植物生态学报 ›› 2016, Vol. 40 ›› Issue (7): 643-657.DOI: 10.17521/cjpe.2015.0348
• 研究论文 • 下一篇
收稿日期:
2015-10-07
接受日期:
2016-02-19
出版日期:
2016-07-10
发布日期:
2016-07-07
通讯作者:
李登秋
基金资助:
Deng-Qiu LI1,2,*(), Chun-Hua ZHANG3, Wei-Min JU2, Li-Juan LIU1
Received:
2015-10-07
Accepted:
2016-02-19
Online:
2016-07-10
Published:
2016-07-07
Contact:
Deng-Qiu LI
摘要:
亚热带森林生态系统具有巨大的固碳潜力。净初级生产力(NPP)在碳循环过程中具有重要的作用, 受到气候变化、大气成分、森林扰动的强度和频度、林龄等因子的综合影响, 然而目前上述各因子对亚热带森林NPP变化的贡献尚不明确, 需要鉴别森林NPP时空变化的主要驱动因子, 以准确认识亚热带森林生态系统碳循环。该文综合气象数据、年最大叶面积指数(LAI)、参考年NPP (BEPS模型模拟)、林龄、森林类型、土地覆盖、数字高程模型(DEM)、土壤质地、CO2浓度、氮沉降等多源数据, 利用InTEC模型(Integrated Terrestrial Ecosystem Carbon-budget Model)研究亚热带典型地区江西省森林生态系统1901-2010年NPP时空动态变化特征, 通过模拟情景设计, 着重讨论1970-2010年气候变化、林龄、CO2浓度和氮沉降对森林NPP动态变化的影响。研究结果如下: (1) InTEC模型能较好地模拟研究区NPP的时空变化; (2)江西省森林NPP 1901-2010年为(47.7 ± 4.2) Tg C·a-1 (平均值±标准偏差), 其中20世纪70年代、80年代、90年代分别为50.7、48.8、45.4 Tg C·a-1, 2000-2009年平均为55.2 Tg C·a-1; 随着森林干扰后的恢复再生长, 江西省森林NPP显著上升, 2000-2009年NPP增加的森林面积占森林总面积的60%; (3) 1970-2010年, 仅考虑森林干扰因子和仅考虑非干扰因子(气候、氮沉降、CO2浓度)情景下NPP分别为43.1和53.9 Tg C·a-1, 比综合考虑干扰因子和非干扰因子作用下的NPP分别低估7.3 Tg C·a-1 (低估的NPP与综合考虑干扰因子和非干扰因子作用下NPP的比值为14.5%,下同)和高估3.6 Tg C·a-1 (7.1%); 气候因子导致平均NPP减少2.0 Tg C·a-1 (4.7%), 氮沉降导致平均NPP增加4.5 Tg C·a-1 (10.4%), CO2浓度变化及耦合效应(氮沉降+ CO2浓度变化)分别导致平均NPP增加4.4 Tg C·a-1 (10.3%)和9.4 Tg C·a-1 (21.8%)。
李登秋, 张春华, 居为民, 刘丽娟. 江西省森林净初级生产力动态变化特征及其驱动因子分析. 植物生态学报, 2016, 40(7): 643-657. DOI: 10.17521/cjpe.2015.0348
Deng-Qiu LI, Chun-Hua ZHANG, Wei-Min JU, Li-Juan LIU. Forest net primary productivity dynamics and driving forces in Jiangxi Province, China. Chinese Journal of Plant Ecology, 2016, 40(7): 643-657. DOI: 10.17521/cjpe.2015.0348
碳分配、周转率 Carbon allocation and turnover rate | 森林类型 Forest type | |||||
---|---|---|---|---|---|---|
马尾松、湿地松 Pinus massoniana, Pinus elliottii | 杉木 Cunninghamia lanceolata | 常绿阔叶林 Evergreen broadleaf forest | 针阔混交林 Conifer and broadleaf mixed forest | 针叶混交林 Coniferous mixed forest | ||
木质部分分配比例 Allocation coefficient to wood | 0.655 4 | 0.772 4 | 0.462 4 | 0.578 4 | 0.694 4 | |
粗根分配比例 Allocation coefficient to coarse root | 0.118 4 | 0.126 2 | 0.222 6 | 0.171 8 | 0.121 0 | |
树叶分配比例 Allocation coefficient to leaf | 0.228 1 | 0.109 9 | 0.119 0 | 0.153 9 | 0.188 7 | |
细根分配比例 Allocation coefficient to fine root | 0.005 1 | 0.012 6 | 0.196 0 | 0.101 8 | 0.007 6 | |
木质部分周转率 Wood turnover rate | 0.027 9 | 0.027 9 | 0.028 8 | 0.028 4 | 0.027 9 | |
粗根部分周转率 Coarse root turnover rate | 0.026 9 | 0.026 9 | 0.044 8 | 0.035 9 | 0.026 9 | |
叶子部分周转率 Leaf turnover rate | 0.192 5 | 0.192 5 | 0.294 8 | 0.243 7 | 0.192 5 | |
细根部分周转率 Fine root turnover rate | 1.433 0 | 1.433 0 | 1 | 1.216 5 | 1.433 0 |
表1 主要森林类型净初级生产力(NPP)分配比例及生物量碳库转移和分解系数
Table 1 Allocation coefficients of net primary productivity (NPP), and turnover rates, decomposition rates of biomass carbon pools for main forest types
碳分配、周转率 Carbon allocation and turnover rate | 森林类型 Forest type | |||||
---|---|---|---|---|---|---|
