植物生态学报 ›› 2019, Vol. 43 ›› Issue (4): 284-295.DOI: 10.17521/cjpe.2018.0213
所属专题: 微生物生态学
刘程竹1,2,贾娟1,2,戴国华1,马田1,2,冯晓娟1,2,*()
收稿日期:
2018-08-27
修回日期:
2019-04-18
出版日期:
2019-04-20
发布日期:
2019-08-29
通讯作者:
冯晓娟 ORCID:0000-0002-0443-0628
基金资助:
LIU Cheng-Zhu1,2,JIA Juan1,2,DAI Guo-Hua1,MA Tian1,2,FENG Xiao-Juan1,2,*()
Received:
2018-08-27
Revised:
2019-04-18
Online:
2019-04-20
Published:
2019-08-29
Contact:
FENG Xiao-Juan ORCID:0000-0002-0443-0628
Supported by:
摘要:
糖类(即碳水化合物)是土壤有机质的重要组成部分, 经生物化学降解形成不同结构的单糖。土壤中的中性单糖也叫中性糖, 主要包括木糖、核糖、阿拉伯糖、葡萄糖、半乳糖、甘露糖、岩藻糖和鼠李糖。其中, 植物来源的糖主要为五碳糖, 如木糖和阿拉伯糖; 微生物来源的糖主要包括半乳糖、甘露糖、岩藻糖、鼠李糖等六碳糖。研究中常利用六碳糖和五碳糖的比例指示微生物和植物对土壤有机碳的相对贡献。中性糖是微生物重要的碳源和能量来源, 在团聚体的形成过程中扮演着重要角色。该文整合了近30年土壤中性糖的研究进展, 对比了提取中性糖的常用方法, 分析了不同土地利用类型和不同土壤组分中中性糖的含量、来源和周转特征, 综述了影响中性糖含量和分布的主要环境因素。结果表明, 中性糖在耕地土壤中的绝对含量和相对含量均显著低于针叶林、阔叶林、草地和灌丛4种土地利用类型。(半乳糖+甘露糖)/(阿拉伯糖+木糖)(GM/AX)在不同土地利用间差异不显著, 而(鼠李糖+岩藻糖)/(阿拉伯糖+木糖)(RF/AX)则表明草地土壤中的微生物来源的中性糖含量高于针叶林和耕地。不同密度的土壤组分中, 轻质组分中中性糖的含量比重质组分高, 重质组分中微生物来源的中性糖较多; 就不同粒径(或团聚体)而言, 黏粒(或微团聚体)中微生物来源的中性糖含量更丰富。有关影响土壤中性糖含量和分布的因素的研究, 目前主要集中在人为活动(如耕种和放牧等), 而有关温度、降水等自然环境因素影响的研究较少。
刘程竹, 贾娟, 戴国华, 马田, 冯晓娟. 中性糖在土壤中的来源与分布特征. 植物生态学报, 2019, 43(4): 284-295. DOI: 10.17521/cjpe.2018.0213
LIU Cheng-Zhu, JIA Juan, DAI Guo-Hua, MA Tian, FENG Xiao-Juan. Origin and distribution of neutral sugars in soils. Chinese Journal of Plant Ecology, 2019, 43(4): 284-295. DOI: 10.17521/cjpe.2018.0213
步骤 Procedure | 方法 Method | 优点 Advantage | 缺点 Drawback | 参考文献 Reference |
---|---|---|---|---|
提取 Extraction | 硫酸 H2SO4 | 硫酸不易被除去 H2SO4 can not be removed easily | ||
盐酸 HCl | 会水解一部分纤维素; 产率较低 The hydrolysis products include a few cellulosic neutral sugars; low yields | 1983 | ||
三氟乙酸 TFA | 产率高; 不会破坏单糖结构; 具有挥发性, 可通过旋转蒸发去除; 水解的多糖主要为半纤维素 High yields; Not destructive to monosaccharides; TFA is volatile and can be easily removed by evaporation; Hydrolysis products are mainly released from hemicellulose | |||
检测 Detection | GC-MS | 精度、准确度、敏感性和效率较高 High accuracy, precision, sensibility and efficiency | 需要衍生化 Derivatization is required | |
HPLC | 无需衍生化; 纯化过程简单 No need for derivatization; Simple purification procedures | 精度、准确度、敏感性较低 Low accuracy, precision, sensibility and efficiency | ||
HPAEC-PAD | 无需衍生化; 应用范围广, 可同时分析糖醛酸和中性糖 No need for derivatization; Wide application and simultaneous analysis of uronic acid and neutral sugars | 精度、准确度、敏感性较低 Low accuracy, precision, sensibility and efficiency |
表1 土壤中性糖的提取及检测方法比较
Table 1 Comparison of extraction and detection methods of neutral sugars in soils
步骤 Procedure | 方法 Method | 优点 Advantage | 缺点 Drawback | 参考文献 Reference |
---|---|---|---|---|
