植物生态学报 ›› 2020, Vol. 44 ›› Issue (10): 1015-1027.DOI: 10.17521/cjpe.2020.0148
王艳红1, 李帅锋1, 郎学东1, 黄小波1, 刘万德1, 徐崇华2, 苏建荣1,*()
收稿日期:
2020-05-12
接受日期:
2020-08-21
出版日期:
2020-10-20
发布日期:
2020-11-24
通讯作者:
苏建荣
作者简介:
*E-mail:jianrongsu@vip.sina.com基金资助:
WANG Yan-Hong1, LI Shuai-Feng1, LANG Xue-Dong1, HUANG Xiao-Bo1, LIU Wan-De1, XU Chong-Hua2, SU Jian-Rong1,*()
Received:
2020-05-12
Accepted:
2020-08-21
Online:
2020-10-20
Published:
2020-11-24
Contact:
SU Jian-Rong
Supported by:
摘要:
地形异质性通过调控树木生长所需的养分、水分和光照等而成为亚热带森林结构与物种组成的重要驱动因子。但是, 地形异质性对季风常绿阔叶林物种多样性及其分布影响的研究还相对较少。该文基于云南普洱30 hm2森林动态监测样地(大样地) 750个20 m × 20 m的样方调查数据, 以海拔、坡度、凹凸度和坡向4个地形因子为变量, 采用C均值模糊聚类分析大样地的地形类型, 进而分析不同地形条件下的群落物种组成及群落物种多样性; 采用Torus转换检验法, 探讨物种与地形关联性, 为季风常绿阔叶林生物多样性保护提供科学依据。研究结果表明, 大样地可分为山脊、陡坡、缓坡、高谷和沟谷等5类地形, 地形面积分别是8.00、6.04、7.68、2.76和5.52 hm2。大样地中胸径(DBH) ≥ 1 cm的木本植物个体153 418株, 分属79科179属271种。5类地形中, 物种丰富度、不同径级的植株密度和比例明显不同, 多样性及优势物种多度分布具有较大差异。种-面积曲线表明, 同等面积条件下, 随着取样面积增加, 山脊的物种丰富度始终最小, 高谷次之, 沟谷的物种丰富度始终最大。种-个体数累积曲线表明, 随着个体数增加, 山脊物种丰富度的累积速率最小, 种丰富度增加缓慢, 高谷次之。在被检验的123个物种中, 与地形相关的物种有83个, 高达67.5%的物种与至少一类地形存在显著相关关系。山脊和缓坡中与地形具有显著负相关关系的物种数超过显著正相关的物种数; 而与陡坡、高谷和沟谷显著正相关的物种数高于显著负相关的物种数。普洱大样地地形异质性对物种多样性维持的贡献率为7.8%。
王艳红, 李帅锋, 郎学东, 黄小波, 刘万德, 徐崇华, 苏建荣. 地形异质性对云南普洱季风常绿阔叶林物种多样性的影响. 植物生态学报, 2020, 44(10): 1015-1027. DOI: 10.17521/cjpe.2020.0148
WANG Yan-Hong, LI Shuai-Feng, LANG Xue-Dong, HUANG Xiao-Bo, LIU Wan-De, XU Chong-Hua, SU Jian-Rong. Effects of topographic heterogeneity on species diversity in a monsoon evergreen broad- leaved forest in Puʼer, Yunnan, China. Chinese Journal of Plant Ecology, 2020, 44(10): 1015-1027. DOI: 10.17521/cjpe.2020.0148
地形 Topography | 海拔 Elevation (m) | 坡度 Slope (°) | 凹凸度 Convexity (m) | 坡向 Slope aspect (°) | 样地数 Sample plot number |
---|---|---|---|---|---|
山脊 Ridge | 1 547.0 ± 0.96a | 19.6 ± 0.33a | 0.67 ± 0.14a | 164.41 ± 1.56a | 200 |
陡坡 Steep slope | 1 525.7 ± 1.62b | 19.4 ± 0.50a | -0.17 ± 0.18b | 324.74 ± 2.19b | 151 |
缓坡 Less-steep slope | 1 504.5 ± 1.18c | 18.4 ± 0.34b | -0.42 ± 0.12b | 185.70 ± 1.27c | 192 |
高谷 High plateau | 1 548.7 ± 3.10a | 19.5 ± 0.56a | 0.41 ± 0.21a | 52.53 ± 4.52d | 69 |
沟谷 Valley | 1 498.3 ± 1.89d | 18.8 ± 0.52a | -0.91 ± 0.20bc | 294.68 ± 2.23e | 138 |
表1 云南普洱30 hm2大样地5类地形特征及样地数(平均值±标准误差)
Table 1 Characteristics and numbers of plots of different topographic types within the 30 hm2 dynamics plot in Pu’er, Yunnan (mean ± SE)
地形 Topography | 海拔 Elevation (m) | 坡度 Slope (°) | 凹凸度 Convexity (m) | 坡向 Slope aspect (°) | 样地数 Sample plot number |
---|---|---|---|---|---|
山脊 Ridge | 1 547.0 ± 0.96a | 19.6 ± 0.33a | 0.67 ± 0.14a | 164.41 ± 1.56a | 200 |
陡坡 Steep slope | 1 525.7 ± 1.62b | 19.4 ± 0.50a | -0.17 ± 0.18b | 324.74 ± 2.19b | 151 |
缓坡 Less-steep slope | 1 504.5 ± 1.18c | 18.4 ± 0.34b | -0.42 ± 0.12b | 185.70 ± 1.27c | 192 |
高谷 High plateau | 1 548.7 ± 3.10a | 19.5 ± 0.56a | 0.41 ± 0.21a | 52.53 ± 4.52d | 69 |
沟谷 Valley | 1 498.3 ± 1.89d | 18.8 ± 0.52a | -0.91 ± 0.20bc | 294.68 ± 2.23e | 138 |
参数 Parameter | 面积 Area (hm2) | 个体数 Number of individuals | 植株密度 Plant density (individual·hm-2) | 根萌生 Root sprouting | 干基萌生 Stem basal sprouting | 干萌生 Stem epicormic | 枝萌生 Branch epicormic |
---|---|---|---|---|---|---|---|
大样地 Big sample plot | 30.00 | 153 418 | 5 114 | 14 691 | 675 | 721 | - |
山脊 Ridge | 8.00 | 44 861 | 5 608 | 5 222 | 98 | 142 | - |
陡坡 Steep slope | 6.04 | 29 703 | 4 918 | 2 687 | 118 | 113 | 1 |
缓坡 Less-steep slope | 7.68 | 39 320 | 5 120 | 3 295 | 203 | 207 | 2 |
高谷 High plateau | 2.76 | 13 843 | 5 016 | 1 682 | 62 | 80 | - |