马尾松、湿地松 Pinus massoniana, Pinus elliottii | 杉木 Cunninghamia lanceolata | 常绿阔叶林 Evergreen broadleaf forest | 针阔混交林 Conifer and broadleaf mixed forest | 针叶混交林 Coniferous mixed forest | ||
木质部分分配比例 Allocation coefficient to wood | 0.655 4 | 0.772 4 | 0.462 4 | 0.578 4 | 0.694 4 | |
粗根分配比例 Allocation coefficient to coarse root | 0.118 4 | 0.126 2 | 0.222 6 | 0.171 8 | 0.121 0 | |
树叶分配比例 Allocation coefficient to leaf | 0.228 1 | 0.109 9 | 0.119 0 | 0.153 9 | 0.188 7 | |
细根分配比例 Allocation coefficient to fine root | 0.005 1 | 0.012 6 | 0.196 0 | 0.101 8 | 0.007 6 | |
木质部分周转率 Wood turnover rate | 0.027 9 | 0.027 9 | 0.028 8 | 0.028 4 | 0.027 9 | |
粗根部分周转率 Coarse root turnover rate | 0.026 9 | 0.026 9 | 0.044 8 | 0.035 9 | 0.026 9 | |
叶子部分周转率 Leaf turnover rate | 0.192 5 | 0.192 5 | 0.294 8 | 0.243 7 | 0.192 5 | |
细根部分周转率 Fine root turnover rate | 1.433 0 | 1.433 0 | 1 | 1.216 5 | 1.433 0 |
输入资料 Input data | 描述 Description | 时间 Time | 空间分辨率 Spatial resolution | 来源 Source |
---|---|---|---|---|
CRU 3.21气象数据 CRU 3.21 meteorological data | 气温、降水、云量、平均饱和水汽压差 Air temperature, precipitation, cloudiness, average water vapor pressure deficit | 1901-1960 | 0.5° | http://badc.nerc.ac.uk |
气象站观测数据 Meteorological observation data | 气温、降水、日照时数 Air temperature, precipitation, sunshine duration | 1961-2010 | 江西87气象站点 87 meteorological sites in Jiangxi | http://cdc.cma.gov.cn/ |
气象站观测数据 Meteorological observation data | 平均饱和水汽压 Average water vapor pressure | 1961-2010 | 中国702气象站点 702 meteorological sites in China | http://cdc.cma.gov.cn/ |
叶面积指数数据 Leaf area index data | MODIS数据反演 Inversed from MODIS data | 2006 | 463 m | 本文 This study |
参考年NPP Referenced NPP | BEPS模型模拟 Simulated by BEPS model | 2006 | 463 m | 本文 This study |
林龄 Forest age | 样地资料、MODIS、K-最近邻法(KNN)算法 Field samples, MODIS data and K-nearest neighborhood method | 2006 | 463 m | 本文 This study |
森林类型 Forest type | 样地资料、MODIS、KNN算法 Field samples, MODIS data and K-nearest neighborhood method | 2006 | 463 m | 本文 This study |
净初级生产力与林龄关系 Relationship between net primary productivity and forest age | 林龄对净初级生产力的影响 Impact of forest age on net primary productivity | 本文 This study | ||
土壤质地 Soil texture | 黏粒、砂粒百分比 Percentage of clay and sandy | 463 m | http://globalchange.bnu.edu.cn/research/ | |
地形湿度指数 Topographic wetness index | 基于数字高程模型(DEM)通过ArcGIS计算 Calculate from digital elevation model by ArcGIS | 463 m | 本文 This study | |
初始地下水位 Initial groundwater level | 地形湿度指数计算 Calculate based on wetness index | 463 m | 本文 This study | |
氮沉降 Nitrogen deposition | 来源于模拟数据 Modelled data | 1960-2010 | 0.1° | 顾峰雪(待发表) From GU Feng-Xue (To be published) |
氮沉降 Nitrogen deposition | 基于温室气体计算 Calculate based on greenhouse gases | 1901-1959 | 无空间变化 No spatial variation | Chen et al., 2003 |
CO2浓度 CO2 concentration | 观测数据 Observation data | 1999-2010 | 无空间变化 No spatial variation | http://ccliacesd.oml.gov |
CO2浓度 CO2 concentration | 观测数据 Observation data | 1901-1998 | 无空间变化 No spatial variation | 碳循环模型联合计划 Carbon Cycle Model Linkage Project |
表2 InTEC模型主要输入数据