提取 Extraction | 硫酸 H2SO4 | 硫酸不易被除去 H2SO4 can not be removed easily | ||
盐酸 HCl | 会水解一部分纤维素; 产率较低 The hydrolysis products include a few cellulosic neutral sugars; low yields | 1983 | ||
三氟乙酸 TFA | 产率高; 不会破坏单糖结构; 具有挥发性, 可通过旋转蒸发去除; 水解的多糖主要为半纤维素 High yields; Not destructive to monosaccharides; TFA is volatile and can be easily removed by evaporation; Hydrolysis products are mainly released from hemicellulose | |||
检测 Detection | GC-MS | 精度、准确度、敏感性和效率较高 High accuracy, precision, sensibility and efficiency | 需要衍生化 Derivatization is required | |
HPLC | 无需衍生化; 纯化过程简单 No need for derivatization; Simple purification procedures | 精度、准确度、敏感性较低 Low accuracy, precision, sensibility and efficiency | ||
HPAEC-PAD | 无需衍生化; 应用范围广, 可同时分析糖醛酸和中性糖 No need for derivatization; Wide application and simultaneous analysis of uronic acid and neutral sugars | 精度、准确度、敏感性较低 Low accuracy, precision, sensibility and efficiency |
图1 中性糖在不同土地利用类型表层土壤中的含量和来源(Nierop et al., 2001; Spielvogel et al., 2007; Eder et al., 2010; Rumpel et al., 2010; Zhao et al., 2014; Conti et al., 2016; Cui et al., 2016; Wang et al., 2016; Creme et al., 2017; Llorente et al., 2017; Evgrafova et al., 2018; Zhu et al., 2018)。A, 中性糖绝对含量。B, 中性糖相对含量。C, GM/AX ((半乳糖+甘露糖)/(阿拉伯糖+木糖))。D, RF/AX ((鼠李糖+岩藻糖)/(阿拉伯糖+木糖))。箱式图上方和下方的线段分别表示上四分位数和下四分位数,箱式图内部的横线表示数据的中位数,箱式图中在最上方或最下方的圆圈表示样本数据中的极端值。不同小写字母表示不同土地利用类型间差异显著(p < 0.05)。A, C, 阔叶林n = 8, 针叶林n = 25, 灌丛n = 4, 草地n = 8, 耕地n = 15。B, 阔叶林n = 8, 针叶林n = 22, 灌丛n = 4, 草地n = 8, 耕地n = 15。D, 阔叶林n = 3, 针叶林n = 19, 灌丛n = 4, 草地n = 8, 耕地n = 27。OC, 土壤有机碳。
Fig. 1 Content and distribution of neutral sugars across different land-use regimes in the top soils (Nierop et al., 2001; Spielvogel et al., 2007; Eder et al., 2010; Rumpel et al., 2010; Zhao et al., 2014; Conti et al., 2016; Cui et al., 2016; Wang et al., 2016; Creme et al., 2017; Llorente et al., 2017; Evgrafova et al., 2018; Zhu et al., 2018). A, Neutral sugar absolute content. B, Neutral sugar relative content. C, GM/AX ((galactose + mannose)/(arabinose + xylose)). D, RF/AX ((rhamnose + fucose)/(arabinose + xylose)). The upper and lower end of boxes denote the 0.25 and 0.75 percentiles, respectively. The solid bar in the box mark the median of each dataset. The circles indicate outliers of each dataset. Different lowercase letters indicate differences in various land-use regimes (p < 0.05). n = 8, 25, 4, 8, 15 (from deciduous, coniferous, shrub, grassland to crops in the A, C). n = 8, 22, 4, 8, 15 (from deciduous, coniferous, shrub, grassland to crops in the B). n = 3, 19, 4, 8, 27 (from deciduous, coniferous, shrub, grassland to crops in the D). OC, soil organic carbon.