沟谷 Valley | 5.52 | 25 691 | 4 654 | 1 805 | 195 | 179 | 38 |
表2 云南普洱30 hm2大样地5类地形群落的基本特征
Table 2 Basic characteristics of the communities in the five topographic types within the 30 hm2 dynamics plot in Pu’er, Yunnan
参数 Parameter | 面积 Area (hm2) | 个体数 Number of individuals | 植株密度 Plant density (individual·hm-2) | 根萌生 Root sprouting | 干基萌生 Stem basal sprouting | 干萌生 Stem epicormic | 枝萌生 Branch epicormic |
---|---|---|---|---|---|---|---|
大样地 Big sample plot | 30.00 | 153 418 | 5 114 | 14 691 | 675 | 721 | - |
山脊 Ridge | 8.00 | 44 861 | 5 608 | 5 222 | 98 | 142 | - |
陡坡 Steep slope | 6.04 | 29 703 | 4 918 | 2 687 | 118 | 113 | 1 |
缓坡 Less-steep slope | 7.68 | 39 320 | 5 120 | 3 295 | 203 | 207 | 2 |
高谷 High plateau | 2.76 | 13 843 | 5 016 | 1 682 | 62 | 80 | - |
沟谷 Valley | 5.52 | 25 691 | 4 654 | 1 805 | 195 | 179 | 38 |
地形 Topography | 物种 Species | 相对频度 Relative frequency | 相对多度 Relative abundance | 相对胸高断面积 Relative basal area at the breast height | 重要值 Importance value |
---|---|---|---|---|---|
山脊 Ridge | 短刺锥 Castanopsis echidnocarpa | 3.7 | 28.5 | 34.0 | 22.0 |
泥柯 Lithocarpus fenestratus | 3.7 | 14.5 | 6.5 | 8.2 | |
截果柯 Lithocarpus truncatus | 3.7 | 5.3 | 7.1 | 5.3 | |
西南木荷 Schima wallichii | 3.6 | 2.6 | 9.7 | 5.3 | |
茶梨 Anneslea fragrans | 3.5 | 4.4 | 5.4 | 4.4 | |
隐距越桔 Vaccinium exaristatum | 3.5 | 5.4 | 3.6 | 4.2 | |
红梗润楠 Machilus rufipes | 3.6 | 4.6 | 2.5 | 3.6 | |
红叶木姜子 Litsea rubescens | 3.6 | 4.3 | 2.5 | 3.5 | |
红皮水锦树 Wendlandia tinctoria subsp. intermedia | 3.3 | 3.0 | 2.8 | 3.0 | |
深绿山龙眼 Helicia nilagirica | 3.5 | 3.3 | 2.1 | 3.0 | |
陡坡 Steep slope | 短刺锥 Castanopsis echidnocarpa | 2.8 | 16.4 | 22.8 | 14.0 |
泥柯 Lithocarpus fenestratus | 2.6 | 9.8 | 4.2 | 5.5 | |
西南木荷 Schima wallichii | 2.8 | 3.4 | 9.8 | 5.3 | |
红梗润楠 Machilus rufipes | 2.8 | 5.5 | 4.4 | 4.2 | |
枹丝锥 Castanopsis calathiformis | 1.9 | 5.6 | 5.0 | 4.2 | |
截果柯 Lithocarpus truncatus | 2.6 | 4.1 | 5.4 | 4.0 | |
红叶木姜子 Litsea rubescens | 2.7 | 4.5 | 2.6 | 3.2 | |
西桦 Betula alnoides | 0.9 | 0.5 | 7.4 | 3.0 | |
茶梨 Anneslea fragrans | 2.5 | 3.4 | 2.9 | 2.9 | |
隐距越桔 Vaccinium exaristatum | 2.2 | 2.8 | 1.8 | 2.2 | |
缓坡 Less-steep slope | 短刺锥 Castanopsis echidnocarpa | 2.8 | 21.8 | 24.7 | 16.5 |
西南木荷 Schima wallichii | 2.8 | 3.2 | 14.3 | 6.8 | |
泥柯 Lithocarpus fenestratus | 2.8 | 10.1 | 6.3 | 6.4 | |
枹丝锥 Castanopsis calathiformis | 2.5 | 7.2 | 4.4 | 4.7 | |
红梗润楠 Machilus rufipes | 2.9 | 6.0 | 4.8 | 4.6 | |
截果柯 Lithocarpus truncatus | 2.7 | 4.2 | 6.3 | 4.4 | |
茶梨 Anneslea fragrans | 2.6 | 4.0 | 3.7 | 3.5 | |
红叶木姜子 Litsea rubescens | 2.7 | 3.7 | 3.8 | 3.4 | |
隐距越桔 Vaccinium exaristatum | 2.0 | 2.4 | 1.7 | 2.0 | |
艾胶算盘子 Glochidion lanceolarium | 2.7 | 2.4 | 0.6 | 1.9 | |
高谷 High plateau | 短刺锥 Castanopsis echidnocarpa | 3.1 | 16.7 | 24.0 | 14.6 |
泥柯 Lithocarpus fenestratus | 3.0 | 17.2 | 5.7 | 8.6 | |
西南木荷 Schima wallichii | 3.2 | 3.2 | 13.5 | 6.7 | |
红梗润楠 Machilus rufipes | 3.2 | 5.7 | 5.0 | 4.7 | |
截果柯 Lithocarpus truncatus | 2.8 | 3.9 | 5.7 | 4.1 | |
红叶木姜子 Litsea rubescens | 3.1 | 5.4 | 2.9 | 3.8 | |
西桦 Betula alnoides | 1.4 | 0.8 | 7.7 | 3.3 | |
隐距越桔 Vaccinium exaristatum | 2.7 | 4.0 | 2.4 | 3.0 | |
茶梨 Anneslea fragrans | 3.1 | 2.8 | 2.7 | 2.9 | |
枹丝锥 Castanopsis calathiformis | 2.0 | 2.6 | 2.7 | 2.5 | |
沟谷 Valley | 短刺锥 Castanopsis echidnocarpa | 2.5 | 12.9 | 15.6 | 10.4 |
西南木荷 Schima wallichii | 2.4 | 3.4 | 10.9 | 5.6 | |
泥柯 Lithocarpus fenestratus | 2.3 | 9.5 | 4.2 | 5.4 | |
红梗润楠 Machilus rufipes | 2.6 | 5.6 | 6.2 | 4.8 | |
截果柯 Lithocarpus truncatus | 2.4 | 3.7 | 6.3 | 4.1 | |
枹丝锥 Castanopsis calathiformis | 1.9 | 5.6 | 3.1 | 3.5 | |