Table 2 Input data for InTEC model
输入资料 Input data | 描述 Description | 时间 Time | 空间分辨率 Spatial resolution | 来源 Source |
---|---|---|---|---|
CRU 3.21气象数据 CRU 3.21 meteorological data | 气温、降水、云量、平均饱和水汽压差 Air temperature, precipitation, cloudiness, average water vapor pressure deficit | 1901-1960 | 0.5° | http://badc.nerc.ac.uk |
气象站观测数据 Meteorological observation data | 气温、降水、日照时数 Air temperature, precipitation, sunshine duration | 1961-2010 | 江西87气象站点 87 meteorological sites in Jiangxi | http://cdc.cma.gov.cn/ |
气象站观测数据 Meteorological observation data | 平均饱和水汽压 Average water vapor pressure | 1961-2010 | 中国702气象站点 702 meteorological sites in China | http://cdc.cma.gov.cn/ |
叶面积指数数据 Leaf area index data | MODIS数据反演 Inversed from MODIS data | 2006 | 463 m | 本文 This study |
参考年NPP Referenced NPP | BEPS模型模拟 Simulated by BEPS model | 2006 | 463 m | 本文 This study |
林龄 Forest age | 样地资料、MODIS、K-最近邻法(KNN)算法 Field samples, MODIS data and K-nearest neighborhood method | 2006 | 463 m | 本文 This study |
森林类型 Forest type | 样地资料、MODIS、KNN算法 Field samples, MODIS data and K-nearest neighborhood method | 2006 | 463 m | 本文 This study |
净初级生产力与林龄关系 Relationship between net primary productivity and forest age | 林龄对净初级生产力的影响 Impact of forest age on net primary productivity | 本文 This study | ||
土壤质地 Soil texture | 黏粒、砂粒百分比 Percentage of clay and sandy | 463 m | http://globalchange.bnu.edu.cn/research/ | |
地形湿度指数 Topographic wetness index | 基于数字高程模型(DEM)通过ArcGIS计算 Calculate from digital elevation model by ArcGIS | 463 m | 本文 This study | |
初始地下水位 Initial groundwater level | 地形湿度指数计算 Calculate based on wetness index | 463 m | 本文 This study | |
氮沉降 Nitrogen deposition | 来源于模拟数据 Modelled data | 1960-2010 | 0.1° | 顾峰雪(待发表) From GU Feng-Xue (To be published) |
氮沉降 Nitrogen deposition | 基于温室气体计算 Calculate based on greenhouse gases | 1901-1959 | 无空间变化 No spatial variation | Chen et al., 2003 |
CO2浓度 CO2 concentration | 观测数据 Observation data | 1999-2010 | 无空间变化 No spatial variation | http://ccliacesd.oml.gov |
CO2浓度 CO2 concentration | 观测数据 Observation data | 1901-1998 | 无空间变化 No spatial variation | 碳循环模型联合计划 Carbon Cycle Model Linkage Project |
图1 1901-2010年江西省气温、降水量、太阳辐射和平均水汽压的变化趋势。图中虚线为1901-2010年平均值。
Fig. 1 The change trends of air temperature, precipitation, solar radiation and water vapor pressure during 1901-2010 in Jiangxi Province. The dashed lines are average of 100 years.
图2 江西省2006年的最大叶面积指数(LAI) (A)、森林类型(B)和林龄空间分布图(C)。
Fig. 2 The spatial distributions of maximum leaf area index (LAI) (A), forest types ( B) and forest age (C) maps of Jiangxi Province in 2006.
图4 江西省主要树种净初级生产力(NPP)随林龄变化的特征。图中粗圆点为基于森林清查数据计算的NPP (Wang et al., 2010)。A, 马尾松。B, 湿地松。C, 杉木。
Fig. 4 The changes of net primary productivity (NPP) with forest age for main forest types in Jiangxi Province. The black spot in the figure is NPP calculated based on forest inventory data referencing (Wang et al., 2010). A, Pinus massoniana. B, Pinus elliottii. C, Cunninghamia lanceolata.