[1] | Abdelrahman HM, Olk DC, Dinnes D, Ventrella D, Miano T, Cocozza C ( 2016). Occurrence and abundance of carbohydrates and amino compounds in sequentially extracted labile soil organic matter fractions. Journal of Soils and Sediments, 16, 2375-2384. |
[2] | Amelung W, Cheshire MV, Guggenberger G ( 1996). Determination of neutral and acidic sugars in soil by capillary gas-liquid chromatography after trifluoroacetic acid hydrolysis. Soil Biology & Biochemistry, 28, 1631-1639. |
[3] | Andrews MA ( 1989). Capillary gas-chromatographic analysis of monosaccharides: Improvements and comparisons using trifluoroacetylation and trimethylsilylation of sugar O-benzyl- and O-methyl-oximes. Carbohydrate Research, 194, 1-19. |
[4] | Angers DA, Mehuys GR ( 1989). Effects of cropping on carbohydrate content and water-stable aggregation of a clay soil. Canadian Journal of Soil Science, 69, 373-380. |
[5] | Angers DA, Nadeau P, Mehuys GR ( 1988). Determination of carbohydrate-composition of soil hydrolysates by high- performance liquid-chromatography. Journal of Chromatography, 454, 444-449. |
[6] | Barron-Gafford G, Martens D, Grieve K, Biel K, Kudeyarov V, Mclain JET, Lipson D, Murthy R ( 2005). Growth of eastern cottonwoods (Populus deltoides) in elevated CO2 stimulates stand-level respiration and rhizodeposition of carbohydrates, accelerates soil nutrient depletion, yet stimulates above- and belowground biomass production. Global Change Biology, 11, 1220-1233. |
[7] | Basler A, Dippold M, Helfrich M, Dyckmans J ( 2015a). Microbial carbon recycling: An underestimated process controlling soil carbon dynamics―Part 1: A long-term laboratory incubation experiment. Biogeosciences, 12, 5929-5940. |
[8] | Basler A, Dippold M, Helfrich M, Dyckmans J ( 2015b). Microbial carbon recycling: An underestimated process controlling soil carbon dynamics―Part 2: A C3-C4 vegetation change field labelling experiment. Biogeosciences, 12, 6291-6299. |
[9] | Basler A, Dyckmans J ( 2013). Compound-specific δ 13C analysis of monosaccharides from soil extracts by high- performance liquid chromatography/isotope ratio mass spectrometry. Rapid Communications in Mass Spectrometry , 27, 2546-2550. |
[10] | Baumann K, Dignac MF, Rumpel C, Bardoux G, Sarr A, Steffens M, Maron PA ( 2013). Soil microbial diversity affects soil organic matter decomposition in a silty grassland soil. Biogeochemistry, 114, 201-212. |
[11] | Biernath C, Fischer H, Kuzyakov Y ( 2008). Root uptake of N-containing and N-free low molecular weight organic substances by maize: A 14C/ 15N tracer study . Soil Biology & Biochemistry, 40, 2237-2245. |
[12] | Bischoff N, Mikutta R, Shibistova O, Dohrmann R, Herdtle D, Gerhard L, Fritzsche F, Puzanov A, Silanteva M, Grebennikova A, Guggenberger G ( 2018). Organic matter dynamics along a salinity gradient in Siberian steppe soils. Biogeosciences, 15, 13-29. |
[13] | Black GE, Fox A ( 1996). Recent progress in the analysis of sugar monomers from complex matrices using chromatography in conjunction with mass spectrometry or stand- alone tandem mass spectrometry. Journal of Chromatography A, 720, 51-60. |
[14] | Blagodatskaya E, Kuzyakov Y ( 2013). Active microorganisms in soil: Critical review of estimation criteria and approaches. Soil Biology & Biochemistry, 67, 192-211. |
[15] | Bock M, Glaser B, Millar N ( 2007). Sequestration and turnover of plant- and microbially derived sugars in a temperate grassland soil during 7 years exposed to elevated atmospheric pCO2. Global Change Biology, 13, 478-490. |