云南瘿椒树 Tapiscia yunnanensis | 1.8 | 1.4 | 4.7 | 2.6 | |
茶梨 Anneslea fragrans | 2.2 | 3.2 | 2.2 | 2.6 | |
红叶木姜子 Litsea rubescens | 2.2 | 3.2 | 2.2 | 2.5 | |
齿叶黄杞 Engelhardtia serrata | 1.7 | 2.4 | 3.2 | 2.4 |
表3 云南普洱30 hm2大样地5类地形重要值前10的物种
Table 3 Top ten dominant species in the five topographic types based on importance values within the 30 hm2 dynamics plot in Pu’er, Yunnan
地形 Topography | 物种 Species | 相对频度 Relative frequency | 相对多度 Relative abundance | 相对胸高断面积 Relative basal area at the breast height | 重要值 Importance value |
---|---|---|---|---|---|
山脊 Ridge | 短刺锥 Castanopsis echidnocarpa | 3.7 | 28.5 | 34.0 | 22.0 |
泥柯 Lithocarpus fenestratus | 3.7 | 14.5 | 6.5 | 8.2 | |
截果柯 Lithocarpus truncatus | 3.7 | 5.3 | 7.1 | 5.3 | |
西南木荷 Schima wallichii | 3.6 | 2.6 | 9.7 | 5.3 | |
茶梨 Anneslea fragrans | 3.5 | 4.4 | 5.4 | 4.4 | |
隐距越桔 Vaccinium exaristatum | 3.5 | 5.4 | 3.6 | 4.2 | |
红梗润楠 Machilus rufipes | 3.6 | 4.6 | 2.5 | 3.6 | |
红叶木姜子 Litsea rubescens | 3.6 | 4.3 | 2.5 | 3.5 | |
红皮水锦树 Wendlandia tinctoria subsp. intermedia | 3.3 | 3.0 | 2.8 | 3.0 | |
深绿山龙眼 Helicia nilagirica | 3.5 | 3.3 | 2.1 | 3.0 | |
陡坡 Steep slope | 短刺锥 Castanopsis echidnocarpa | 2.8 | 16.4 | 22.8 | 14.0 |
泥柯 Lithocarpus fenestratus | 2.6 | 9.8 | 4.2 | 5.5 | |
西南木荷 Schima wallichii | 2.8 | 3.4 | 9.8 | 5.3 | |
红梗润楠 Machilus rufipes | 2.8 | 5.5 | 4.4 | 4.2 | |
枹丝锥 Castanopsis calathiformis | 1.9 | 5.6 | 5.0 | 4.2 | |
截果柯 Lithocarpus truncatus | 2.6 | 4.1 | 5.4 | 4.0 | |
红叶木姜子 Litsea rubescens | 2.7 | 4.5 | 2.6 | 3.2 | |
西桦 Betula alnoides | 0.9 | 0.5 | 7.4 | 3.0 | |
茶梨 Anneslea fragrans | 2.5 | 3.4 | 2.9 | 2.9 | |
隐距越桔 Vaccinium exaristatum | 2.2 | 2.8 | 1.8 | 2.2 | |
缓坡 Less-steep slope | 短刺锥 Castanopsis echidnocarpa | 2.8 | 21.8 | 24.7 | 16.5 |
西南木荷 Schima wallichii | 2.8 | 3.2 | 14.3 | 6.8 | |
泥柯 Lithocarpus fenestratus | 2.8 | 10.1 | 6.3 | 6.4 | |
枹丝锥 Castanopsis calathiformis | 2.5 | 7.2 | 4.4 | 4.7 | |
红梗润楠 Machilus rufipes | 2.9 | 6.0 | 4.8 | 4.6 | |
截果柯 Lithocarpus truncatus | 2.7 | 4.2 | 6.3 | 4.4 | |
茶梨 Anneslea fragrans | 2.6 | 4.0 | 3.7 | 3.5 | |
红叶木姜子 Litsea rubescens | 2.7 | 3.7 | 3.8 | 3.4 | |
隐距越桔 Vaccinium exaristatum | 2.0 | 2.4 | 1.7 | 2.0 | |
艾胶算盘子 Glochidion lanceolarium | 2.7 | 2.4 | 0.6 | 1.9 | |
高谷 High plateau | 短刺锥 Castanopsis echidnocarpa | 3.1 | 16.7 | 24.0 | 14.6 |
泥柯 Lithocarpus fenestratus | 3.0 | 17.2 | 5.7 | 8.6 | |
西南木荷 Schima wallichii | 3.2 | 3.2 | 13.5 | 6.7 | |
红梗润楠 Machilus rufipes | 3.2 | 5.7 | 5.0 | 4.7 | |
截果柯 Lithocarpus truncatus | 2.8 | 3.9 | 5.7 | 4.1 | |
红叶木姜子 Litsea rubescens | 3.1 | 5.4 | 2.9 | 3.8 | |
西桦 Betula alnoides | 1.4 | 0.8 | 7.7 | 3.3 | |
隐距越桔 Vaccinium exaristatum | 2.7 | 4.0 | 2.4 | 3.0 | |
茶梨 Anneslea fragrans | 3.1 | 2.8 | 2.7 | 2.9 | |
枹丝锥 Castanopsis calathiformis | 2.0 | 2.6 | 2.7 | 2.5 | |
沟谷 Valley | 短刺锥 Castanopsis echidnocarpa | 2.5 | 12.9 | 15.6 | 10.4 |
西南木荷 Schima wallichii | 2.4 | 3.4 | 10.9 | 5.6 | |
泥柯 Lithocarpus fenestratus | 2.3 | 9.5 | 4.2 | 5.4 | |
红梗润楠 Machilus rufipes | 2.6 | 5.6 | 6.2 | 4.8 | |
截果柯 Lithocarpus truncatus | 2.4 | 3.7 | 6.3 | 4.1 | |
枹丝锥 Castanopsis calathiformis | 1.9 | 5.6 | 3.1 | 3.5 | |
云南瘿椒树 Tapiscia yunnanensis | 1.8 | 1.4 | 4.7 | 2.6 | |
茶梨 Anneslea fragrans | 2.2 | 3.2 | 2.2 | 2.6 | |
红叶木姜子 Litsea rubescens | 2.2 | 3.2 | 2.2 | 2.5 | |
齿叶黄杞 Engelhardtia serrata | 1.7 | 2.4 | 3.2 | 2.4 |
图3 云南普洱30 hm2大样地5类地形中优势物种重叠情况。数字代表物种数量。
Fig. 3 Overlap of dominant species in five topographic types within the 30 hm2 dynamics plot in Pu’er, Yunnan. Values represent number of species.