情景 Scenario | 描述 Description | 非干扰因子 Non-disturbance factors | 干扰因子 Disturbance factor | |||||||
---|---|---|---|---|---|---|---|---|---|---|
气候要素 Climate elements | 氮沉降 Nitrogen deposition | CO2浓度 CO2 concentration | ||||||||
气温 Air temperature | 降水 Precipitation | 太阳辐射 Solar radiation | 平均水汽压 Average water vapor pressure | |||||||
1 | 干扰因子效应 Disturbance factor effect | B | B | B | B | B | B | 林龄变化 Forest age changed | ||
2 | 非干扰因子效应 Non-disturbance factors effect | H | H | H | H | H | H | 林龄不变 Forest age unchanged | ||
3 | 综合因子 Disturbance and non-disturbance factors effect | H | H | H | H | H | H | 林龄变化 Forest age changed | ||
4 | 气候变化效应 Climate change effect | H | H | H | H | B | B | 林龄变化 Forest age changed | ||
5 | 氮沉降效应 Nitrogen deposition effect | B | B | B | B | H | B | 林龄变化 Forest age changed | ||
6 | CO2效应 CO2 effect | B | B | B | B | B | H | 林龄变化 Forest age changed | ||
7 | 氮沉降+CO2 Nitrogen deposition and CO2 effect | B | B | B | B | H | H | 林龄变化 Forest age changed |
表3 不同因子对江西省森林净初级生产力(NPP)影响的驱动力分析情景设计
Table 3 Scenarios for quantifing each driver factor in forest net primary productivity (NPP) in Jiangxi Province
情景 Scenario | 描述 Description | 非干扰因子 Non-disturbance factors | 干扰因子 Disturbance factor | |||||||
---|---|---|---|---|---|---|---|---|---|---|
气候要素 Climate elements | 氮沉降 Nitrogen deposition | CO2浓度 CO2 concentration | ||||||||
气温 Air temperature | 降水 Precipitation | 太阳辐射 Solar radiation | 平均水汽压 Average water vapor pressure | |||||||
1 | 干扰因子效应 Disturbance factor effect | B | B | B | B | B | B | 林龄变化 Forest age changed | ||
2 | 非干扰因子效应 Non-disturbance factors effect | H | H | H | H | H | H | 林龄不变 Forest age unchanged | ||
3 | 综合因子 Disturbance and non-disturbance factors effect | H | H | H | H | H | H | 林龄变化 Forest age changed | ||
4 | 气候变化效应 Climate change effect | H | H | H | H | B | B | 林龄变化 Forest age changed | ||
5 | 氮沉降效应 Nitrogen deposition effect | B | B | B | B | H | B | 林龄变化 Forest age changed | ||
6 | CO2效应 CO2 effect | B | B | B | B | B | H | 林龄变化 Forest age changed | ||
7 | 氮沉降+CO2 Nitrogen deposition and CO2 effect | B | B | B | B | H | H | 林龄变化 Forest age changed |
图5 InTEC模型净初级生产力(NPP)模拟结果验证。A, 2003-2009年千烟洲通量站观测NPP与InTEC模型模拟结果比较。B, 江西省吉安市2009年二类森林清查数据计算的各乡镇NPP与InTEC模型模拟结果比较。
Fig. 5 Validation of net primary productivity (NPP) simulated by the InTEC model. A, Simulated NPP by InTEC model comparison with observed NPP at Qianyanzhou eddy tower site during 2003-2009. B, Simulated NPP by InTEC model comparison with NPP calculated from forest inventory data at town level of Ji’an City, Jiangxi Province in 2009.
图6 三种模拟情景下1901-2010年江西省森林净初级生产力(NPP)变化特征。情景1、情景2、情景3同表3。
Fig. 6 Change characteristics of net primary productivity (NPP) of forests in Jiangxi Province during 1901-2010 under scenarios 1, 2 and 3. Scenario 1, scenario 2, and scenario 3 see Table 3.
图7 江西省2000-2009年平均净初级生产力(NPP)空间分布特征(左图)和2000-2009年NPP与20世纪70年代的差值空间分布(右图), 图中正值代表2000-2009年的NPP比20世纪70年代增加, 反之亦然(g C·m-2·a-1)。
Fig. 7 Spatial distribution of average annual net primary productivity (NPP) during 2000-2009 (left panel) and changes in the 2000s relative to the values in the 1970s (right panel), positive values indicate increases in NPP, and vice versa.