[16] | Bruggink C, Maurer R, Herrmann H, Cavalli S, Hoefler F ( 2005). Analysis of carbohydrates by anion exchange chromatography and mass spectrometry. Journal of Chromatography A, 1085, 104-109. |
[17] | Cheshire MV (1979). Nature and Origin of Carbohydrates in Soils. Academic Press, London. |
[18] | Cheshire MV, Russell JD, Fraser AR, Bracewell JM, Robertsons GW, Benzing-Purdie LM, Ratcliffe CI, Ripmeester JA, Goodman BA ( 1992). Nature of soil carbohydrate and its association with soil humic substances. Journal of Soil Science, 43, 359-373. |
[19] | Conti G, Kowaljow E, Baptist F, Rumpel C, Cuchietti A, Perez Harguindeguy N, Diaz S ( 2016). Altered soil carbon dynamics under different land-use regimes in subtropical seasonally-dry forests of central Argentina. Plant and Soil, 403, 375-387. |
[20] | Creme A, Chabbi A, Gastal F, Rumpel C ( 2017). Biogeochemical nature of grassland soil organic matter under plant communities with two nitrogen sources. Plant and Soil, 415, 189-201. |
[21] | Cui LF, Liang C, Duncan DS, Bao XL, Xie HT, He HB, Wickings K, Zhang XD, Chen FS ( 2016). Impacts of vegetation type and climatic zone on neutral sugar distribution in natural forest soils. Geoderma, 282, 139-146. |
[22] | Dao TT, Gentsch N, Mikutta R, Sauheitl L, Shibistova O, Wild B, Schnecker J, Barta J, Capek P, Gittel A, Lashchinskiy N, Urich T, Santruckova H, Richter A, Guggenberger G (2018). Fate of carbohydrates and lignin in north-east Siberian permafrost soils. Soil Biology & Biochemistry, 116, 311-322. |
[23] | Derrien D, Marol C, Balabane M, Balesdent J (2006). The turnover of carbohydrate carbon in a cultivated soil estimated by 13C natural abundances . European Journal of Soil Science, 57, 547-557. |
[24] | Derrien D, Marol C, Balesdent J (2007). Microbial biosyntheses of individual neutral sugars among sets of substrates and soils. Geoderma, 139, 190-198. |
[25] | Eder E, Spielvogel S, Koelbl A, Albert G, Kögel-Knabner I ( 2010). Analysis of hydrolysable neutral sugars in mineral soils: Improvement of alditol acetylation for gas chromatographic separation and measurement. Organic Geochemistry, 41, 580-585. |
[26] | Evgrafova A, De La Haye TR, Haase I, Shibistova O, Guggenberger G, Tananaev N, Sauheitl L, Spielvogel S ( 2018). Small-scale spatial patterns of soil organic carbon and nitrogen stocks in permafrost-affected soils of northern Siberia. Geoderma, 329, 91-107. |
[27] | Farhadi A, Keshavarzian A, Fields JZ, Sheikh M, Banan A ( 2006). Resolution of common dietary sugars from probe sugars for test of intestinal permeability using capillary column gas chromatography. Journal of Chromatography B, 836, 63-68. |
[28] | Feller C, Beare MH ( 1997). Physical control of soil organic matter dynamics in the tropics. Geoderma, 79, 69-116. |
[29] | Fischer H, Ingwersen J, Kuzyakov Y ( 2010). Microbial uptake of low-molecular-weight organic substances out-competes sorption in soil. European Journal of Soil Science, 61, 504-513. |
[30] | Gentsch N, Mikutta R, Alves RJE, Barta J, Čapek P, Gittel A, Hugelius G, Kuhry P, Lashchinskiy N, Palmtag J ( 2015a). Storage and transformation of organic matter fractions in cryoturbated permafrost soils across the Siberian Arctic. Biogeosciences Discussions, 12, 2697-2743. |
[31] | Gentsch N, Mikutta R, Shibistova O, Wild B, Schnecker J, Richter A, Urich T, Gittel A, Šantrůčková H, Bárta J ( 2015b). Properties and bioavailability of particulate and mineral-associated organic matter in Arctic permafrost soils. European Journal of Soil Science, 66, 722-734. |