地形 Topography | 植株密度(比例) Plant density (Percentage) | |||||||
---|---|---|---|---|---|---|---|---|
平均胸径 Average DBH (cm) | 1-5 cm | 5-10 cm | 10-20 cm | 20-30 cm | 30-40 cm | 40-50 cm | ≥50 cm | |
大样地 Big sample plot | 6.34 | 3 213 (62.83) | 1 041 (20.35) | 589 (11.51) | 184 (3.60) | 57 (1.12) | 20 (0.40) | 10 (0.19) |
山脊 Ridge | 6.33 ± 0.05a | 3 376 (60.20) | 1 226 (21.86) | 723 (12.89) | 210 (3.74) | 53 (0.95) | 15 (0.27) | 5 (0.09) |
陡坡 Steep slope | 6.28 ± 0.07a | 3 162 (64.31) | 950 (19.32) | 532 (10.83) | 178 (3.61) | 63 (1.27) | 24 (0.48) | 9 (0.18) |
缓坡 Less-steep slope | 6.38 ± 0.07a | 3 254 (63.56) | 1 012 (19.76) | 584 (11.41) | 180 (3.51) | 54 (1.06) | 22 (0.42) | 14 (0.28) |
高谷 High plateau | 6.42 ± 0.15a | 3 171 (63.22) | 983 (19.61) | 576 (11.49) | 190 (3.78) | 65 (1.30) | 21 (0.41) | 10 (0.19) |
沟谷 Valley | 6.35 ± 0.09a | 2 998 (64.40) | 941 (20.21) | 466 (10.02) | 157 (3.37) | 57 (1.21) | 22 (0.49) | 13 (0.30) |
表4 云南普洱30 hm2大样地5类地形不同径级植株密度(株?hm-2)及各径级植株数占总植株数比例(%)
Table 4 Plant density (individual?hm-2) and percentage (%) of trees with different DBH values in five topographic types within the 30 hm2 dynamics plot in Pu’er, Yunnan
地形 Topography | 植株密度(比例) Plant density (Percentage) | |||||||
---|---|---|---|---|---|---|---|---|
平均胸径 Average DBH (cm) | 1-5 cm | 5-10 cm | 10-20 cm | 20-30 cm | 30-40 cm | 40-50 cm | ≥50 cm | |
大样地 Big sample plot | 6.34 | 3 213 (62.83) | 1 041 (20.35) | 589 (11.51) | 184 (3.60) | 57 (1.12) | 20 (0.40) | 10 (0.19) |
山脊 Ridge | 6.33 ± 0.05a | 3 376 (60.20) | 1 226 (21.86) | 723 (12.89) | 210 (3.74) | 53 (0.95) | 15 (0.27) | 5 (0.09) |
陡坡 Steep slope | 6.28 ± 0.07a | 3 162 (64.31) | 950 (19.32) | 532 (10.83) | 178 (3.61) | 63 (1.27) | 24 (0.48) | 9 (0.18) |
缓坡 Less-steep slope | 6.38 ± 0.07a | 3 254 (63.56) | 1 012 (19.76) | 584 (11.41) | 180 (3.51) | 54 (1.06) | 22 (0.42) | 14 (0.28) |
高谷 High plateau | 6.42 ± 0.15a | 3 171 (63.22) | 983 (19.61) | 576 (11.49) | 190 (3.78) | 65 (1.30) | 21 (0.41) | 10 (0.19) |
沟谷 Valley | 6.35 ± 0.09a | 2 998 (64.40) | 941 (20.21) | 466 (10.02) | 157 (3.37) | 57 (1.21) | 22 (0.49) | 13 (0.30) |
参数 Parameter | 科数 No. of family | 属数 No. of genera | 丰富度 Richness | 香农威纳指数 Shannon-Wiener index | 稀有种 Rare species | 稀有物种比例 Rare species ratio (%) | 偶见种 Occasional species | 偶见种比例 Occasional species ratio (%) |
---|---|---|---|---|---|---|---|---|
大样地 Big sample plot | 79 | 178 | 271 | - | 148 | 54.6 | 66 | 24.4 |
山脊 Ridge | 48 | 104 | 145 | 2.47 ± 0.02d | 63 | 43.4 | 44 | 30.3 |
陡坡 Steep slope | 67 | 148 | 198 | 2.87 ± 0.03b | 78 | 39.4 | 56 | 28.3 |
缓坡 Less-steep slope | 69 | 147 | 217 | 2.81 ± 0.03b | 101 | 46.5 | 67 | 30.9 |
高谷High plateau | 51 | 103 | 143 | 2.69 ± 0.04c | 29 | 20.3 | 65 | 45.5 |
沟谷 Valley | 64 | 143 | 200 | 3.05 ± 0.03a | 74 | 37.0 | 62 | 31.0 |
表5 云南普洱30hm2大样地5类地形群落物种多样性特征
Table 5 Species diversity characteristics within the communities in the five topographic types within the 30 hm2 dynamics plot in Pu’er, Yunnan
参数 Parameter | 科数 No. of family | 属数 No. of genera | 丰富度 Richness | 香农威纳指数 Shannon-Wiener index | 稀有种 Rare species | 稀有物种比例 Rare species ratio (%) | 偶见种 Occasional species | 偶见种比例 Occasional species ratio (%) |
---|---|---|---|---|---|---|---|---|
大样地 Big sample plot | 79 | 178 | 271 | - | 148 | 54.6 | 66 | 24.4 |
山脊 Ridge | 48 | 104 | 145 | 2.47 ± 0.02d | 63 | 43.4 | 44 | 30.3 |
陡坡 Steep slope | 67 | 148 | 198 | 2.87 ± 0.03b | 78 | 39.4 | 56 | 28.3 |
缓坡 Less-steep slope | 69 | 147 | 217 | 2.81 ± 0.03b | 101 | 46.5 | 67 | 30.9 |
高谷High plateau | 51 | 103 | 143 | 2.69 ± 0.04c | 29 | 20.3 | 65 | 45.5 |
沟谷 Valley | 64 | 143 | 200 | 3.05 ± 0.03a | 74 | 37.0 | 62 | 31.0 |
图4 云南普洱30 hm2大样地5类地形种-面积曲线。虚线表示估计值在±1.96 × SE的变化范围。
Fig. 4 Cumulative species-area relationships of the five topographic types within the 30 hm2 dynamics plot in Pu’er, Yunnan. The dotted lines indicated the expected values ±1.96 × SE.
图5 云南普洱30 hm2大样地5类地形种-个体数累积曲线。虚线表示估计值在±1.96 × SE 的变化范围。
Fig. 5 Cumulative species-individual relationships of the five topographic types within the 30 hm2 dynamics plot in Pu’er, Yunnan. The dotted lines indicated the expected values ±1.96 × SE.
图6 云南普洱30 hm2大样地与5类地形显著相关的物种数。
Fig. 6 Number of species significantly correlated with each of the five topographic types within the 30 hm2 dynamics plot in Pu’er, Yunnan.