图8 1971-2010年不同驱动因子对江西省森林净初级生产力(NPP)变化的影响。A, 非干扰因子。B, 干扰因子。C, 气候因子。D, 氮沉降、CO2浓度及CO2 +氮沉降对NPP的影响。ΔNPP为正值表示正影响, 负值表示负影响。
Fig. 8 Responses of Jiangxi provincial forest net primary productivity (NPP) to non-disturbance and disturbance factors during 1971-2010. A, All non-disturbance factors. B, Disturbance factor. C, Climate factors. D, CO2, N deposition, integrated effects of CO2 and N deposition. The positive ΔNPP values indicate enhancement on NPP and minus ΔNPP values indicate negative effect.
1 | Ainsworth EA, Long SP (2005). What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2.New Phytologist, 165, 351-372. |
2 | Albani M, Medvigy D, Hurtt GC, Moorcroft PR (2006). The contributions of land use change, CO2 fertilization, and climate variability to the Eastern US carbon sink.Global Change Biology, 12, 2370-2390. |
3 | Beaudoin A, Bernier PY, Guindon L, Villemaire P, Guo XJ, Stinson G, Bergeron T, Magnussen S, Hall RJ (2014). Mapping attributes of Canada’s forests at moderate resolution through kNN and MODIS imagery.Canadian Journal of Forest Research, 44, 521-532. |
4 | Bobbink R, Hicks K, Galloway J, Spranger T, Alkemade R, Ashmore M, Bustamante M, Cinderby S, Davidson E, Dentener F (2010). Global assessment of nitrogen deposition effects on terrestrial plant diversity: A synthesis.Ecological Applications, 20, 30-59. |
5 | Bonan GB (1995). Sensitivity of a GCM simulation to inclusion of inland water surfaces.Journal of Climate, 8, 2691-2704. |
6 | Campioli M, Gielen B, Göckede M, Papale D, Bouriaud O, Granier A (2011). Temporal variability of the NPP-GPP ratio at seasonal and interannual time scales in a temperate beech forest.Biogeosciences, 8, 2481-2492. |
7 | Canadell JG, Raupach MR (2008). Managing forests for climate change mitigation.Science, 320, 1456-1457. |
8 | Chen J, Liu J, Cihlar J, Goulden M (1999). Daily canopy photosynthesis model through temporal and spatial scaling for remote sensing applications.Ecological Modelling, 124, 99-119. |
9 | Chen JM, Ju W, Cihlar J, Price D, Liu J, Chen W, Pan J, Black A, Barr A (2003). Spatial distribution of carbon sources and sinks in Canada’s forests.Tellus Series B-Chemical and Physical Meteorology, 55, 622-641. |
10 | Chen W, Chen J, Cihlar J (2000). An integrated terrestrial ecosystem carbon-budget model based on changes in disturbance, climate, and atmospheric chemistry.Ecological Modelling, 135, 55-79. |
11 | Coomes DA, Holdaway RJ, Kobe RK, Lines ER, Allen RB (2012). A general integrative framework for modelling woody biomass production and carbon sequestration rates in forests.Journal of Ecology, 100, 42-64. |
12 | Coursolle C, Margolis HA, Giasson MA, Bernier PY, Amiro BD, Arain MA, Barr AG, Black TA, Goulden ML, McCaughey JH, Chen JM, Dunn AL, Grant RF, Lafleur PM (2012). Influence of stand age on the magnitude and seasonality of carbon fluxes in Canadian forests.Agricultural and Forest Meteorology, 165, 136-148. |
13 | Dufresne JL, Fairhead L, Le Treut H, Berthelot M, Bopp L, Ciais P, Friedlingstein P, Monfray P (2002). On the magnitude of positive feedback between future climate change and the carbon cycle. Geophysical Research Letters, 29, 43-1-43-4. |
14 | Fang J, Chen A, Peng C, Zhao S, Ci L (2001). Changes in forest biomass carbon storage in China between 1949 and 1998.Science, 292, 2320-2322. |
15 | Fang J, Kato T, Guo Z, Yang Y, Hu H, Shen H, Zhao X, Kishimoto-Mo AW, Tang Y, Houghton RA (2014). Evidence for environmentally enhanced forest growth.Proceedings of the National Academy of Sciences of the United States of America, 111, 9527-9532. |