[32] | Gleixner G, Poirier N, Bol R, Balesdent J ( 2002). Molecular dynamics of organic matter in a cultivated soil. Organic Geochemistry, 33, 357-366. |
[33] | Greenland DJ, Oades JM ( 1975). Saccharides. Springer, Berlin, Heidelberg. |
[34] | Guan ZH, Li XG, Wang L, Mou XM, Kuzyakov Y ( 2018). Conversion of Tibetan grasslands to croplands decreases accumulation of microbially synthesized compounds in soil. Soil Biology & Biochemistry, 123, 10-20. |
[35] | Guggenberger G, Christensen BT, Zech W ( 1994). Land-use effects on the composition of organic matter in particle-size separates of soil: I. Lignin and carbohydrate signature. European Journal of Soil Science, 45, 449-458. |
[36] | Gunina A, Kuzyakov Y (2015). Sugars in soil and sweets for microorganisms: Review of origin, content, composition and fate. Soil Biology & Biochemistry, 90, 87-100. |
[37] | Hamada R, Ono A ( 1984). Determination of carbohydrates in hydrolysates of volcanic ash soil by liquid chromatography with fluorescence spectroscopy. Soil Science & Plant Nutrition, 30, 145-150. |
[38] | Hu S, Coleman DC, Beare MH, Hendrix PF ( 1995a). Soil carbohydrates in aggrading and degrading agroecosystems: Influences of fungi and aggregates. Agriculture Ecosystems & Environment, 54, 77-88. |
[39] | Hu S, Coleman DC, Hendrix PF, Beare MH ( 1995b). Biotic manipulation effects on soil carbohydrates and microbial biomass in a cultivated soil. Soil Biology & Biochemistry, 27, 1127-1135. |
[40] | Jolivet C, Angers DA, Chantigny MH, Andreux F, Arrouays D ( 2006). Carbohydrate dynamics in particle-size fractions of sandy spodosols following forest conversion to maize cropping. Soil Biology & Biochemistry, 38, 2834-2842. |
[41] | Kleber M, Eusterhues K, Keiluweit M, Mikutta C, Mikutta R, Nico PS ( 2015). Chapter One―Mineral-organic associations: Formation, properties, and relevance in soil environments. Advances in Agronomy, 130, 1-140. |
[42] | Kögel-Knabner I ( 2002). The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter. Soil Biology & Biochemistry, 34, 139-162. |
[43] | Kögel-Knabner I, Amelung W ( 2014). Dynamics, chemistry, and preservation of organic matter in soils. Treatise on Geochemistry, 13, 157-215. |
[44] | Kuzyakov Y ( 2010). Priming effects: Interactions between living and dead organic matter. Soil Biology & Biochemistry, 42, 1363-1371. |
[45] | Kuzyakov Y, Domanski G ( 2000). Carbon input by plants into the soil. Review. Journal of Plant Nutrition and Soil Science, 163, 421-431. |
[46] | Kuzyakov Y, Jones DL ( 2006). Glucose uptake by maize roots and its transformation in the rhizosphere. Soil Biology & Biochemistry, 38, 851-860. |
[47] | Larré-Larrouy MC, Blanchart E, Albrecht A, Feller C ( 2004). Carbon and monosaccharides of a tropical vertisol under pasture and market-gardening: Distribution in secondary organomineral separates. Geoderma, 119, 163-178. |
[48] | Larré-Larrouy MC, Feller C ( 1997). Determination of carbohydrates in two ferrallitic soils: Analysis by capillary gas chromatography after derivatization by silylation. Soil Biology & Biochemistry, 29, 1585-1589. |
[49] | Llorente M, Glaser B, Turrion MB ( 2017). Effect of land use change on contents and distribution of monosacharides within density fractions of calcareous soil. Soil Biology & Biochemistry, 107, 260-268. |