物种 Species | 山脊 Ridge | 陡坡 Steep slope | 缓坡 Less-steep slope | 高谷 High plateau | 沟谷 Valley |
---|---|---|---|---|---|
艾胶算盘子 Glochidion lanceolarium | 0 | 0 | 0 | 0 | - |
枹丝锥 Castanopsis calathiformis | - | 0 | 0 | + | 0 |
茶梨 Anneslea fragrans | 0 | 0 | 0 | 0 | 0 |
齿叶黄杞 Engelhardtia serrata | - | 0 | 0 | 0 | + |
短刺锥 Castanopsis echidnocarpa | + | 0 | 0 | 0 | 0 |
红梗润楠 Machilus rufipes | - | 0 | 0 | 0 | 0 |
红皮水锦树 Wendlandia tinctoria subsp. intermedia | + | 0 | 0 | 0 | 0 |
红叶木姜子 Litsea rubescens | 0 | 0 | 0 | 0 | 0 |
泥柯 Lithocarpus fenestratus | 0 | 0 | + | 0 | 0 |
截果柯 Lithocarpus truncatus | 0 | 0 | 0 | 0 | 0 |
深绿山龙眼 Helicia nilagirica | + | 0 | 0 | 0 | 0 |
西桦 Betula alnoides | 0 | 0 | 0 | 0 | 0 |
西南木荷 Schima wallichii | 0 | 0 | 0 | 0 | 0 |
隐距越桔 Vaccinium exaristatum | + | 0 | 0 | 0 | 0 |
云南瘿椒树 Tapiscia yunnanensis | 0 | 0 | - | 0 | 0 |
表6 云南普洱30 hm2大样地15种物种与5类地形的相关性
Table 6 Fifteen species associated with the five topographic types within the 30 hm2 dynamics plot in Pu’er, Yunnan
物种 Species | 山脊 Ridge | 陡坡 Steep slope | 缓坡 Less-steep slope | 高谷 High plateau | 沟谷 Valley |
---|---|---|---|---|---|
艾胶算盘子 Glochidion lanceolarium | 0 | 0 | 0 | 0 | - |
枹丝锥 Castanopsis calathiformis | - | 0 | 0 | + | 0 |
茶梨 Anneslea fragrans | 0 | 0 | 0 | 0 | 0 |
齿叶黄杞 Engelhardtia serrata | - | 0 | 0 | 0 | + |
短刺锥 Castanopsis echidnocarpa | + | 0 | 0 | 0 | 0 |
红梗润楠 Machilus rufipes | - | 0 | 0 | 0 | 0 |
红皮水锦树 Wendlandia tinctoria subsp. intermedia | + | 0 | 0 | 0 | 0 |
红叶木姜子 Litsea rubescens | 0 | 0 | 0 | 0 | 0 |
泥柯 Lithocarpus fenestratus | 0 | 0 | + | 0 | 0 |
截果柯 Lithocarpus truncatus | 0 | 0 | 0 | 0 | 0 |
深绿山龙眼 Helicia nilagirica | + | 0 | 0 | 0 | 0 |
西桦 Betula alnoides | 0 | 0 | 0 | 0 | 0 |
西南木荷 Schima wallichii | 0 | 0 | 0 | 0 | 0 |
隐距越桔 Vaccinium exaristatum | + | 0 | 0 | 0 | 0 |
云南瘿椒树 Tapiscia yunnanensis | 0 | 0 | - | 0 | 0 |
[1] | Anderson MJ, Crist TO, Chase JM, Vellend M, Inouye BD, Freestone AL, Sanders NJ, Cornell HV, Comita LS, Davies KF, Harrison SP, Kraft NJB, Stegen JC, Swenson NG (2011). Navigating the multiple meanings of β diversity: a roadmap for the practicing ecologist. Ecology Letters, 14, 19-28. |
[2] | Bell G, Lechowicz MJ, Waterway MJ (2000). Environmental heterogeneity and species diversity of forest sedges. Journal of Ecology, 88, 67-87. |
[3] | Bellingham PJ, Tanner EVJ (2000). The influence of topography on tree growth, mortality, and recruitment in a tropical montane forest. Biotropica, 32, 378-384. |
[4] | Bezdek JC (1981). Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, New York. |
[5] | Bu WS (2013). The Relationships Between Biodiversity and Ecosystem Functioning in Natural Tropical Forests of Hainan Island, China. PhD dissertation, Chinese Academy of Forestry, Beijing. 89-95. |
[ 卜文圣 (2013). 海南岛热带天然林生物多样性与生态系统功能关系的研究. 博士学位论文, 中国林业科学研究院, 北京. 89-95.] | |
[6] | Chase JM (2003). Community assembly: When should history matter? Oecologia, 136, 489-498. |
[7] | Chen L, Mi XC, Comita LS, Zhang LW, Ren HB, Ma KP (2010). Community-level consequences of density dependence and habitat association in a subtropical broad-leaved forest. Ecology Letters, 13, 695-704. |
[8] | Chen M, Fang H, Cao M (2008). Sprouting characteristics of sprouted woody plants in the mid-mountain humid evergreen broad-leaved forest on Ailao Mountain, Yunnan Province. Guihaia, 28, 627-632. |
[ 陈沐, 房辉, 曹敏 (2008). 云南哀牢山中山湿性常绿阔叶林树种萌生特征研究. 广西植物, 28, 627-632.] | |
[9] | Chuyong GB, Kenfack D, Harms KE, Thomas DW, Condit R, Comita LS (2011). Habitat specificity and diversity of tree species in an African wet tropical forest. Plant Ecology, 212, 1363-1374. |
[10] | Clark DB, Clark DA, Read JM (1998). Edaphic variation and the mesoscale distribution of tree species in a neotropical rain forest. Journal of Ecology, 86, 101-112. |
[11] | Condit R (1998). Tropical Forest Census Plots: Methods and Results from Barro Colorado Island, Panama and a Comparison with Other Plots. Springer-Verlag, Berlin. |
[12] | Forrester D, Bauhus J, Connell M (2003). Competition in thinned Silvertop ash ( Eucalyptus sieberi L. Johnson) stands from early coppice growth. Forest Ecology and Management, 174, 459-475. |
[13] | Gong GQ, Chen JM, Mi XC, Chen SW, Fang T (2007). Habitat associations of wood species in the Gutianshan subtropical broad-leaved evergreen forest. Science of Soil and Water Conservation, 5(3), 79-83. |