16 | Felzer B, Kicklighter D, Melillo J, Wang C, Zhuang Q, Prinn R (2004). Effects of ozone on net primary production and carbon sequestration in the conterminous United States using a biogeochemistry model.Tellus Series B-Chemical and Physical Meteorology, 56, 230-248. |
17 | Gu FX, Yu GR, Wen XF, Tao B, Li KR, Liu YF (2008). Drought effects on carbon exchange in a subtropical coniferous plantation in China.Chinese Journal of Plant Ecology, 32, 1041-1051. (in Chinese with English abstract)[顾峰雪, 于贵瑞, 温学发, 陶波, 李克让, 刘允芬 (2008). 干旱对亚热带人工针叶林碳交换的影响. 植物生态学报, 32, 1041-1051.] |
18 | Houghton R (2007). Balancing the global carbon budget.Annual Review of Earth and Planetary Sciences, 35, 313-347. |
19 | Huang L, Shao QQ, Liu JY (2012). Forest carbon sequestration and carbon sink/source in Jiangxi Province.Acta Ecologica Sinica, 32, 3010-3020. (in Chinese with English abstract)[黄麟, 邵全琴, 刘纪远 (2012). 江西省森林碳蓄积过程及碳源/汇的时空格局. 生态学报, 32, 3010-3020.] |
20 | Jiang Y, Hu HB, Zhang XS, Xue JH (2011). The carbon flux and its environmental factors in a north subtropical secondary oak forest ecosystem. Journal of Nanjing Forestry University (Natural Science Edition), 35(3), 38-42. (in Chinese with English abstract)[蒋琰, 胡海波, 张学仕, 薛建辉 (2011). 北亚热带次生栎林碳通量及其影响因子研究. 南京林业大学学报(自然科学版), 35(3), 38-42.] |
21 | Ju W, Chen J, Harvey D, Wang S (2007). Future carbon balance of China’s forests under climate change and increasing CO2.Journal of Environmental Management, 85, 538-562. |
22 | Ju W, Wang S, Yu G, Zhou Y, Wang H (2010). Modeling the impact of drought on canopy carbon and water fluxes for a subtropical evergreen coniferous plantation in southern China through parameter optimization using an ensemble Kalman filter.Biogeosciences, 7, 845-857. |
23 | Lü C, Tian H (2007). Spatial and temporal patterns of nitrogen deposition in China: Synthesis of observational data.Journal of Geophysical Research: Atmospheres, 112, doi: 10.1029/2006JD007990. |
24 | Li DQ, Ju WM, Fan WY, Gu ZJ (2014). Estimating the age of deciduous forests in Northeast China with Enhanced Thematic Mapper Plus data acquired in different phenological seasons.Journal of Applied Remote Sensing, 8, 083670. doi: 10.1117/1.JRS.8.083670. |
25 | Li DQ, Ju WM, Zheng G, Liu YB, Zan M, Zhang CH, Huang JL (2013). Comparison of estimated forest biomass increment rate based on a process-based ecological model and forest inventory data.Ecology and Environmental Sciences, 22, 1647-1657. (in Chinese with English abstract)[李登秋, 居为民, 郑光, 柳艺博, 昝梅, 张春华, 黄金龙 (2013). 基于生态过程模型和森林清查数据的森林生长量估算对比研究. 生态环境学报, 22, 1647-1657.] |
26 | Li DQ, Zhou YL, Ju WM, Wang HM, Liu YB, Wu XC (2014). Modelling the effects of changes in solar radiation on gross primary production in subtropical evergreen needle- leaf plantations.Chinese Journal of Plant Ecology, 38, 219-230. (in Chinese with English abstract)[李登秋, 周艳莲, 居为民, 王辉民, 柳艺博, 吴小翠 (2014). 太阳辐射变化对亚热带人工常绿针叶林总初级生产力影响的模拟分析. 植物生态学报, 38, 219-230.] |
27 | Li MZ, Wang B, Fan WY, Zhao DD (2015). Simulation of forest net primary production and the effects of fire disturbance in Northeast China.Chinese Journal of Plant Ecology, 39, 322-332. (in Chinese with English abstract)[李明泽, 王斌, 范文义, 赵丹丹 (2015). 东北林区净初级生产力及大兴安岭地区林火干扰影响的模拟研究. 植物生态学报, 39, 322-332.] |
28 | Li XJ, Zhou T, He XZ (2009). Carbon sink of forest ecosystem driven by NPP increasing in China.Journal of Natural Resources, 24, 491-497. (in Chinese with English abstract)[李秀娟, 周涛, 何学兆 (2009). NPP增长驱动下的中国森林生态系统碳汇. 自然资源学报, 24, 491-497.] |