[50] | Martens DA, Frankenberger WT ( 1993). Soil saccharide extraction and detection. Plant and Soil, 149, 145-147. |
[51] | Martens DA, Reedy TE, Lewis DT ( 2004). Soil organic carbon content and composition of 130-year crop, pasture and forest land-use managements. Global Change Biology, 10, 65-78. |
[52] | Mastrolonardo G, Rumpel C, Forte C, Doerr SH, Certini G ( 2015). Abundance and composition of free and aggregate- occluded carbohydrates and lignin in two forest soils as affected by wildfires of different severity. Geoderma, 245, 40-51. |
[53] | Miltner A, Bombach P, Schmidt-Brücken B, Kästner M ( 2012). SOM genesis: Microbial biomass as a significant source. Biogeochemistry, 111, 41-55. |
[54] | Moers MEC, Jones DM, Eakin PA, Fallick AE, Griffiths H, Larter SR ( 1993). Carbohydrate diagenesis in hypersaline environments: Application of GC-IRMS to the stable isotope analysis of derivatized saccharides from surficial and buried sediments. Organic Geochemistry, 20, 927-933. |
[55] | Murata T, Tanaka H, Yasue S, Hamada R, Sakagami K, Kurokawa Y ( 1999). Seasonal variations in soil microbial biomass content and soil neutral sugar composition in grassland in the Japanese Temperate Zone. Applied Soil Ecology, 11, 253-259. |
[56] | Nacro HB, Larré-larrouy MC, Feller C, Abbadie L ( 2005). Hydrolysable carbohydrate in tropical soils under adjacent forest and savanna vegetation in Lamto, Côte d’Ivoire. Soil Research, 43, 705-711. |
[57] | Navarrete IA, Tsutsuki K ( 2008). Land-use impact on soil carbon, nitrogen, neutral sugar composition and related chemical properties in a degraded Ultisol in Leyte, Philippines. Soil Science & Plant Nutrition, 54, 321-331. |
[58] | Nierop KGJ, Van Lagen B, Buurman P ( 2001). Composition of plant tissues and soil organic matter in the first stages of a vegetation succession. Geoderma, 100, 1-24. |
[59] | Oades JM ( 1984). Soil organic matter and structural stability: Mechanisms and implications for management. Plant and Soil, 76, 319-337. |
[60] | Oades JM, Kirkman MA, Wagner GH ( 1970). The use of gas-liquid chromatography for the determination of sugars extracted from soils by sulfuric acid. Soil Science Society of America Journal, 34, 230-235. |
[61] | Philben M, Holmquist J, Macdonald G, Duan D, Kaiser K, Benner R ( 2015). Temperature, oxygen, and vegetation controls on decomposition in a James Bay peatland. Global Biogeochemical Cycles, 29, 729-743. |
[62] | Phuong-Thi N, Rumpel C, Thu-Thuy D, Jouquet P ( 2012). The effect of earthworms on carbon storage and soil organic matter composition in tropical soil amended with compost and vermicompost. Soil Biology & Biochemistry, 50, 214-220. |
[63] | Prietzel J, Dechamps N, Spielvogel S ( 2012). Analysis of non-cellulosic polysaccharides helps to reveal the history of thick organic surface layers on calcareous Alpine soils. Plant and Soil, 365, 93-114. |
[64] | Puget P, Angers DA, Chenu C ( 1999). Nature of carbohydrates associated with water-stable aggregates of two cultivated soils. Soil Biology & Biochemistry, 31, 55-63. |
[65] | Ruiz-Matute AI, Hernandez-Hernandez O, Rodriguez-Sanchez S, Sanz ML, Martinez-Castro I ( 2011). Derivatization of carbohydrates for GC and GC-MS analyses. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 879, 1226-1240. |
[66] | Rumpel C, Dignac MF ( 2006). Gas chromatographic analysis of monosaccharides in a forest soil profile: Analysis by gas chromatography after trifluoroacetic acid hydrolysis and reduction-acetylation. Soil Biology & Biochemistry, 38, 1478-1481. |