[ 宫贵权, 程积民, 米湘成, 陈声文, 方腾 (2007). 古田山常绿阔叶林木本植物与生境的相关性. 中国水土保持科学, 5(3), 79-83.] | |
[14] | Guo YL, Wang B, Xiang WS, Ding T, Lu SH, Huang FZ, Wen SJ, Li DX, He YL, Li XK (2016). Responses of spatial pattern of woody plants’ basal area to topographic factors in a tropical karst seasonal rainforest in Nonggang, Guangxi, southern China. Biodiversity Science, 24, 30-39. |
[ 郭屹立, 王斌, 向悟生, 丁涛, 陆树华, 黄甫昭, 文淑均, 李冬兴, 何运林, 李先琨 (2016). 喀斯特季节性雨林木本植物胸高断面积分布格局及其对地形因子的响应. 生物多样性, 24, 30-39.] | |
[15] | Guo YL, Wang B, Xiang WS, Ding T, Lu SH, Wen SJ, Huang FZ, Li DX, Li XK (2015). Sprouting characteristics of tree species in 15 hm2 plot of northern tropical karst seasonal rain forest in Nonggang, Guangxi, southern China. Chinese Journal of Ecology, 34, 955-961. |
[ 郭屹立, 王斌, 向悟生, 丁涛, 陆树华, 文淑均, 黄甫昭, 李冬兴, 李先琨 (2015). 弄岗北热带喀斯特季节性雨林15 hm2样地木本植物萌生特征 . 生态学杂志, 34, 955-961.] | |
[16] | Hao MH, Zhang ZH, Zhao SS, Zhao XH, Beiketuerhan Y, Zhang CY (2017). Habitat associations of tree growth in a coniferous and broad-leaved mixed forest in Jiaohe, Jilin Province. Acta Ecologica Sinica, 37, 3437-3444. |
[ 郝珉辉, 张忠辉, 赵珊珊, 赵秀海, 叶尔江·拜克吐尔汉, 张春雨 (2017). 吉林蛟河针阔混交林树木生长与生境的关联性. 生态学报, 37, 3437-3444.] | |
[17] | Harms KE, Condit R, Hubbell SP, Foster RB (2001). Habitat associations of trees and shrubs in a 50 hm2 neotropical forest plot . Journal of Ecology, 89, 947-959. |
[18] | Hennenberg KJ, Bruelheide H (2003). Ecological investigations on the northern distribution range of Hippocrepis comosa L. in Germany. Plant Ecology, 166, 167-188. |
[19] | Hofer G, Wagner HH, Herzog F, Edwards PJ (2008). Effects of topographic variability on the scaling of plant species richness in gradient dominated landscapes. Ecography, 31, 131-139. |
[20] | Hubbell S, Foster RB (1986). Commonness and rarity in a neotropical forest: implications for tropical tree conservation//Soule ME. Conservation Biology: Science of Scarcity and Diversity. Sinauer Press, Sunderland, UK. |
[21] | Irl SDH, Harter DEV, Steinbauer MJ, Puyol GD, Fernández- Palacios JM, Jentsch A, Beierkuhnlein C (2015). Climate vs. topography-spatial patterns of plant species diversity and endemism on a high-elevation island. Journal of Ecology, 103, 1621-1633. |
[22] | Jiang P, Ye J, Wu G (2005). Woody species composition and biomass of main tree species in a 25 hm2 plot of broad-leaved and Korean pine mixed forests of Changbai Mountain, northeast China . Journal of Beijing Forestry University, 27(Supp.2), 112-115. |
[ 姜萍, 叶吉, 吴钢 (2005). 长白山阔叶红松林大样地木本植物组成及主要树种的生物量. 北京林业大学学报, 27(增刊2), 112-115.] | |
[23] | Lai JS, Mi XC, Ren HB, Ma KP (2010). Numerical classification of associations in subtropical evergreen broad- leaved forest based on multivariate regression trees—A case study 24 hm2 Gutianshan forest plot in China . Chinese Journal of Plant Ecology, 34, 761-769. |
[ 赖江山, 米湘成, 任海保, 马克平 (2010). 基于多元回归树的常绿阔叶林群丛数量分类——以古田山24公顷森林样地为例. 植物生态学报, 34, 761-769.] | |
[24] | Lan GY, Hu YH, Cao M, Zhu H (2011). Topography related spatial distribution of dominant tree species in a tropical seasonal rain forest in China. Forest Ecology and Management, 262, 1507-1513. |
[25] | Lan GY, Hu YH, Cao M, Zhu H, Wang H, Zhou SS, Deng XB, Cui JY, Huang JG, Liu LY, Xu HL, Song JP, He YC (2008). Establishment of Xishuangbanna tropical forest dynamics plot: species compositions and spatial distribution patterns. Journal of Plant Ecology (Chinese Version), 32, 287-298. |
[ 兰国玉, 胡跃华, 曹敏, 朱华, 王洪, 周仕顺, 邓晓保, 崔景云, 黄建国, 刘林云, 许海龙, 宋军平, 何有才 (2008). 西双版纳热带森林动态监测样地: 树种组成与空间分布格局. 植物生态学报, 32, 287-298.] | |
[26] | Li SF, Lang XD, Huang XB, Wang YH, Liu WD, Xu CH, Su JR (2020). Association classification of a 30 hm2 dynamics plot in the monsoon broad-leaved evergreen forest in Pu’er, Yunnan Province, China. Chinese Journal of Plant Ecology, 44, 248-259. |
[ 李帅锋, 郎学东, 黄小波, 王艳红, 刘万德, 徐崇华, 苏建荣 (2020). 云南普洱30公顷季风常绿阔叶林动态监测样地群丛数量分类. 植物生态学报, 44, 248-259.] | |
[27] | Li SF, Liu WD, Su JR, Zhang ZJ, Liu QY (2012). Woody seedling regeneration in secondary succession of monsoon broad-leaved evergreen forest in Pu’er, Yunnan, southwest China. Acta Ecologia Sinica, 32, 5653-5662. |
[ 李帅锋, 刘万德, 苏建荣, 张志钧, 刘庆云 (2012). 普洱季风常绿阔叶林次生演替中木本植物幼苗更新特征. 生态学报, 32, 5653-5662.] | |
[28] | Li X, Nie Y, Song X, Zhang R, Wang G (2011). Patterns of species diversity and functional diversity along the south to north-facing slope gradient in a sub-alpine meadow. Community Ecology, 12, 179-187. |