29 | Liang W, Yang Y, Fan D, Guan H, Zhang T, Long D, Zhou Y, Bai D (2015). Analysis of spatial and temporal patterns of net primary production and their climate controls in China from 1982 to 2010.Agricultural and Forest Meteorology, 204, 22-36. |
30 | Lindner M, Maroschek M, Netherer S, Kremer A, Barbati A, Garcia-Gonzalo J, Seidl R, Delzon S, Corona P, Kolström M (2010). Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems.Forest Ecology and Management, 259, 698-709. |
31 | Liu YB, Ju WM, Chen JM, Zhu GL, Xing BL, Zhu JF, He MZ (2012). Spatial and temporal variations of forest LAI in China during 2000-2010.Chinese Science Bulletin, 57, 2846-2856. |
32 | Masek JG, Collatz GJ (2006). Estimating forest carbon fluxes in a disturbed southeastern landscape: Integration of remote sensing, forest inventory, and biogeochemical modeling.Journal of Geophysical Research, 111, G01006. doi: 10.1029/2005JG000062. |
33 | Masek JG, Goward SN, Kennedy RE, Cohen WB, Moisen GG, Schleeweis K, Huang C (2013). United States forest disturbance trends observed using Landsat Time Series.Ecosystems, 16, 1087-1104. |
34 | Mo J, Brown S, Xue J, Fang Y, Li Z (2006). Response of litter decomposition to simulated N deposition in disturbed, rehabilitated and mature forests in subtropical China.Plant & Soil, 282, 135-151. |
35 | Nemani RR, Keeling CD, Hashimoto H, Jolly WM, Piper SC, Tucker CJ, Myneni RB, Running SW (2003). Climate- driven increases in global terrestrial net primary production from 1982 to 1999.Science, 300, 1560. |
36 | Norby RJ, DeLucia EH, Gielen B, Calfapietra C, Giardina CP, King JS, Ledford J, McCarthy HR, Moore DJ, Ceulemans R (2005). Forest response to elevated CO2 is conserved across a broad range of productivity.Proceedings of the National Academy of Sciences of the United States of America, 102, 18052-18056. |
37 | Pan Y, Birdsey R, Hom J, McCullough K (2009). Separating effects of changes in atmospheric composition, climate and land-use on carbon sequestration of US Mid-Atlantic temperate forests.Forest Ecology and Management, 259, 151-164. |
38 | Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG (2011). A large and persistent carbon sink in the world’s forests.Science, 333, 988-993. |
39 | Petritsch R, Hasenauer H, Pietsch SA (2007). Incorporating forest growth response to thinning within biome-BGC.Forest Ecology and Management, 242, 324-336. |
40 | Piao S, Sitch S, Ciais P, Friedlingstein P, Peylin P, Wang X, Ahlström A, Anav A, Canadell JG, Cong N (2013). Evaluation of terrestrial carbon cycle models for their response to climate variability and to CO2 trends.Global Change Biology, 19, 2117-2132. |
41 | Pretzsch H, Biber P, Schutze G, Uhl E, Rotzer T (2014). Forest stand growth dynamics in Central Europe have accelerated since 1870.Nature Communications, 5, 4967. |
42 | Ter-Mikaelian MT, Colombo SJ, Chen J (2014). Effect of age and disturbance on decadal changes in carbon stocks in managed forest landscapes in central Canada.Mitigation and Adaptation Strategies for Global Change, 19, 1063-1075. |
43 | Wang B, Huang J, Yang X, Zhang B, Liu M (2010). Estimation of biomass, net primary production and net ecosystem production of China’s forests based on the 1999-2003 National Forest Inventory.Scandinavian Journal of Forest Research, 25, 544-553. |
44 | Wang S, Zhou L, Chen J, Ju W, Feng X, Wu W (2011). Relationships between net primary productivity and stand age for several forest types and their influence on China’s carbon balance.Journal of Environmental Management, 92, 1651-1662. |