[67] | Rumpel C, Eusterhues K, Kögel-Knabner I ( 2010). Non- cellulosic neutral sugar contribution to mineral associated organic matter in top- and subsoil horizons of two acid forest soils. Soil Biology & Biochemistry, 42, 379-382. |
[68] | Six J, Conant RT, Paul EA, Paustian K ( 2002). Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils. Plant and Soil, 241, 155-176. |
[69] | Sollins P, Homann P, Caldwell BA ( 1996). Stabilization and destabilization of soil organic matter: Mechanisms and controls. Geoderma, 74, 65-105. |
[70] | Sowden FJ, Ivarson KC ( 1962). Methods for the analysis of carbohydrate material in soil: 2. Soil Science, 94, 340-344. |
[71] | Spielvogel S, Prietzel J, Kögel-Knabner I ( 2007). Changes of lignin phenols and neutral sugars in different soil types of a high-elevation forest ecosystem 25 years after forest dieback. Soil Biology & Biochemistry, 39, 655-668. |
[72] | Steffens M, Kölbl A, Kögel-Knabner I ( 2009). Alteration of soil organic matter pools and aggregation in semi-arid steppe topsoils as driven by organic matter input. European Journal of Soil Science, 60, 198-212. |
[73] | Stevenson FJ ( 1994). Humus Chemistry: Genesis, Composition, Reactions, 2nd edn. Wiley, New York. |
[74] | Takeuchi M, Takasaki S, Inoue N, Kobata A ( 1987). Sensitive method for carbohydrate-composition analysis of glycoproteins by high-performance liquid- chromatography. Journal of Chromatography, 400, 207-213. |
[75] | Tanaka H, Hamada R, Kondoh A, Sakagami K (1990). Determination of component sugars in soil organic-matter by HPLC. Zentralblatt für Mikrobiologie, 145, 621-628. |
[76] | Thompson TL, Zaady E, Huancheng P, Wilson TB, Martens DA ( 2006). Soil C and N pools in patchy shrublands of the Negev and Chihuahuan Deserts. Soil Biology & Biochemistry, 38, 1943-1955. |
[77] | Tian QX, Zhang B, He HB, Zhang XD, Chen WX ( 2013). Distribution pattern of neutral sugar in forest soils along an altitude gradient in Changbai Mountains, Northeast China. Chinese Journal of Applied Ecology, 24, 1777-1783. |
[ 田秋香, 张彬, 何红波, 张旭东, 程维信 ( 2013). 长白山不同海拔梯度森林土壤中性糖分布特征. 应用生态学报, 24, 1777-1783.] | |
[78] | Trouve C, Disnar JR, Mariotti A, Guillet B ( 1996). Changes in the amount and distribution of neutral monosaccharides of savanna soils after plantation of Pinus and Eucalyptus in the Congo. European Journal of Soil Science, 47, 51-59. |
[79] | Uzaki M, Ishiwatari R ( 1983). Determination of cellulose and non-cellulose carbohydrates in recent sediments by gas chromatography. Journal of Chromatography A, 260, 487-492. |
[80] | Von Lützow M, Kögel-Knabner I, Ekschmitt K, Matzner E, Guggenberger G, Marschner B, Flessa H ( 2006). Stabilization of organic matter in temperate soils: Mechanisms and their relevance under different soil conditions―A review. European Journal of Soil Science, 57, 426-445. |
[81] | Wang X, Zhang L, Wu J, Xu W, Wang X, Lu X ( 2017). Improvement of simultaneous determination of neutral monosaccharides and uronic acids by gas chromatography. Food Chemistry, 220, 198-207. |
[82] | Wang YP, Li XG, Fu T, Wang L, Turner NC, Siddique KHM, Li FM ( 2016). Multi-site assessment of the effects of plastic- film mulch on the soil organic carbon balance in semiarid areas of China. Agricultural and Forest Meteorology, 228, 42-51. |
[83] | Weil J, Brewer M, Hendrickson R, Sarikaya A, Ladisch MR ( 1998). Continuous pH monitoring during pretreatment of yellow poplar wood sawdust by pressure cooking in water. Applied Biochemistry and Biotechnology, 70-72, 99-111. |