[29] | Liu JJ, Tan YH, Slik JWF (2014). Topography related habitat associations of tree species traits, composition and diversity in a Chinese tropical forest. Forest Ecology and Management, 330, 75-81. |
[30] | Liu WP, Cao HL, Liu W, Lian JY, Wu LF (2011). Study on diversity of monsoon evergreen broad leaved forest in diferent kinds of habitat in Dinghushan. Journal of Anhui Agricultural Science, 39, 16159-16163. |
[ 刘文平, 曹洪麟, 刘卫, 练琚愉, 吴林芳 (2011). 鼎湖山季风常绿阔叶林不同生境物种多样性研究. 安徽农业科学, 39, 16159-16163.] | |
[31] | Lundholm JT (2009). Plant species diversity and environmental heterogeneity: spatial scale and competing hypotheses. Journal of Vegetation Science, 20, 377-391. |
[32] | Ma KP (2017). Forest dynamics plot is a crosscutting research platform for biodiversity science. Biodiversity Science, 25, 227-228. |
[ 马克平 (2017). 森林动态大样地是生物多样性科学综合研究平台. 生物多样性, 25, 227-228.] | |
[33] | Pigott CD (1975). Experimental studies on the influence of climate on the geographical distribution of plants. Weather, 30, 82-90. |
[34] | Punchi-Manage R, Getzin S, Wiegand T, Kanagaraj R, Savitri GCV, Nimal GIAU, Wiegand K, Huth A (2012). Effects of topography on structuring local species assemblages in a Sri Lankan mixed dipterocarp forest. Journal of Ecology, 101, 149-160. |
[35] | Ru HL, Zhang HD, Jiao F, Xue CY, Guo ML (2015). Impact of micro-landform on grassland plant community structure and function in the hilly Loess Plateau region, China. Chinese Journal of Applied Ecology, 27, 25-32. |
[ 汝海丽, 张海东, 焦峰, 薛超玉, 郭美丽 (2015). 黄土丘陵区微地形对草地植物群落结构组成和功能特征的影响. 应用生态学报, 27, 25-32.] | |
[36] | Sharma CM, Suyal S, Gairola S, Ghildiyal SK (2009). Species richness and diversity along an altitudinal gradient in moist temperate forest of Garhwal Himalaya. Journal of American Science, 5, 119-128. |
[37] | Shen GC, Yu MJ, Hu XS, Mi XC, Ren HB, Sun IF, Ma KP (2009). Species-area relationships explained by the joint effects of dispersal limitation and habitat heterogeneity. Ecology, 90, 3033-3041. |
[38] | Shen ZH, Zhang XS, Jin YX (2000). Spatial pattern analysis and topographical interpretation of species diversity in the forests of Dalaoling in the region of the Three Gorges. Acta Botanica Sinica, 42, 620-627. |
[ 沈泽昊, 张新时, 金义兴 (2000). 三峡大老岭森林物种多样性的空间格局分析及其地形解释. 植物学报, 42, 620-627.] | |
[39] | Song YC, Yan ER, Song K (2015). Synthetic comparison of eight dynamics plots in evergreen broadleaf forests, China. Biodiversity Science, 23, 139-148. |
[ 宋永昌, 阎恩荣, 宋坤 (2015). 中国常绿阔叶林8大动态监测样地植被的综合比较. 生物多样性, 23, 139-148.] | |
[40] | Su JR, Liu WD, Li SF, Lang XD (2015). Restoration Ecology of Monsoon Broad-leaved Evergreen Forest in West China. Science Press, Beijing. 3-4. |
[ 苏建荣, 刘万德, 李帅锋, 郎学东 (2015). 西部季风常绿阔叶林恢复生态学. 科学出版社, 北京. 3-4.] | |
[41] | Su JR, Liu WD, Zhang ZJ, Li SF (2012). Sprouting characteristic in restoration ecosystems of monsoon evergreen broadleaved forest in south-central of Yunnan Province. Acta Ecologica Sinica, 32, 805-814. |
[ 苏建荣, 刘万德, 张志钧, 李帅锋 (2012). 云南中南部季风常绿阔叶林恢复生态系统萌生特征. 生态学报, 32, 805-814.] | |
[42] | Su SJ (2015). Spatial Heterogeneity and Vegetation Maintaining Mechanism of Pinus taiwanensis Forest in Daiyun Mountain High Altitude Area. PhD dissertation, Fujian Agriculture and Forestry University, Fuzhou, 49-65. |
[ 苏松锦 (2015). 戴云山高海拔黄山松林的空间异质性与植被维持机制. 博士学位论文, 福建农林大学, 福州. 49-65.] | |
[43] | Sun XW, Yang QS, Liu HM, Wang XH (2018). Classification of plant associations based on a 20 hm2 dynamics plot of evergreen broad-leaved forest in Mt. Tiantong, Zhejiang, China. Chinese Journal of Plant Ecology, 42, 550-561. |
[ 孙小伟, 杨庆松, 刘何铭, 王希华 (2018). 基于浙江天童20 hm2常绿阔叶林动态监测样地的群丛划分 . 植物生态学报, 42, 550-561.] | |
[44] | The Editorial Committee of Flora Reipublicae Popularis Sinicae, Chinese Academy of Sciences (2019). Flora Reipublicae Popularis Sinicae. http://www.iplant.cn/frps. |
[ 中国科学院中国植物志编辑委员会 (2019). 中国植物志. http://www.iplant.cn/frps.] | |
[45] | Tilman D, Pacala S (1993). The Maintenance of Species Richness in Plant Communities. The University of Chicago Press, Chicago. |
[46] | Wang JM, Xu H, Li YD, Lin MX, Zhou Z, Luo TS, Chen DX (2018). Effects of topographic heterogeneity on community structure and diversity of woody plants in Jianfengling tropical montane rainforest. Sciental Silvae Sinicae, 54(1), 1-11. |