45 | Williams CA, Collatz GJ, Masek J, Goward SN (2012). Carbon consequences of forest disturbance and recovery across the conterminous United States. Global Biogeochemical Cycles, 26, GB1005. doi: 10.1029/2010GB003947. |
46 | Yu G, Chen Z, Piao S, Peng C, Ciais P, Wang Q, Li X, Zhu X (2014). High carbon dioxide uptake by subtropical forest ecosystems in the East Asian monsoon region.Proceedings of the National Academy of Sciences of the United States of America, 111, 4910-4915. |
47 | Zaehle S, Sitch S, Prentice IC, Liski J, Cramer W, Erhard M, Hickler T, Smith B (2006). The importance of age-related decline in forest NPP for modeling regional carbon balances.Ecological Applications, 16, 1555-1574. |
48 | Zhang C, Ju W, Chen JM, Li D, Wang X, Fan W, Li M, Zan M (2014). Mapping forest stand age in China using remotely sensed forest height and observation data.Journal of Geophysical Research: Biogeosciences, 119, 1163-1179. |
49 | Zhang CH (2015). Simulating Forest Carbon Sources and Sinks in China with the Integration of Remote Sensing and Inventory Data. PhD dissertation, Nanjing University, Nanjing. 86-87. (in Chinese with English abstract)[张春华 (2015). 融合遥感和清查数据的中国森林碳源汇模拟研究. 博士学位论文, 南京大学, 南京. 86-87.] |
50 | Zhang WJ, Wang HM, Yang FT, Yi YH, Wen XF, Sun XM, Yu GR, Wang YD, Ning JC (2011). Underestimated effects of low temperature during early growing season on carbon sequestration of a subtropical coniferous plantation.Biogeosciences, 8, 1667-1678. |
51 | Zhou G, Wang Y, Jiang Y, Yang Z (2002). Estimating biomass and net primary production from forest inventory data: A case study of China’s Larix forests.Forest Ecology and Management, 169, 149-157. |
52 | Zhou L, Wang S, Ju W, Xiong Z, Georg K, Chen J, Shi H (2013). Assessment of carbon dynamics of forest ecosystems in the Poyang Lake Basin responding to afforestation and future climate change.Journal of Resources and Ecology, 4, 11-19. |
53 | Zhu WQ, Pan YZ, Yang XQ, Song GB (2007). Comprehensive analysis of the impact of climatic changes on Chinese terrestrial net primary productivity.Chinese Science Bulletin, 52, 3253-3560. |
[1] | 党宏忠, 张学利, 韩辉, 石长春, 葛玉祥, 马全林, 陈帅, 刘春颖. 樟子松固沙林林水关系研究进展及对营林实践的指导[J]. 植物生态学报, 2022, 46(9): 971-983. |
[2] | 魏瑶, 马志远, 周佳颖, 张振华. 模拟增温改变青藏高原植物繁殖物候及植株高度[J]. 植物生态学报, 2022, 46(9): 995-1004. |
[3] | 冯继广, 张秋芳, 袁霞, 朱彪. 氮磷添加对土壤有机碳的影响: 进展与展望[J]. 植物生态学报, 2022, 46(8): 855-870. |
[4] | 李肖, PIALUANG Bounthong, 康文辉, 冀晓东, 张海江, 薛治国, 张志强. 近几十年来冀西北山地白桦次生林径向生长对气候变化的响应[J]. 植物生态学报, 2022, 46(8): 919-931. |
[5] | 苏启陶, 杜志喧, 周兵, 廖永辉, 王呈呈, 肖宜安. 牯岭凤仙花及其传粉昆虫在中国的潜在分布区域分析[J]. 植物生态学报, 2022, 46(7): 785-796. |
[6] | 张英, 张常洪, 汪其同, 朱晓敏, 尹华军. 氮沉降下西南山地针叶林根际和非根际土壤微生物养分限制特征差异[J]. 植物生态学报, 2022, 46(4): 473-483. |
[7] | 胡潇飞, 魏临风, 程琦, 吴星麒, 倪健. 青藏高原地区气候图解数据集[J]. 植物生态学报, 2022, 46(4): 484-492. |
[8] | 田磊, 朱毅, 李欣, 韩国栋, 任海燕. 不同降水条件下内蒙古荒漠草原主要植物物候对长期增温和氮添加的响应[J]. 植物生态学报, 2022, 46(3): 290-299. |
[9] | 原媛, 母艳梅, 邓钰洁, 李鑫豪, 姜晓燕, 高圣杰, 查天山, 贾昕. 植被覆盖度和物候变化对典型黑沙蒿灌丛生态系统总初级生产力的影响[J]. 植物生态学报, 2022, 46(2): 162-175. |
[10] | 谢欢, 张秋芳, 曾泉鑫, 周嘉聪, 马亚培, 吴玥, 刘苑苑, 林惠瑛, 尹云锋, 陈岳民. 氮添加对杉木苗期磷转化和分解类真菌的影响[J]. 植物生态学报, 2022, 46(2): 220-231. |
[11] | 丛楠, 张扬建, 朱军涛. 北半球中高纬度地区近30年植被春季物候温度 敏感性[J]. 植物生态学报, 2022, 46(2): 125-135. |
[12] | 张义, 程杰, 苏纪帅, 程积民. 长期封育演替下典型草原植物群落生产力与多样性关系[J]. 植物生态学报, 2022, 46(2): 176-187. |
[13] | 王晶苑 魏杰 温学发. 土壤CO2通量梯度观测技术和方法的理论、假设与应用进展[J]. 植物生态学报, 2022, 46(12): 1523-1536. |
[14] | 杨萌, 于贵瑞. 中国干旱半干旱区土壤呼吸与CH4通量的耦联解耦及其对温度的响应[J]. 植物生态学报, 2022, 46(12): 1497-1507. |
[15] | 臧永新 马剑英 周晓兵 陶冶 尹本丰 沙亚古丽·及格尔 张元明. 极端干旱和降水对沙垄不同坡位、坡向短命植物地上生产力的影响[J]. 植物生态学报, 2022, 46(12): 1537-1550. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19