Limin D (2013). Variation in carbon storage and its distribution by stand age and forest type in boreal and temperate forests in Northeastern China.PLOS ONE, 8, e72201. doi: 10.1371/journal.Pone. 0072201. |
[38] | Zhang C, Wang SQ, Yu GR, He HL, Zhang WJ, Wang BL, Chen QM, Wu ZF (2006). Analysis of soil organic carbon storage in typical forest types in eastern China.Resources Science, 28(2), 97-103. (in Chinese with English abstract)[张城, 王绍强, 于贵瑞, 何洪林, 张文娟, 王伯伦, 陈庆美, 吴志峰 (2006). 中国东部地区典型森林类型土壤有机碳储量分析. 资源科学, 28(2), 97-103.] |
[39] | Zhou GY, Guan L, Wei XH, Zhang DQ, Zhang QM, Yan JH, Wen DZ, Liu JX, Liu SG, Huang ZL, Kong GH, Mo JM, Yu QF (2007). Litterfall production along successional and altitudinal gradients of subtropical monsoon evergreen broadleaved forests in Guangdong, China.Plant Ecology, 188, 77-89. |
[40] | Zhou YR, Yu ZL, Zhao SD (2000). Carbon storage and budget of major Chinese forest types.Acta Phytoecologica Sinica, 24, 518-522. (in Chinese with English abstract)[周玉荣, 于振良, 赵士洞 (2000). 我国主要森林生态系统碳贮量和碳平衡. 植物生态学报, 24, 518-522.] |
[1] | 张智洋 赵颖慧 甄贞. 1986-2022年松花江流域陆地生态系统碳储量动态监测[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 张计深, 史新杰, 刘宇诺, 吴阳, 彭守璋. 气候变化下中国潜在自然植被生态系统碳储量动态[J]. 植物生态学报, 2024, 48(4): 428-444. |
[3] | 王丽萍, 乌俊杰, 柴勇, 李家华, 杨昌级, 赵士杰. 高黎贡山中山湿性常绿阔叶林优势种空间分布格局及其关联性[J]. 植物生态学报, 2024, 48(2): 180-191. |
[4] | 李晓田, 王铁娟, 韩文娟, 张丽, 张慧, 刘晓婷, 刘雅洁. 东阿拉善珍稀濒危植物绵刺种群结构与点格局分析[J]. 植物生态学报, 2023, 47(4): 506-514. |
[5] | 徐干君, 吴胜义, 李伟, 赵欣胜, 聂磊超, 唐希颖, 翟夏杰. 陕西黄河湿地自然保护区碳储量估算[J]. 植物生态学报, 2023, 47(4): 469-478. |
[6] | 张亮, 王志磊, 薛婷婷, 郝笑云, 杨晨露, 高飞飞, 王莹, 韩星, 李华, 王华. 葡萄园生态系统碳源/汇及碳减排策略研究进展[J]. 植物生态学报, 2020, 44(3): 179-191. |
[7] | 拓锋, 刘贤德, 刘润红, 赵维俊, 敬文茂, 马剑, 武秀荣, 赵晶忠, 马雪娥. 祁连山大野口流域青海云杉种群空间格局及其关联性[J]. 植物生态学报, 2020, 44(11): 1172-1183. |
[8] | 王明明,刘新平,何玉惠,张铜会,魏静,车力木格,孙姗姗. 科尔沁沙地封育恢复过程中植物群落特征变化及影响因素[J]. 植物生态学报, 2019, 43(8): 672-684. |
[9] | 李品, 木勒德尔•吐尔汗拜, 田地, 冯兆忠. 全球森林土壤微生物生物量碳氮磷化学计量的季节动态[J]. 植物生态学报, 2019, 43(6): 532-542. |
[10] | 刘程竹, 贾娟, 戴国华, 马田, 冯晓娟. 中性糖在土壤中的来源与分布特征[J]. 植物生态学报, 2019, 43(4): 284-295. |
[11] | 唐立涛, 刘丹, 罗雪萍, 胡雷, 王长庭. 青海省森林土壤磷储量及其分布格局[J]. 植物生态学报, 2019, 43(12): 1091-1103. |
[12] | 魏红, 满秀玲. 中国寒温带不同林龄白桦林碳储量及分配特征[J]. 植物生态学报, 2019, 43(10): 843-852. |
[13] | 陈科宇, 字洪标, 阿的鲁骥, 胡雷, 王根绪, 王长庭. 青海省森林乔木层碳储量现状及固碳潜力[J]. 植物生态学报, 2018, 42(8): 831-840. |
[14] | 陈怡超, 赵莹, 宋希强, 任明迅. 海南杜鹃在河岸带弯道两侧的空间分布格局和年龄结构差异[J]. 植物生态学报, 2018, 42(8): 841-849. |
[15] | 周序力, 蔡琼, 熊心雨, 方文静, 朱剑霄, 朱江玲, 方精云, 吉成均. 贵州月亮山不同演替阶段亮叶水青冈林碳储量及其分配格局[J]. 植物生态学报, 2018, 42(7): 703-712. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19