[ 王家鸣, 许涵, 李意德, 林明献, 周璋, 骆土寿, 陈德祥 (2018). 地形异质性对尖峰岭热带山地雨林木本植物群落结构及多样性的影响. 林业科学, 54(1), 1-11.] | |
[47] | Wang W, Luo ZR, Zhou RF, Xu DM, Ai JG, Ding BY (2011). Habitat associations of woody plant species in Baishanzu subtropical broad-leaved evergreen forest. Biodiversity Science, 19, 134-142. |
[ 王伟, 骆争荣, 周荣飞, 许大明, 哀建国, 丁炳扬 (2011). 百山祖常绿阔叶林木本植物的生境相关性分析. 生物多样性, 19, 134-142.] | |
[48] | Wen HD, Lin LX, Yang J, Hu YH, Cao M, Liu YH, Lu ZY, Xie YN (2018). Species composition and community structure of a 20 hm2 plot of mid-mountain moist evergreen broad-leaved forest on the Mts. Ailaoshan, Yunnan Province, China . Chinese Journal of Plant Ecology, 42, 419-429. |
[ 温韩东, 林露湘, 杨洁, 胡跃华, 曹敏, 刘玉洪, 鲁志云, 谢有能 (2018). 云南哀牢山中山湿性常绿阔叶林 20 hm2 动态样地的物种组成与群落结构 . 植物生态学报, 42, 419-429.] | |
[49] | Yang QS, Ma ZP, Xie YB, Zhang ZG, Wang ZH, Liu HM, Li P, Zhang N, Wang DL, Yang HB, Fang XF, Yan ER, Wang XH (2011). Community structure and species composition of an evergreen broadleaved forest in Tiantong’s 20 hm2 dynamic plot, Zhejiang Province, eastern China . Biodiversity Science, 19, 215-223. |
[ 杨庆松, 马遵平, 谢玉彬, 张志国, 王樟华, 刘何铭, 李萍, 张娜, 王达力, 杨海波, 方晓峰, 阎恩荣, 王希华 (2011). 浙江天童20 hm2常绿阔叶林动态监测样地的群落特征 . 生物多样性, 19, 215-223.] | |
[50] | Yang YC, Da LJ, You WH (2005). Vegetation structure in relation to micro-landform in Tiantong National Forest Park, Zhejiang, China. Acta Ecologica Sinica, 25, 38-48. |
[ 杨永川, 达良俊, 由文辉 (2005). 浙江天童国家森林公园微地形与植被结构的关系. 生态学报, 25, 38-48.] | |
[51] | Ye WH, Cao HL, Huang ZL, Lian JY, Wang ZG, Li L, Wei SG, Wang ZM (2008). Community structure of a 20 hm2 lower subtropical evergreen broadleaved forest plot in Dinghushan, China. Journal of Plant Ecology (Chinese Version), 32, 274-286. |
[ 叶万辉, 曹洪麟, 黄忠良, 练琚愉, 王志高, 李林, 魏识广, 王章明 (2008). 鼎湖山南亚热带常绿阔叶林20公顷样地群落特征研究. 植物生态学报, 32, 274-286.] | |
[52] | Yuan TX, Zhang HP, Ou ZY, Tan YB (2014). Effects of topography on the diversity and distribution pattern of ground plants in karst montane forests in southwest Guangxi, China. Chinese Journal of Applied Ecology, 25, 2803-2810. |
[ 袁铁象, 张合平, 欧芷阳, 谭一波 (2014). 地形对桂西南喀斯特山地森林地表植物多样性及分布格局的影响. 应用生态学报, 25, 2803-2810.] | |
[53] | Zhang YD, Liu SR, Zhao CM (2005). Spatial pattern of sub- alpine forest restoration in west Sichuan. Chinese Journal of Applied Ecology, 16, 1706-1710. |
[ 张远东, 刘世荣, 赵常明 (2005). 川西亚高山森林恢复的空间格局分析. 应用生态学报, 16, 1706-1710.] | |
[54] | Zhu H (2019). Floristic divergence of the evergreen broad-leaved forests in Yunnan, southwestern China. Phytotaxa, 393, 1-20. |
[55] | Zhu Y, Zhao GF, Zhang LW, Shen GC, Mi XC, Ren HB, Yu MJ, Chen JH, Chen SW, Fang T, Ma KP (2008). Community composition and structure of Gutianshan forest dynamic plot in a mid-subtropical evergreen broad-leaved forest, east China. Journal of Plant Ecology (Chinese Version), 32, 262-273. |
[ 祝燕, 赵谷风, 张俪文, 沈国春, 米湘成, 任海保, 于明坚, 陈建华, 陈声文, 方腾, 马克平 (2008). 古田山中亚热带常绿阔叶林动态监测样地——群落组成与结构. 植物生态学报, 32, 262-273.] |
[1] | 席念勋 张原野 周淑荣. 群落生态学中的植物-土壤反馈研究[J]. 植物生态学报, 2023, 47(预发表): 0-0. |
[2] | 杨元合 张典业 魏斌 刘洋 冯雪徽 毛超 徐玮婕 贺美 王璐 郑志虎 王媛媛 陈蕾伊 彭云峰. 草地群落多样性和生态系统碳氮循环对氮输入的非线性响应及其机制[J]. 植物生态学报, 2023, 47(1): 0-0. |
[3] | 樊凡, 赵联军, 马添翼, 熊心雨, 张远彬, 申小莉, 李晟. 川西王朗亚高山暗针叶林25.2 hm2动态监测样地物种组成与群落结构特征[J]. 植物生态学报, 2022, 46(9): 1005-1017. |
[4] | 冯继广, 张秋芳, 袁霞, 朱彪. 氮磷添加对土壤有机碳的影响: 进展与展望[J]. 植物生态学报, 2022, 46(8): 855-870. |
[5] | 王姝文, 李文怀, 李艳龙, 严慧, 李永宏. 放牧家畜类型对内蒙古典型草原植物多样性和群落结构的影响[J]. 植物生态学报, 2022, 46(8): 941-950. |
[6] | 董六文, 任正炜, 张蕊, 谢晨笛, 周小龙. 功能多样性比物种多样性更好解释氮添加对高寒草地生物量的影响[J]. 植物生态学报, 2022, 46(8): 871-881. |
[7] | 金伊丽, 王皓言, 魏临风, 侯颖, 胡景, 吴铠, 夏昊钧, 夏洁, 周伯睿, 李凯, 倪健. 青藏高原植物群落样方数据集[J]. 植物生态学报, 2022, 46(7): 846-854. |
[8] | 曾凯娜, 孙浩然, 申益春, 任明迅. 海南羊山湿地的传粉网络及其季节动态[J]. 植物生态学报, 2022, 46(7): 775-784. |
[9] | 彭鑫, 金光泽. 植物特性和环境因子对阔叶红松林暗多样性的影响[J]. 植物生态学报, 2022, 46(6): 656-666. |
[10] | 余秋伍, 杨菁, 沈国春. 浙江天童常绿阔叶林林冠结构与群落物种组成的关系[J]. 植物生态学报, 2022, 46(5): 529-538. |
[11] | 谢育杭, 贾璞, 郑修坛, 李金天, 束文圣, 王宇涛. 驯化对作物微生物组多样性和群落结构的影响及作用途径[J]. 植物生态学报, 2022, 46(3): 249-266. |
[12] | 陈丽, 田新民, 任正炜, 董六文, 谢晨笛, 周小龙. 养分添加对天山高寒草地植物多样性和地上生物量的影响[J]. 植物生态学报, 2022, 46(3): 280-289. |
[13] | 张义, 程杰, 苏纪帅, 程积民. 长期封育演替下典型草原植物群落生产力与多样性关系[J]. 植物生态学报, 2022, 46(2): 176-187. |
[14] | 周亮, 杨君珑, 杨虎, 窦建德, 黄维, 李小伟. 宁夏蒙古扁桃群落特征与分类[J]. 植物生态学报, 2022, 46(2): 243-248. |
[15] | 郝建锋, 周润惠, 姚小兰, 喻静, 陈聪琳, 向琳, 王姚瑶, 苏天成, 齐锦秋. 二代野猪放牧对夹金山针阔混交林物种多样性与土壤理化性质的影响[J]. 植物生态学报, 2022, 46(2): 197-207. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19