[84] | Xie H, Li J, Zhu P, Peng C, Wang J, He H, Zhang X ( 2014). Long-term manure amendments enhance neutral sugar accumulation in bulk soil and particulate organic matter in a Mollisol. Soil Biology & Biochemistry, 78, 45-53. |
[85] | Zhang B, Du JF, Xie HT, Li WF, Wang LF, Zhang XD ( 2010). Effects of long-term fertilization on features of neutral sugars in particulate organic matter. Chinese Journal of Soil Science, 41, 617-621. |
[ 张彬, 杜介方, 解宏图, 李维福, 王连峰, 张旭东 ( 2010). 长期施肥对颗粒有机质中中性糖特性的影响. 土壤通报, 41, 617-621.] | |
[86] | Zhang LM, Xu MG, Lou YL, Wang XL, Li ZF ( 2014). Soil organic carbon fractionation methods. Soil and Fertilizer Sciences in China, ( 4), 1-6. |
[ 张丽敏, 徐明岗, 娄翼来, 王小利, 李忠芳 ( 2014). 土壤有机碳分组方法概述. 中国土壤与肥料, ( 4), 1-6.] | |
[87] | Zhang S, Li C, Zhou G, Che G, You J, Suo Y ( 2013). Determination of the carbohydrates from Notopterygium forbesii Boiss by HPLC with fluorescence detection. Carbohydrate Polymers, 97, 794-799. |
[88] | Zhang W, He H, Zhang X ( 2007). Determination of neutral sugars in soil by capillary gas chromatography after derivatization to aldononitrile acetates. Soil Biology & Biochemistry, 39, 2665-2669. |
[89] | Zhang ZQ, Khan NM, Nunez KM, Chess EK, Szabo CM ( 2012). Complete monosaccharide analysis by high-performance anion-exchange chromatography with pulsed amperometric detection. Analytical Chemistry, 84, 4104-4110. |
[90] | Zhao NN, Guggenberger G, Shibistova O, Thao DT, Shi WJ, Li XG ( 2014). Aspect-vegetation complex effects on biochemical characteristics and decomposability of soil organic carbon on the eastern Qinghai-Tibetan Plateau. Plant and Soil, 384, 289-301. |
[91] | Zhu X, Liang C, Masters MD, Kantola IB, Delucia EH ( 2018). The impacts of four potential bioenergy crops on soil carbon dynamics as shown by biomarker analyses and DRIFT spectroscopy. Global Change Biology Bioenergy, 10, 489-500. |
[1] | 蔡慧颖 李兰慧 林阳 梁亚涛 杨光 孙龙. 白桦叶片和细根非结构性碳水化合物对火后时间的响应[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 刘瑶 钟全林 徐朝斌 程栋梁 郑跃芳 邹宇星 张雪 郑新杰 周云若. 不同大小刨花楠细根功能性状与根际微环境关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[3] | 江康威 张青青 王亚菲 李宏 丁雨 杨永强 吐尔逊娜依·热依木. 放牧干扰下天山北坡中段植物功能群特征及其与土壤环境因子的关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[4] | 付粱晨, 丁宗巨, 唐茂, 曾辉, 朱彪. 北京东灵山白桦和蒙古栎的根际效应及其季节动态[J]. 植物生态学报, 2024, 48(4): 508-522. |
[5] | 秦文宽, 张秋芳, 敖古凯麟, 朱彪. 土壤有机碳动态对增温的响应及机制研究进展[J]. 植物生态学报, 2024, 48(4): 403-415. |
[6] | 牛一迪, 蔡体久. 大兴安岭北部次生林演替过程中物种多样性的变化及其影响因子[J]. 植物生态学报, 2024, 48(3): 349-363. |
[7] | 吴君梅, 曾泉鑫, 梅孔灿, 林惠瑛, 谢欢, 刘苑苑, 徐建国, 陈岳民. 土壤磷有效性调控亚热带森林土壤酶活性和酶化学计量对凋落叶输入的响应[J]. 植物生态学报, 2024, 48(2): 242-253. |
[8] | 颜辰亦, 龚吉蕊, 张斯琦, 张魏圆, 董学德, 胡宇霞, 杨贵森. 氮添加对内蒙古温带草原土壤活性有机碳的影响[J]. 植物生态学报, 2024, 48(2): 229-241. |
[9] | 耿雪琪, 唐亚坤, 王丽娜, 邓旭, 张泽凌, 周莹. 氮添加增加中国陆生植物生物量并降低其氮利用效率[J]. 植物生态学报, 2024, 48(2): 147-157. |
[10] | 祖姆热提•于苏甫江, 董正武, 成鹏, 叶茂, 刘隋赟昊, 李生宇, 赵晓英. 多枝柽柳水分利用策略对沙堆堆积过程的响应[J]. 植物生态学报, 2024, 48(1): 113-126. |
[11] | 韩路, 冯宇, 李沅楷, 王雨晴, 王海珍. 地下水埋深对灰胡杨叶片与土壤养分生态化学计量特征及其内稳态的影响[J]. 植物生态学报, 2024, 48(1): 92-102. |
[12] | 陈保冬, 付伟, 伍松林, 朱永官. 菌根真菌在陆地生态系统碳循环中的作用[J]. 植物生态学报, 2024, 48(1): 1-20. |
[13] | 李冰, 朱湾湾, 韩翠, 余海龙, 黄菊莹. 降水量变化下荒漠草原土壤呼吸及其影响因素[J]. 植物生态学报, 2023, 47(9): 1310-1321. |
[14] | 张英, 张常洪, 汪其同, 朱晓敏, 尹华军. 氮沉降下西南山地针叶林根际和非根际土壤固碳贡献差异[J]. 植物生态学报, 2023, 47(9): 1234-1244. |
[15] | 李娜, 唐士明, 郭建英, 田茹, 王姗, 胡冰, 罗永红, 徐柱文. 放牧对内蒙古草地植物群落特征影响的meta分析[J]. 植物生态学报, 2023, 47(9): 1256-1269. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19